首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
在对胶北荆山群麻粒岩相富铝岩石中石榴石、黑云母的成分环带进行深入研究基础上,选取不同粒径、与不同矿物相邻的石榴石、黑云母各微区点成分,利用石榴石-黑云母温度计分别进行了温度估算。确定在黑云母含量较高的岩石(V_(Grt)/V_(Bt)≤1)中,利用大颗粒石榴石(d≥1500μm)晶体核部(或靠近长英质矿物一侧的晶体幔部)成分与基质中远离石榴石等镁铁矿物处于长英质矿物之间的黑云母核部成分配合。通过石榴石-黑云母温度计可以获得相当可信的变质峰期温度。但是对于黑云母含量极低的岩石(V_(Grt)/V_(Bt)≥6),由于黑云母的成分普遍遭到了强烈改造。使得温度估算结果异常偏低,因此不适合采用石榴石-黑云母温度计估算峰期温度。同一岩石中,采用不同的相邻石榴石-黑云母矿物对晶体边缘成分获得的温度值差异较大,反映它们在峰期后发生Fe-Mg交换反应并达到封闭温度平衡状态的程度不同,因此利用石榴石-黑云母温度计难以获得准确的封闭温度。通过热力学计算,建立了一个新的石榴石-黑云母温度计公式。确定胶北荆山群所经历的变质峰期温度为720~770℃,峰期后最低相对封闭温度为480~500℃。  相似文献   

2.
Summary ?Diffusion modeling of zoning profiles in garnet rims from mafic granulites is used to estimate cooling rates in the Proterozoic basement of Sri Lanka, which represents a small, but important fragment of the Gondwana super-continent. Metamorphic peak temperatures and pressures, estimated with two-pyroxene thermometry and garnet–clinopyroxene–plagioclase–quartz (GADS) barometry, yield 875±20 °C and 9.0±0.1 kbar. These peak metamorphic conditions are slightly higher than results obtained by garnet-biotite Fe–Mg exchange thermometry of 820±20 °C. Reset flat zoning profiles were observed in most garnets. Only narrow garnet rims touching biotite exhibit retrograde zoning in terms of Fe and Mg exchange. The garnet zoning observed requires a slow cooling history. Equilibrium was achieved along grain boundaries during or close to peak metamorphism. During subsequent cooling to lower temperatures, only local exchange between garnet and biotite occurred. A cooling rate of 1–5 °C/Ma is estimated. The estimated temperature-time history from garnet profiles is in good agreement with the cooling history inferred from mineral radiogenic ages in the literature. Received December 11, 2001; revised version accepted August 28, 2002  相似文献   

3.
Abstract Muscovite-poor pelitic schists in the wallrocks of the Proterozoic Annex sulphide deposit, near Prieska, South Africa, contain peak metamorphic assemblages including Crd + Bt + Sil, St + Sil + Bt, Crd + St + Bt and, rarely, Ky + St ° Crd. All rocks include oligoclase, quartz and commonly Fe–Mn garnet, with or without muscovite. Peak assemblages, assigned to M2 regional metamorphism in the Gordonia Belt (Namaqua Province), are syn- to post-kinematic with respect to the main S2 fabric although larger staurolite grains contain S1 inclusion trails. Garnet–biotite thermometry, utilizing corrections for Fe3+, Mn, AlVI and Ti, yields peak temperatures of 571–624°C at pressures of 4.5–6.0 kbar. Consideration of the sympathetic variation of XMn in garnet with XMg in biotite and the preserved zoning patterns in prograde garnets, together with the inferred prograde transition from kyanite to sillimanite, indicates that heating occurred during mild decompression to the M2 metamorphic peak. Sillimanite and cordierite grew last in the prograde sequence, possibly related to a pulse of thermal metamorphism (M3) that is found along the margin of the Keimoes Suite batholith to the north. Retrograde assemblages, including Ms + Ky + Chl + Qtz (after Crd + Bt), Ky + Ms (after Sil) and Chl + Ms (after St) indicate a period of isobaric cooling (M4a) terminated by rehydration in the kyanite stability field at about 500°C. The size difference between prograde (1–2-mm) and retrograde (0.05–0.1-mm) mineral grains indicates substantial undercooling below equilibrium positions of relevant retrograde reactions prior to rehydration, and explains why cordierite that grew during M2 is almost completely destroyed. Post-M4a regrowth of staurolite and garnet (M4b) is spatially linked to sites of M4a rehydration. It reached temperatures of 510–530°C, remaining within the stability field of kyanite. A best fit of the observed textural history to the Namaqua orogenic cycle involves collision and heating (M2/D2) followed by granite intrusion (M3), rifting (M4a) and renewed heating due to crustal loading during volcanism (M4b). The P–T path for the Annex region is consistent with those derived from elsewhere in the Gordonia Belt and, with modification, to that published already for the nearby Prieska Copper Mines.  相似文献   

4.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

5.
Garnet-biotite (-cordierite) phase relations in high-grade gneisses of the south coast of Western Australia reflect at least two metamorphic episodes. Chemical uniformity of the interiors of garnet and cordierite grains suggest thorough equilibration during a major phase of metamorphism. Narrow Mg-depleted rims on garnet grain boundaries in contact with biotite or cordierite, and complementary Mg-enriched rims on contiguous cordierites are the result of subsequent retrograde re-equilibration. The absence of reaction zoning in biotites suggests more complete retrograde modification of this mineral.Comparison between granulite and amphibolite facies garnet-biotite pairs shows that Mn contents of both minerals are higher, and Ti contents of the biotites are lower, in the lower-grade rocks. These differences, although not entirely unrelated to grade, are more directly controlled by variations in host rock chemistry and modal amounts of garnet and biotite.Partitioning of Mg, Fe2+ and Mn between garnet and biotite is fairly uniform, with no clear differences between granulite and amphibolite facies pairs. Application of the Mg-Fe2+ distributions to the geothermometers devised by Perchuk, Thompson, and Goldman & Albee yields variable T estimates of 600–680°C, 580–780°C, and 475–715°C respectively, for the main metamorphism. These estimates are low compared with the T indicated for the granulite facies rocks by other evidence (i.e. > 750°C at 5 kb PT). The Mg-Fe2+ distributions between contiguous garnet-biotite rims suggest that retrograde re-equilibration occurred at least 20–140°C below the T of the main metamorphism.  相似文献   

6.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

7.
Oxygen isotope analyses of quartz-Al2SiO5 pairs have been made for samples from the Mica Creek area, British Columbia. We have analysed quartz–kyanite nodules and quartz–kyanite and quartz–sillimanite in multiphase pelitic rocks from the staurolite–kyanite, kyanite, and sillimanite zones. Apparent temperatures calculated from oxygen isotopic fractionation range from 555 °C (staurolite–kyanite zone) to 695 °C (sillimanite zone). Temperatures from the quartz–kyanite nodules range from 630 to 675 °C. Some of the nodules show isotopic disequilibrium. Most of the results confirm predictions that bimineralic rocks will yield an estimate of peak metamorphic temperatures, when the less abundant mineral (an aluminium silicate) is the slower oxygen diffuser. Using cooling rates of 10–100 °C Ma?1 for the multiphase rocks, measured crystal sizes and modes, the Fast Grain Boundary diffusion model with ‘wet’ diffusion data (PH2O?1.0 kbar) yields predicted apparent temperatures which are generally lower than the measured apparent temperatures. The agreement is improved if slower diffusion coefficients are used. This suggests that f (H2O) during cooling was lower than that of the hydrothermal experiments and thus that there was little interaction with aqueous fluids of internal or external origin to modify the isotopic compositions. The measured apparent isotopic temperatures and apparent garnet–biotite Fe–Mg exchange temperatures show very poor agreement for the sillimanite zone samples, with the garnet–biotite Fe–Mg exchange temperatures generally higher than the oxygen isotope temperatures. Compared with the other calibrations that we tested the measured apparent temperatures using the Sharp calibration show the best agreeement with recently published P–T grids, although some variability in agreement is expected due to variable f (H2O) during cooling.  相似文献   

8.
Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The  相似文献   

9.
The effect of intragranular diffusion on chemical zoning in garnet and on P-T paths calculated from that zoning was evaluated using a numerical model of multicomponent diffusion in combination with simulations of garnet growth. Syn-and post-growth diffusion of Mg–Fe–Mn–Ca species in garnet was calculated for a model pelitic assemblage over a range of temperatures from 485 to 635°C. Compositions from zoned garnet, as modified by diffusion, hypothetical inclusions of plagioclase within garnet and matrix phases were used to reconstruct pressure-temperature (P-T) paths from isobaric and polybaric model histories. P-T path calculations, based on numerical simulations conducted over an input isobaric heating path that reached peak temperatures between 585 and 635°C, show that relaxation of garnet compositional gradients by diffusion can induce modest to appreciable curvature in the inferred paths. Retrieved paths also indicated somewhat smaller overall temperature changes relative to the actual temperature difference of the input path. The magnitude of these distortions is shown to depend upon the heating and cooling rate and garnet crystal size as well as the actual peak temperature condition. The effect of diffusion on path trajectories in simulations with thermal histories that also included cooling were comparable to heating-only models that reached peak temperatures approximately 15–30°C higher. Compositions of garnets with radii less than 1 mm, that reached actual peak temperatures of 605°C along temperature-time histories characteristic of regional metamorphism, experienced sufficient diffusional relaxation to introduce errors of hundreds of bars to in excess of one kilobar in path trajectories. Path distortions were significant at heating/cooling rates less than 10°C/Ma, but rapidly diminished for rates faster than this. In polybaric simulations diffusion effects were least noticeable when the actual pressure-temperature conditions changed in a clockwise sense (i.e., convex to higher P and higher T), but apprecciable modification was seen in path models that underwent counterclockwise changes in P and T. Reequilibration of garnet rim compositions occurred during cooling on all paths, and temperature maxima obtained from garnet-biotite geothermometry underestimated actual peak conditions by 40 to 70°C. Calculations suggest that P-T path trajectories calculated from garnets of at least 1 mm size, and that experienced actual thermal maxima below 585°C, are not likely to be distorted by diffusional effects during regional metamorphism. However, P-T path reconstructions based on garnet zonation with smaller grains or higher temperatures may lead to misinterpretation of crystallization history. The partitioning record of peak metamorphic temperatures may be destroyed by diffusional reequilibration of garnet rim compositions during cooling, seriously complicating the task of quantitatively estimating diffusion effects on path calculations.  相似文献   

10.
Garnet is an essential phase in a wide range of metamorphic grades. Ratios of Fe and Mg concentrations in garnet have been widely used as a geothermometer for the crystallization, cooling rate and tectonic uplift rate because garnets in natural rocks always show a variety of Fe-Mg compositional partition. Normally, Fe-Mg concentrations of natural garnets vary widely and the Fe-Mg exchange reactions usually occur in a complex chemical system. Effect of pressure and temperature on Fe-Mg compositions of garnet in natural pelitic system was studied experimentally at temperatures of 700 to 780 ℃ and pressures from 21 to 29.4 kbar. The concentrations of FeO and MgO of garnet in the run products showed a linear relation with experimental temperatures. The result provided experimental evidence of Fe-Mg partition trend with temperature in a complex natural rock and therefore improved our understanding in the determinations of metamorphic temperature calculated by garnet geothermometer. Although the accurate geological application of our results requires the knowledge of the effects of other components upon [D(Mg)] and [D(Fe)] which is largely unknown currently, the data provided in this study are useful to build the relation between FeO-MgO contents and temperature, which is useful in the metamorphic temperatures determine of rocks with pelitic composition.  相似文献   

11.
Granulite facies metasedimentary gneiss exposed on Jetty Peninsula, east Antarctica, contains assemblages involving garnet-sillimanite-biotite-cordierite-spinel-ilmenite-rutile and garnet-orthopyroxene-cordierite-biotite, as well as quartz and K-feldspar. Peak assemblages involve garnet + sillimanite + ilmenite (±rutile) and garnet + orthopyroxene. P-T calculations suggest formation conditions of approximately 800d? C at 7-7.5 kbar. Cooling from peak conditions is suggested by biotite + garnet (±sillimanite) overprinting some peak assemblages. A subsequent increase in temperature is inferred from the formation of cordierite + garnet + biotite + ilmenite, garnet + sillimanite + cordierite + ilmenite and cordierite + orthopyroxene assemblages during D2. In slightly zincian bulk compositions, hercynitic spinel + cordierite + sillimanite constitutes the peak D2 assemblage. Average pressure calculations indicate peak pressures of 5.9 ±0.4 kbar at 700d? C for the cordierite-bearing D2 assemblages. Available radiometric data suggest that peak metamorphism occurred at c. 1000 Ma and D2 occurred after 940 ± 20 Ma. The following two possibilities exist for the metamorphic evolution. (1) The formation of the lower pressure cordierite-bearing assemblages is associated with a separate metamorphic event (M2), unrelated to the peak assemblage (M1), and the lower pressure assemblages have no relevance in terms of a single tectonothermal event. (2) The cordierite-bearing assemblages formed during a progression from peak conditions. In this case, the lower pressure assemblages reflect a broadly decompressional metamorphic evolution, during which temperatures fluctuated. Comparison with P-T paths from granulites of similar age in adjacent areas suggests that the second possibility should be preferred. The cooling interval between peak conditions and the development of cordierite-bearing coronas and symplectites suggests affinities with isobarically cooled granulites of similar age immediately to the west, and the low-P/high-T post-peak conditions are similar to the later stages of decompressional paths recognized in much of east Antarctica.  相似文献   

12.
The metamorphic evolution of a granulitized eclogite from the Phung Chu Valley (Eastern Himalaya) was reconstructed combining microstructural observations, conventional thermobarometry and quantitative pseudosection analysis. The granulitized eclogite consists of clinopyroxene, plagioclase, garnet, brown amphibole, and minor orthopyroxene, biotite, ilmenite and quartz. On the basis of microstructural observations and mineral relationships, four metamorphic stages and related mineral assemblages have been recognized: (i) M1 eclogite‐facies assemblage, consisting of garnet, omphacite (now replaced by a clinopyroxene + plagioclase symplectite) and phengite (replaced by biotite +plagioclase symplectite); (ii) M2 granulite‐facies assemblage, represented by clinopyroxene, orthopyroxene, garnet, plagioclase and accessory ilmenite; (iii) M3 plagioclase + orthopyroxene corona developed around garnet, and (iv) M4 brown amphibole + plagioclase assemblage in the rock matrix. Because of the nearly complete lack of eclogitic mineral relics, M1 conditions can be only loosely constrained at >1.5 GPa and >580 °C. In contrast, assemblage M2 tightly constrains the peak granulitic stage at 0.8–1.0 GPa and >750 °C. The second granulitic assemblage M3, represented by the plagioclase + orthopyroxene corona, formed at lower pressures (~0.4 GPa and ~750 °C). During the subsequent exhumation, the granulitized eclogite experienced significant cooling to nearly 700 °C, marked by the appearance of brown amphibole and plagioclase (M4) in the rock matrix. U‐Pb SHRIMP analyses on low‐U rims of zircon from an eclogite of the same locality suggest an age of 13–14 Ma for the M3 stage. The resulting decompressional clockwise P–T path of the Ama Drime eclogite is characterized by nearly isothermal decompression from >1.5 GPa to ~0.4 GPa, followed by nearly isobaric cooling from ~775 °C to ~710 °C. Modelling of phase equilibria by a calculated petrogenetic grid and conventional thermobarometry on a biotite‐garnet‐sillimanite metapelite hosted in the country rock granitic orthogneiss extends the inferred P–T trajectory down to ~630 °C and ~0.3 GPa.  相似文献   

13.
Prograde P–T paths recorded by the chemistry of minerals of subduction‐related metamorphic rocks allow inference of tectonic processes at convergent margins. This paper elucidates the changing P–T conditions during garnet growth in pelitic schists of the Sambagawa metamorphic belt, which is a subduction related metamorphic belt in the south‐western part of Japan. Three types of chemical zoning patterns were observed in garnet: Ca‐rich normal zoning, Ca‐poor normal zoning and intrasectoral zoning. Petrological studies indicate that normally‐zoned garnet grains grew keeping surface chemical equilibrium with the matrix, in the stable mineral assemblage of garnet + muscovite + chlorite + plagioclase + paragonite + epidote + quartz ± biotite. Pressure and temperature histories were inversely calculated from the normally‐zoned garnet in this assemblage, applying the differential thermodynamic method (Gibbs' method) with the latest available thermodynamic data set for minerals. The deduced P–T paths indicate slight increase of temperature with increasing pressure throughout garnet growth, having an average dP/dT of 0.4–0.5 GPa/100 °C. Garnet started growing at around 470 °C and 0.6 GPa to achieve the thermal and baric peak condition near the rim (520 °C, 0.9 GPa). The high‐temperature condition at relatively low pressure (for subduction related metamorphism) suggests that heating occurred before or simultaneously with subduction.  相似文献   

14.
Within the Çokkul synform, Caledonian metamorphic rocks of the Middle Köli Nappe Complex (MKNC) are in low-angle fault contact with the basement mylonites derived from the Precambrian Tysfjord granite-gneiss. In the synform, the MKNC is composed of four fault-bounded nappes each of which has a distinct tectonic stratigraphy composed of amphibolite-facies metamorphosed pelitic and psammitic schists with minor lensoidal bodies of mafic and ultramafic rocks. Pelitic rocks from the three structurally lowest nappes contain the low-variance AFM mineral assemblages gar + bio + staur and staur + ky + bio with mu + qtz + ilm, whereas staur and ky are absent from the highest nappe, the Kallakvare nappe. AFM mineral assemblages in the three lowest nappes indicate peak metamorphic temperatures of 610–660°C and peak pressures in excess of 600 MPa. Mineral assemblages from the Kallakvare nappe are not as diagnostic of metamorphic grade. However, rocks from that nappe contain coexisting plagioclases from both sides of the peristerite gap, suggesting lower-grade peak P–T conditions than those of the structurally lower nappes. In addition, biotite from the lower nappes is more Ti-rich than biotite from the Kallakvare nappe. However, gar–bio–mu–plag and gar–bio–ky–plag–qtz thermobarometry suggests that all four nappes equilibrated at approximately 525 ± 25°C and 700 ± 100 MPa. Gibbs method thermodynamic modelling of garnet zoning profiles suggests that the lower three nappes followed clockwise P–T paths that involved heating and compression to a metamorphic peak of approximately 575–625°C, 800 MPa followed by cooling and decompression to 525°C, 700 MPa. P–T paths calculated for the Kallakvare nappe show decompression and minor heating to a peak T of 500–525°C. In the lower nappes, staur and ky grew during the heating phase not seen by the highest nappe. The outer parts of the paths from all four nappes are approximately parallel, possibly recording the emplacement of the Kallakvare nappe onto the already stacked lower three nappes at some time following the metamorphic peak. These P–T paths suggest that the sole fault of the Kallakvare nappe is a normal fault. Garnet zonation thus appears to record a previously unrecognized phase of uplift and tectonic thinning of the MKNC. This event appears to be restricted to the MKNC and to have occurred prior to the emplacement of the MKNC onto the Tysfjord granite-gneiss basement of Baltoscandia under greenschist-facies conditions. It may have been responsible for the uplift and cooling of the MKNC from 25–30 km amphibolite-facies conditions prior to its emplacement onto Baltoscandia under 15–20 km greenschist-facies conditions. The deformation zone associated with this normal fault is relatively narrow, generally less than 1 m thick. If this is typical of other detachment faults in the metamorphic infrastructure of the Scandinavian Caledonides, they may be relatively common, but not often recognized due to the detailed study needed to document them.  相似文献   

15.
Garnet amphibolites can provide valuable insights into geological processes of orogenic belts, but their metamorphic evolution is still poorly constrained. Garnet amphibolites from the Wutai–Hengshan area of the North China Craton mainly consist of garnet, hornblende, plagioclase, quartz, rutile and ilmenite, with or without titanite and epidote. Four samples selected in a south–north profile were studied by the pseudosection approach in order to elucidate the characteristics of their metamorphic evolution, and to better reveal the northwards prograde change in P–T conditions as established previously. For the sample from the lower Wutai Subgroup, garnet exhibits obvious two‐substage growth zoning characteristic of pyrope (Xpy) increasing but grossular (Xgr) decreasing outwards in the core, and both Xpy and Xgr increasing outwards in the rim. Phase modelling using thermocalc suggests that the garnet cores were formed by chlorite breakdown over 7–9 kbar at 530–600 °C, and rims grew from hornblende and epidote breakdown over 9.5–11.5 kbar at 600–670 °C. The isopleths of the minimum An in plagioclase and maximum Xpy in garnet were used to constrain the peak P–T conditions of ~11.5 kbar/670 °C. The modelled peak assemblage garnet + hornblende + epidote+ plagioclase + rutile + quartz matches well the observed one. Plagioclase–hornblende coronae around garnet indicate post‐peak decompression and fluid ingress. For the samples from the south Hengshan Complex, the garnet zoning weaken gradually, reflecting modifications during decompression of the rocks. Using the same approach, the rocks are inferred to have suprasolidus peak conditions, increasing northwards from 11.5 kbar/745 °C, 12.5 kbar/780 °C to 13 kbar/800 °C. Their modelled peak assemblages involve diopside, garnet, hornblende, plagioclase, rutile and quartz, yet diopside is not observed petrographically. The post‐peak decompression is characterized by diopside + garnet + quartz + melt = hornblende + plagioclase, causing the diopside consumption and garnet compositions to be largely modified. Thus, the pesudosection approach is expected to provide better pressure results than conventional thermobarometry, because the later approach cannot be applied with confidence to rocks with multi‐generation assemblages. U–Pb dating of zircon in the Wutai sample records a protolith age of c. 2.50 Ga, and a metamorphic age of c. 1.95 Ga, while zircon in the Hengshan samples records metamorphic ages of c. 1.92 Ga. The c. 1.95 Ga is interpreted to represent the pre‐peak or peak metamorphic stages, and the ages of c. 1.92 Ga are assigned to represent the cooling stages. All rocks in the Wutai–Hengshan area share similar clockwise P–T morphologies. They may represent metamorphic products at different crustal depths in one orogenic event, which included a main thickening stage at c. 1.95 Ga followed by a prolonged uplift and cooling after 1.92 Ga.  相似文献   

16.
Kyanite‐bearing paragneisses from the Manicouagan Imbricate Zone and its footwall (high‐P belt of the central Grenville Province) preserve evidence of partial melting with development of metamorphic textures involving biotite–garnet ± kyanite ± plagioclase ± K‐feldspar–quartz. Garnet in these rocks displays a variety of zoning patterns with respect to Ca. Pseudosection modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system using measured bulk rock compositions accounts for the textural evolution of two aluminous and two sub‐aluminous samples from the presumed thermal peak to conditions at which retained melt solidified. The prograde features are best explained by pseudosections calculated with compositions to account for melt loss. The intersection of isopleths of grossular content and Fe/(Fe + Mg) relating to large porphyroblasts of garnet provide constraints on the PT conditions of the metamorphic peak. These PT estimates are considered to be minima because of the potential for diffusional modification of the composition of garnet at high‐T and during the early stages of cooling. However, they are consistent with textural observations and pseudosection topology, with peak assemblages best preserved in rocks for which the calculated pseudosections predict only small changes in mineral proportions in the PT interval, in which retrograde reactions are inferred to have occurred between the thermal peak and the solidus. Maximum PT conditions (14.5–15.5 kbar and 840–890 °C) and steep retrograde PT paths inferred for rocks from the Manicouagan Imbricate Zone are comparable with those determined for mafic rocks from the same area. In contrast, maximum PT conditions of 12.5–13 kbar and 815–830 °C and flatter PT paths are inferred for the rocks of the footwall to the Manicouagan Imbricate Zone. The general consistency between textures, mineral compositions and the topologies of the calculated pseudosections suggests that the pseudosection approach is an appropriate tool for inferring the PT evolution of high‐P anatectic quartzo‐feldspathic rocks.  相似文献   

17.
Summary Garnet occurs as a significant mineral constituent of felsic garnet-biotite granite in the southern edge of the Třebíč pluton. Two textural groups of garnet were recognized on the basis of their shape and relationship to biotite. Group I garnets are 1.5–2.5 mm, euhedral grains which have no reaction relationship with biotite. They are zoned having high XMn at the rims and are considered as magmatic. Group II garnets form grain aggregates up to 2.5 cm in size, with anhedral shape of individual grains. The individual garnet II grains are usually rimmed by biotite and have no compositional zoning. The core of group I garnets and group II garnets contains 67–80 mol% of almandine, 5–19 mol% of pyrope, 7–17 mol% of spessartine and 2–4 mol% of grossular. Biotite occurs in two generations; both are magnesian siderophyllites with Fe/(Fe + Mg) = 0.50–0.69. The matrix biotite in granites (biotite I) has high Ti content (0.09–0.31 apfu) and Fe/(Fe + Mg) ratio between 0.50 and 0.59. Biotite II forms reaction rims around garnet, is poor in Ti (0.00–0.06 apfu) and has a Fe/(Fe + Mg) ratio between 0.61 and 0.69. The textural relationship between biotite and garnet indicates that garnet reacted with granitic melt to form Ti-poor biotite and a new granitic melt, depleted in Ti and Mg and enriched in Fe and Al. In contrast to the host durbachites (hornblende-biotite melagranites), which originated by mixing of crustal melts and upper mantle melts, the origin of garnet-bearing granites is related to partial melting of the aluminium-rich metamorphic series of the Moldanubian Zone.  相似文献   

18.
The East Hebei terrane of North China Craton is characterized by the dome-and-keel structure, a common feature in most Archean cratons, where supracrustal rocks of granulite facies commonly occur as enclaves or rafts in tonalite–trondhjemite–granodiorite (TTG) gneisses. The metamorphic P–T paths of the granulites are significant for addressing the Archean tectonic regimes. Two types of granulite facies paragneiss with pelitic and greywacke compositions from the western margin of Qian'an gneiss dome are documented for their petrography, mineral chemistry, phase equilibria modelling using thermocalc, and zircon dating. Anticlockwise P–T paths involving the pre-peak pressure increase to the ultra-high temperature peak conditions and post-peak cooling and decompression processes were recognized. The pre-peak pressure increase process was constrained for a pelitic granulite mainly based on the spinel and cordierite inclusions in garnet and rutile corona around ilmenite, where the transition from spinel to garnet is modelled at 6–7 kbar at a fixed T = 1,000°C. For greywacke granulite, the pre-peak pressure increase evolution can be ascertained from the textural relation that orthopyroxene is surrounded by garnet, and the outwards increasing grossular (from 0.03 to 0.05) in the core of the atoll-like garnet (Grt-A), to occur from ~7 kbar at ~1,000°C. The peak P–T conditions for pelitic granulite are roughly limited to 7–11 kbar/890–1,050°C on the basis of the stability of the inferred peak assemblage involving garnet, perthite, sillimanite, rutile/ilmenite, and quartz. The peak P–T condition for greywacke granulite can be well constrained as 9–10 kbar/>1,000°C on the basis of the maximum grossular content (XGrs = 0.045–0.050) in the core of subhedral garnet (Grt-B) and the mantle of Grt-A together with an average re-integrated anorthite content (XAn = 0.07) in K-feldspar. The peak temperature condition is consistent with the ternary feldspar thermometer results mostly of 950–1,020°C for antiperthite and perthite in greywacke granulite, and in accordance with the development of oriented needle-like exsolution of Ti±Fe oxides in garnet from pelitic granulite. The post-peak cooling and decompression process was consistent with the decreasing XGrs in the mantle of Grt-A and core of Grt-B in greywacke sample, and the final-stage cooling conditions can be well constrained from the stability of final assemblages marked by the later growth of biotite, as 8–9 kbar/820–880°C for pelitic granulite and 6–9 kbar/840–890°C for greywacke granulite. Zircon dating yields provenance ages from 3.34 to 2.57 Ga and metamorphic ages of c. 2.50 Ga for the two types of granulite. The metamorphic ages overlap the final pulse of the Neoarchean magmatic activity of TTGs that ranges from c. 2.56 to c. 2.48 Ga with a peak at c. 2.52 Ga. Combining the development of dome-and-keel structures, the penecontemporaneity between the metamorphism of supracrustal rocks and TTG magmatic activity, and also the unique anticlockwise P–T paths, we prefer a vertical sagduction regime to interpret the tectonic evolution of the East Hebei terrane, which may be also significant for other Archean cratons.  相似文献   

19.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

20.
The Xilingol Complex comprises biotite gneisses and amphibolite interlayers with extensive migmatization. Four representative samples were documented and found to record either two or three metamorphic stages. Phase modelling using thermocalc suggests that the observed assemblages represent the final stages that underwent cooling from temperature peaks, and are consistent with a fluid‐absent solidus in P–T pseudosections. Their P–T conditions are further constrained to be 5–6 kbar/680–725°C and 4–5 kbar/650–680°C for two garnet‐bearing gneiss samples, 4–5 kbar/660–730°C for a cordierite‐bearing gneiss sample, and 4–5 kbar/680–710°C for an amphibolite sample based on mineral composition isopleths, involving measured Mg content in biotite, anorthite in plagioclase, grossular and pyrope in garnet and Ti content in amphibole. The peak temperature conditions recovered are 760–790°C or >760°C at 5–6 kbar based on the composition isopleths of plagioclase, biotite, garnet and especially the comparison of melt contents between the calculated and observed. A pre‐peak heating process with slight decompression can be suggested for some samples on the basis of the core–rim increase in the plagioclase anorthite, and the stability of ilmenite. Zircon U–Pb dating using the LA‐ICP‐MS method provides systemic constraints on the metamorphic ages of the Xilingol Complex to be 348–305 Ma, interpreted to represent the post‐peak cooling stages. Moreover, metagabbroic dykes that intruded into the Xilingol Complex yield 317 ± 3 Ma from magmatic zircon, and are considered to have played a significant role for heat advection triggering the high‐T and low‐P metamorphism. Thus, the clockwise P–T paths involving pre‐peak heating, peak and post‐peak cooling recovered for the Xilingol Complex are consistent with an extensional setting in the Carboniferous that developed on a previous orogen in response to addition of mantle‐derived materials probably together with upwelling of the asthenospheric mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号