首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
高心墙堆石坝地震变形与稳定分析   总被引:1,自引:0,他引:1  
赵剑明  常亚屏  陈宁 《岩土力学》2004,25(Z2):423-428
针对西部强震区一300m级高心墙堆石坝,采用三维非线性有效应力动力有限元分析方法,在地震反应分析基础上,应用所建立的分析方法,重点研究了高心墙堆石坝的地震残余变形、坝体单元抗震安全性和坝坡的抗震稳定性,得出了大坝地震残余变形和动力稳定的有关规律和结论,可供工程建设参考.  相似文献   

2.
瀑布沟堆石坝防渗体自适应有限元分析   总被引:1,自引:0,他引:1  
傅少君  陈胜宏 《岩土力学》2006,27(3):499-504
在深覆盖层地基上修建高土石坝,其防渗体系的可靠性是一项关键技术问题。针对瀑布沟水电站堆石坝的实际工程特点,应用自适应有限元方法,分析研究了大坝的稳定性和覆盖层中混凝土防渗墙与坝内黏土心墙接头部位的局部应力和变形情况,对比分析了不同接头形式的利弊,为设计部门推荐了合适的接头形式。  相似文献   

3.
高土石坝裂缝分析的变形倾度有限元法及其应用   总被引:1,自引:0,他引:1  
彭翀  张宗亮  张丙印  袁友仁 《岩土力学》2013,34(5):1453-1458
土石坝张拉裂缝一般由坝体的不均匀沉降变形引起,是土石坝破坏的主要诱因和表现形式之一。将基于现场沉降监测资料的传统变形倾度法进行了扩展,通过在有限元计算程序中嵌入变形倾度计算模块,发展了基于有限元变形计算的变形倾度有限元法。该方法简洁实用,方便与常规有限元变形计算相耦合,可作为在工程设计阶段分析和估算土石坝是否会发生表面张拉裂缝的实用方法。应用所发展的变形倾度有限元法,以糯扎渡高心墙堆石坝工程为例,进行了坝体后期变形引起坝体表面发生张拉裂缝的敏感性计算分析,探讨了高土石坝变形倾度的分布规律以及与坝体后期变形的关系,发现对糯扎渡高心墙堆石坝,坝顶后期沉降最大值小于坝高0.39%,可作为防止发生坝顶横向张拉裂缝的控制工况。通过工程实例的计算,说明提出的方法可用于高土石坝的裂缝预测分析。  相似文献   

4.
高俊  党发宁  马宗源 《岩土力学》2020,41(5):1730-1739
随着沥青混凝土心墙堆石坝的快速发展,超高沥青混凝土心墙堆石坝建设迎来了前所未有的机遇,但随着坝高的增加,心墙的安全挑战也变得异常突出。基于应力水平的定义,提出降低超高沥青混凝土心墙高应力水平的措施,依托心墙应力水平的敏感性研究,推算了独立满足和综合满足心墙屈服剪切破坏控制标准的心墙材料强度参数(最敏感材料参数)取值范围。研究表明,心墙应力水平随坝高和河谷岸坡坡比的增加而显著增大;心墙破坏比 、黏聚力 和内摩擦角 属于高敏感性参数;增大心墙破坏比 、黏聚力 和内摩擦角 能够显著地降低心墙应力水平;推荐适宜建设超高沥青混凝土心墙堆石坝的心墙破坏比 、黏聚力 和内摩擦角 取值范围: 0.8、 0.4 MPa和 31.5°(坝高 200 m),且随坝高的增长梯度按5%/25 m、15%/25 m和5%/25 m进行调整。  相似文献   

5.
随着沥青混凝土心墙堆石坝的快速发展,超高沥青混凝土心墙堆石坝建设迎来了前所未有的机遇,但随坝高的增加,心墙的安全挑战也变得异常突出。基于应力水平的定义,提出降低超高沥青混凝土心墙高应力水平的措施,依托心墙应力水平的敏感性研究,推算了独立满足和综合满足心墙屈服剪切破坏控制标准的心墙材料强度参数(最敏感材料参数)取值范围。研究表明,心墙应力水平随坝高和河谷岸坡坡比的增加而显著增大;心墙破坏比R_(f),黏聚力C和内摩擦角φ属于高敏感性参数,增大心墙破坏比R_(f),黏聚力C和内摩擦角φ能够显著地降低心墙应力水平;推荐适宜建设超高沥青混凝土心墙堆石坝的心墙破坏比R_(f),黏聚力C和内摩擦角φ取值范围:R_(f)≥0.8,C≥0.4 MPa和φ≥31.5°(坝高h=200 m),且随坝高的增长梯度按5%,15%和5%/25 m进行调整。  相似文献   

6.
随着沥青混凝土心墙堆石坝的快速发展,超高沥青混凝土心墙堆石坝建设迎来了前所未有的机遇,但随坝高的增加,心墙的安全挑战也变得异常突出。基于应力水平的定义,提出降低超高沥青混凝土心墙高应力水平的措施,依托心墙应力水平的敏感性研究,推算了独立满足和综合满足心墙屈服剪切破坏控制标准的心墙材料强度参数(最敏感材料参数)取值范围。研究表明,心墙应力水平随坝高和河谷岸坡坡比的增加而显著增大;心墙破坏比R_(f),黏聚力C和内摩擦角φ属于高敏感性参数,增大心墙破坏比R_(f),黏聚力C和内摩擦角φ能够显著地降低心墙应力水平;推荐适宜建设超高沥青混凝土心墙堆石坝的心墙破坏比R_(f),黏聚力C和内摩擦角φ取值范围:R_(f)≥0.8,C≥0.4 MPa和φ≥31.5°(坝高h=200 m),且随坝高的增长梯度按5%,15%和5%/25 m进行调整。  相似文献   

7.
张孝军  米占宽 《岩土力学》2006,27(Z2):502-506
心墙堆石坝的湿化变形已经为人们认识和重视,面板堆石坝由于上游有混凝土面板挡水,其湿化变形很少引起重视,但由湿化变形比较明显的堆石料填筑的坝体,在降雨过程中往往产生较大湿化变形,影响混凝土面板的工作性状。本文研究提出了大气降水引起堆石体达到一定饱和度情况下湿化变形的计算方法。进行了滩坑水电站混凝土面板堆石坝堆石料湿化变形试验,采用弹塑性平面有限单元法,分析研究了堆石料浸水湿化对坝体应力变形以及混凝土面板应力变形性状的影响。  相似文献   

8.
李金凤  杨启贵  徐卫亚 《岩土力学》2007,28(Z1):619-622
通过改变填筑程序,对一200 m级高面板堆石坝工程实例进行了应力-应变仿真模拟,分析表明:采用邓肯E-B非线性弹性模型和中点增量法,可以合理地反映出施工加载过程对坝体变形和结构性态的影响;堆石体的变形与加载的方式有关,相同的应力水平、不同的应力路径,其变形是不同的;对需分期填筑的高面板堆石坝,优选填筑次序对控制坝体变形有明显的作用。结果对工程建设有实际意义。  相似文献   

9.
砾石土渗透稳定特性试验研究   总被引:2,自引:0,他引:2  
刘杰  谢定松 《岩土力学》2012,33(9):2632-2638
目前砾石土被广泛地用作高土石坝中的防渗体,国内已建成的187 m高的瀑布沟堆石坝就是用它作心墙的防渗材料。介绍了瀑布沟心墙土料的渗透稳定试验结果,并论述了确定砾石土渗透稳定性能的的主要因素是细粒含量,提出了确定粗、细粒料的区分粒径、计算最优细料含量以及用细料含量判别渗透稳定性的方法。试验结果表明,工程中常以小于5 mm粒径含量不小于35%、小于0.1 mm的粒径含量不小于18%,以判别砾石土能否作为高土石坝防渗体的标准是可行的,无需另外要求小于0.005 mm的粒径含量大于10%。  相似文献   

10.
张丙印  张美聪  孙逊 《岩土力学》2008,29(5):1254-1258
岸坡突变所产生的不均匀沉降变形常常是导致土石坝心墙发生横向裂缝的主要原因。使用糯扎渡高心墙堆石坝心墙混合土料进行了模拟心墙发生横向裂缝的土工离心机模型试验。试验中再现了由于岸坡坡度变化导致坝顶发生横向裂缝的现象。采用工程中常用的3种裂缝分析方法:倾度法、Leonards法和有限元应力法对试验结果进行了分析。结果表明,前两种方法仅在测点较多时才是适用的,而有限元应力法对土石坝心墙横向裂缝问题更为有效。  相似文献   

11.
各向异性对土质心墙坝水力劈裂的影响   总被引:4,自引:2,他引:2  
应力诱导各向异性对复杂应力状态下土体的应力-应变规律有重要影响,而建立在各向同性假设基础上的常用土体本构模型并不能反映土体的这种特性,因此需要分析土体各向异性对土质心墙坝水力劈裂的影响。采用各向异性非线性弹性模型,对水荷载作用下粘土心墙坝进行有限元数值分析,并与邓肯模型计算结果比较。结果表明,各向异性模型考虑了蓄水期间从小主应力方向加荷引起的土体应力各向异性,计算得出的小主应力σ3较邓肯模型的大,且相应抗水力劈裂能力亦大,则邓肯E-v模型由于不能模拟蓄水期土体各向异性特性,对于水力劈裂发生的评估可能偏于危险。  相似文献   

12.
渗流作用下软基心墙坝稳定性分析   总被引:1,自引:0,他引:1  
陈晓平  吴起星 《岩土力学》2007,28(7):1376-1380
基于心墙坝的渗流特性建立了渗流分析模型和坝坡渗透稳定分析模型,并进一步考虑坝下软土地基的压缩特性提出了与当前应力状态有关的软土层渗流分析模型,将所建模型应用于某水利枢纽主土坝典型软基断面不同运行工况的计算,详细分析了心墙的防渗作用和软土层变形对渗透稳定的不良影响。  相似文献   

13.
Because of their sensitive structure, earth dams might face failure due to seepage phenomenon. In order to prevent such failure, some equipment like piezometers are installed in the body or foundation of earth dams. This study investigated the importance of piezometer installation level in dam body or foundation using mutual information–wavelet–Gaussian process regression. 27 Piezometers in three section along with reservoir level were employed to predict one-step-ahead seepage discharge of Zonouz earth dam. The daily data of 1 year of piezometer level and reservoir level were collected for this purpose. In order to find the best possible input combination, three groups of modeling scenarios were defined using piezometers and reservoir level time series. As some input combinations had more than two variables, decomposed time series were imposed into mutual information (MI) tool in order to decrement input variables and find the most correlated input–output features. Afterward, mentioned features were imposed into optimized Gaussian process regression (GPR) to be predicted. Different kernels were selected as core tool of GPR, but results demonstrated the capability of radial basis function (RBF) kernel. GPR–RBF structure were optimized using cross-validation technique. Results indicated that input combination including piezometer level and reservoir level of section II, especially piezometer 203 time series led to the best result among all scenarios.  相似文献   

14.
试验和现场观测都发现高土石坝的坝料在高压及湿化作用下会发生显著的颗粒破碎,颗粒破碎会改变土石料的级配曲线和密度,因而影响其后继力学行为,因此,土石料的颗粒破碎是当前岩土工程领域的研究热点。为了模拟土石料在高压及湿化作用下发生显著的颗粒破碎现象,以及循环加载中的颗粒破碎与应力诱导各向异性随动硬化共同影响下土石料的变形,本文提出了一个建模方法,考虑土石料颗粒破碎和密度变化的影响。所建议的次塑性本构模型在经过试验资料的验证后可用于动力有限元数值计算。  相似文献   

15.
张建宁 《岩土力学》2006,27(Z2):535-538
主要介绍电位器式位移计多功能性在几个工程中的应用情况。以单支电位器式位移计为核心组成的TS型土位移计用于观测心墙与岸坡混凝土垫层的剪切位移或拉伸位移,该仪器已经在多座心墙堆石坝应用,及时地监测了心墙的变形状况。以双支电位器式位移计为核心组成的TST型面板脱空位移计用于监测面板的脱空变形和剪切变形,为面板脱空处理的方案的确定以及对面板脱空处理后的效果的判断提供依据,该仪器已经在国内的高面板堆石坝成功应用,及时获得了面板脱空数据及变化曲线。以三支电位器式位移计为核心组成的TSJ型周边缝测缝计用于监测周边缝的开合度和剪切变形、垂直面板方向的沉降变形,该仪器已经在国内多座面板堆石坝应用,实时地取得周边缝的变形状态及变化曲线,为大坝安全评价提供了依据。  相似文献   

16.
In the geotechnical field, the risk related to slope instabilities or collapse of geotechnical structures are increasingly being faced by early warning systems, capable of: (1) predicting the incipient collapse based on the interpretation of a continuous monitoring of the structure and (2) spreading alarm promptly to reduce people exposure. Compared with structural approaches, early warning systems have two important advantages: a faster, simpler and less expensive implementation and environmental compatibility. Past experience indicates that vulnerability of earth dams is generally low under both static and seismic loading conditions. In spite of this, earth dams are characterized by a high-risk level, due to the high exposure factor. Nowadays, the application of early warning systems to dams is fully supported by the technological progress achieved in the telecommunication field, since it is possible to install and automate recordings and transmission of all physical variables significant to check dam safety: accelerations, displacements, pore-water pressures, total stresses, seepage flows. A considerable lack still arises in the predictive models for interpreting monitoring data and providing indicators on dam safety soon after a strong earthquake. The present work illustrates the basic concepts of an earthquake early warning (EEW) system for earth dams and the main features that should characterize a predictive model to such a scope. An application to a real case is finally provided, enhancing the role played by each monitored physical variable for the aims of EEW.  相似文献   

17.
吉恩跃  陈生水  傅中志 《岩土力学》2019,40(12):4777-4782
研究掺砾心墙料的拉裂特性对深入研究高土石坝水力劈裂、坝顶裂缝以及坝肩横缝等问题至关重要,但目前已有的研究尚不够深入。基于自主研制的单向拉伸试验装置,对不同掺砾量下的心墙料进行了系列的单向拉伸试验,依据试验结果分析了掺砾心墙料拉裂破坏的机制。在此基础上得到以下结论:在试样各自最大干密度及最优含水率下,随着掺砾量的增加,心墙料的抗拉强度和拉应变呈线性递减关系;所有试样的拉应力?应变曲线呈分段指数关系,极限拉应力前后试验曲线可分别采用正负指数关系来描述;进行了系列三轴排水剪试验,分析各试样抗拉强度与强度指标的关系发现,对于所研究的掺砾心墙料,抗拉强度与其黏聚力呈较好的线性关系,在不具备试验条件的情况下,此关系可用来大致估算心墙料的抗拉强度。相关试验结果可为实际土心墙坝抗裂设计提供参照。  相似文献   

18.
郭恩栋  张丽娜  王亚东  王再荣  王琼 《岩土力学》2011,32(12):3667-3671
为了快速准确地对遭受地震影响的土坝工程的破坏状态进行评估,以土坝震害经验统计判断模型为基础,选取了更为合理的土坝震害影响因素,采用最小二乘法重新对土坝震害数据资料进行回归分析,得到了各震害影响因素在不同条件下的回归系数取值,从而建立了一个改进的土坝震害经验统计判断模型。与原模型相比,改进模型既剔除了不合理的震害影响因子,同时又使回归模型的预测准确度得到提高,其相关系数为0.908,标准差为0.459,均比原模型要好。采用两种模型对汶川地震中遭到破坏的47座土坝进行震害评估,并与实际震害进行了对比分析,初步验证了改进模型的可靠性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号