首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
四川凉山州美姑县61泥石流灾害研究   总被引:1,自引:2,他引:1  
四川凉山州美姑县6.1泥石流灾害实例研究表明,该泥石流约为20年一遇的中小规模的泥石流。流域上游短历时强降雨和冰雹天气过程是这次泥石流暴发的诱因,流域内退化的生态环境和中下两岸不稳定边坡以及沟道内大量的松散堆积物为这次泥石流提供了丰富的固体物质来源。泥石流堆积物具有典型的多峰型粒度特征,且有较高的粘粒含量。巨大的泥石流漂砾、石背石现象、龟裂现象、侧积堤和龙头堆积证实了这次泥石流为粘性泥石流。危险度评价表明,采莫洛沟属于高度危险的泥石流沟,危险度为0.67;乃托沟属于中度危险的泥石流沟,危险度为0.58。风险评估结果可知,两沟都属于泥石流高风险区风险度分别为0.52和0.45。高风险区的泥石流灾害给当地的经济社会造成了严重影响并直接造成了较大的人员伤亡和财产损失。  相似文献   

2.
Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However, only 12% of documented cases exhibited this process. When they do occur, the landslide failures range in thickness from a few tens of centimeters to more than 6 m, and generally involve the soil and colluvium-mantled hillslopes. Surficial landslide failures in burned areas most frequently occur in response to prolonged periods of storm rainfall, or prolonged rainfall in combination with rapid snowmelt or rain-on-snow events.  相似文献   

3.
The Chitral district of northern Pakistan lies in the eastern Hindu Kush Range. The population in this high-relief mountainous terrain is restricted to tributary-junction fans in the Chitral valley. Proximity to steep valley slopes renders these fans prone to hydrogeomorphic hazards, including landslides, floods and debris flows.This paper focuses on debris-flow hazards on tributary-junction fans in Chitral. Using field observations, satellite-image analyses and a preliminary morphometry, the tributary-junction fans in the Chitral valley are classified into (1) discrete and (2) composite. The discrete fans are modern-day active landforms and include debris cones associated with ephemeral gullies, debris fans associated with ephemeral channels and alluvial fans formed by perennial streams. The composite fans are a collage of sediment deposits of widely different ages and formed by diverse alluvial-fan forming processes. These include fans formed predominantly during MIS-2/Holocene interglacial stages superimposed by modern-day alluvial and debris fans. Composite fans are turned into relict fans when entrenched by modern-day perennial streams. These deeply incised channels discharge their sediment load directly into the trunk river without significant spread on fan surface. In comparison, when associated with ephemeral streams, active debris fans develop directly at composite-fan surfaces. Major settlements in Chitral are located on composite fans, as they provide large tracts of leveled land with easy accesses to water from the tributary streams. These fan surfaces are relatively more stable, especially when they are entrenched by perennial streams (e.g., Chitral, Ayun, and Reshun). When associated with ephemeral streams (e.g., Snowghar) or a combination of ephemeral and perennial streams (e.g., Drosh), these fans are subject to frequent debris-flow hazards.Fans associated with ephemeral streams are prone to high-frequency (∼10 years return period) debris-flow hazards. By comparison, fans associated with perennial streams are impacted by debris-flow hazards during exceptionally large events with return periods of ∼30 years. This study has utility for quick debris-flow hazard assessment in high-relief mountainous regions, especially in arid- to semi-arid south-central Asia where hazard zonation maps are generally lacking.  相似文献   

4.
    
At least six devastating glacial floods occurred in the Karambar valley in the 19th and 20th century. Previously mainly the Karambar glacier was considered as the origin of these outburst floods. However, in this project more detailed investigations revealed that up to eight more tributary glaciers could have dammed the Karambar valley in historical and prehistorical times. The ice-dammed lakes reached an approximate length of up to about 5 km and more. The dense concentration of the glacier dams along a horizontal distance of only 40 km results in a complex interfingering of lake basins and flooded valley sections. In the individual flood events were probably involved almost synchronously the drainage of at least two lakes resulting in a lake outburst cascade. The Karambar case study highlights the characteristic geomorphological landforms of the glacier dams, their lake basins and the geomorphological impact of the outburst floods. The abundant occurrence of unconsolidated sediments mantling the valley flanks caused a high sediment load and enhanced the erosion potential of the flood. The erosion cliffs of sediment cones, up to 100 m high, wash limits along the slopes and longitudinal bars in the gravel floors are main characteristics of the flood landscape. Secondary temporary lake formations (back water ponding) during the flood events in consequence of blockages of the ice- and sediment-loaden flood masses occurred at many locations in the narrower valley sections and lasted for several days. Additionally, debris flows in-between the glacier dams have dammed temporarily the Karambar valley. On the basis of losses of settlement area and eye-witness reports, the extent, erosion rates and characteristics of the 1905 flood event could be reconstructed. In order to warn the villagers living downstream, the Karambar people established an early warning fire system (Puberanch) from Sokther Rabot to Gilgit which was operated until 1905. The reconstructed Karambar flood chronology represents one of the longest records for this region and provides also information on historical and recent glacier oscillations, especially on exceptional glacier advances. At present, the Chateboi glacier seals the Karambar valley over a distance of 4 km. An outburst flood would have disastrous impacts to the human infrastructure as the settlement areas expanded to the flood plains in the last decades.  相似文献   

5.
At least six devastating glacial floods occurred in the Karambar valley in the 19th and 20th century. Previously mainly the Karambar glacier was considered as the origin of these outburst floods. However, in this project more detailed investigations revealed that up to eight more tributary glaciers could have dammed the Karambar valley in historical and prehistorical times. The ice-dammed lakes reached an approximate length of up to about 5 km and more. The dense concentration of the glacier dams along a horizontal distance of only 40 km results in a complex interfingering of lake basins and flooded valley sections. In the individual flood events were probably involved almost synchronously the drainage of at least two lakes resulting in a lake outburst cascade. The Karambar case study highlights the characteristic geomorphological landforms of the glacier dams, their lake basins and the geomorphological impact of the outburst floods. The abundant occurrence of unconsolidated sediments mantling the valley flanks caused a high sediment load and enhanced the erosion potential of the flood. The erosion cliffs of sediment cones, up to 100 m high, wash limits along the slopes and longitudinal bars in the gravel floors are main characteristics of the flood landscape. Secondary temporary lake formations (back water ponding) during the flood events in consequence of blockages of the ice- and sediment-loaden flood masses occurred at many locations in the narrower valley sections and lasted for several days. Additionally, debris flows in-between the glacier dams have dammed temporarily the Karambar valley. On the basis of losses of settlement area and eye-witness reports, the extent, erosion rates and characteristics of the 1905 flood event could be reconstructed. In order to warn the villagers living downstream, the Karambar people established an early warning fire system (Puberanch) from Sokther Rabot to Gilgit which was operated until 1905. The reconstructed Karambar flood chronology represents one of the longest records for this region and provides also information on historical and recent glacier oscillations, especially on exceptional glacier advances. At present, the Chateboi glacier seals the Karambar valley over a distance of 4 km. An outburst flood would have disastrous impacts to the human infrastructure as the settlement areas expanded to the flood plains in the last decades.  相似文献   

6.
Hydrogeomorphic methods for the regional evaluation of flood hazards   总被引:1,自引:0,他引:1  
The “upstream” approach to flood hazard evaluation involves the estimation of hydrologic response in small drainage basins. This study demonstrates the application of geomorphology to such studies in a region of unusually intense flooding in central Texas. One approach to flood hazard evaluation in this area is a parametric model relating flood hydrograph characteristics to quantitative geomorphic properties of the drainage basins. A preliminary model uses multiple regression techniques to predict potential peak flood discharge from basin magnitude, drainage density, and ruggedness number. After mapping small catchment networks (4 to 20 km2) from remote sensing imagery, input data for the model are generated by network digitization and analysis by a computer-assisted routine of watershed analysis. The study evaluated the network resolution capabilities of the following data formats: (1) large-scale (1:24,000) topographic maps, employing Strahler's “method of v's”, (2) low altitude black-and-white aerial photography (1:13,000 and 1:20,000 scales), (3) NASA-generated aerial infrared photography at scales ranging from 1:48,000 to 1:123,000, and (4) Skylab Earth Resources Experiment Package S-190A and S-190B sensors (1:750,000 and 1:500,000 respectively). Measured as the number of first order streams or as the total channel length identified in small drainage areas, resolution is strongly dependent on basin relief. High-density basins on the Edwards Plateau were poorly depicted on orbital imagery. However, the orbital network definition of low-relief basins on the inner Texas Coastal Plain is nearly as accurate as results from large-scale topographic maps. Geomorphic methods are also useful for flood hazard zonation in “downstream” flood plain areas. Studies of the Colorado River valley near Austin, Texas, easily distinguished infrequent (100- to 500-year recurrence interval), intermediate (10- to 30-year), and frequent (1- to 4-year) hazard zones. These mapping techniques are especially applicable to the rapid regional evaluation of flood hazards in areas for which there is a lack of time and money to generate more accurate engineering-hydraulic flood hazard maps.  相似文献   

7.
2010年8月14日,汶川县映秀镇强降雨导致红椿沟暴发特大泥石流灾害,冲出固体物质80.5×104m3,泥石流堰塞堵断岷江主河道,导致河水改道冲入映秀新区,淤埋了沟口213国道公路400m,掩埋了在建映(秀)-汶(川)高速公路引线路基及多个桥墩,造成17人失踪。据灾后调查,红椿沟泥石流为近几年暴发的较典型泥石流沟,地震诱发的集中物源特别丰富,暴发泥石流时一次冲出固体物质量巨大,沟内多点堵溃、拉槽下切集中启动物源的特征十分明显;本文重点分析了形成泥石流的三大条件及泥石流启动机理,反算运动特征参数,预测其发展趋势。  相似文献   

8.
The Longxi river basin with the city of Dujiangyan, in the Sichuan province of South West China, belongs to the seismic area of the May 12, 2008 Wenchuan earthquake. Lots of loose co-seismic materials were present on the slopes, which in later years served as source material for rainfall-induced debris flows. A total of 12 debris flows, were triggered by heavy rainfall on August 13, 2010 in the study area. The FLO-2D numerical analysis software was adopted to simulate debris flows intensity, including movement velocities and maximum flow depths. A comparison of the measured fan spreading with the simulation results, the evaluation parameter Ω was used to verify accuracy of simulation, the results show Ω values ranging between 1.37 and 1.65 indicating relative good simulation results. This study also estimated the flood hydrograph for various recurrence intervals (20, 100, and 200 years, respectively) to perform scenario simulations of debris flows, and followed Swiss and Austrian standards to establish a debris flow hazard classification model on the basis of a combination of the debris flow intensity and the recurrence period. This study distinguishes three hazard classes: low, medium, and high. This proposed approach generated a debris flow hazard distribution map that could be used for disaster prevention in the Wenchuan earthquake-stricken area, South West China.  相似文献   

9.
Destructive volcaniclastic flows are among the most recurrent and dangerous natural phenomena in volcanic areas. They can originate not only during or shortly after an eruption (syn-eruptive) but also during a period of volcanic quiescence (inter-eruptive), when heavy and/or persistent rains remobilize loose pyroclastic deposits. The area in Italy most prone to such flows is that of the Apennine Mountains bordering the southern Campania Plain. These steep slopes are covered by pyroclastic material of variable thickness (a few cm to several m) derived from the explosive activity of the Somma-Vesuvius and Campi Flegrei volcanoes a few tens of kilometers to the west. The largest and most recent devastating event occurred on May 5, 1998, causing the death of more than 150 people and considerable damage to villages at the foot of the Apennine Mountains. This tragic event was only the most recent of a number of volcaniclastic flows affecting the area in both historical and prehistoric times. Historical accounts report that more than 500 events have occurred in the last five centuries and that more than half of these occurred in the last 100 years, causing hundreds of deaths. In order to improve volcaniclastic flow hazard zonation and risk mitigation in the study area, we produced a zonation map that identifies the drainage basins potentially prone to disruption. This map was obtained by combining morphological characteristics (concavity and basin shape factor) and the mean slope distribution of drainage basins derived from a digital elevation model with a 10-m resolution. These parameters allowed for the classification of 1,069 drainage basins, which have been grouped into four different classes of proneness to disruption: low, moderate, high and very high. The map compiled in a GIS environment, as well as the linked database, can be rapidly queried.  相似文献   

10.
The goals of this work are to show the range of debris-flow volumes and watershed characteristics for several locations, and the differences in flow volumes for events triggered soon after wildfire. A dataset of 929 events was divided into groups based on location and burn status. The three unburned locations show significant differences: debris flows from the Italian Alps are larger and generate more debris per unit basin area or unit channel length than flows in the Western USA or in the Pacific Northwest. However, some of the observed differences may be attributed to the skew of the Italian Alps dataset towards larger events, and the small size and limited range of the Pacific Northwest data. For burned watersheds in the Western U.S. events, there is a clear progression in decreasing volume in debris flows as basins recover from the wildfire: it takes approximately 1 year, or at a few locations, as much as 3 years, for debris production to return to pre-fire rates. The difference is most apparent when the data are normalized for basin area (the area yield, which is 2× larger for burned basins) or for channel length (the length yield, which is 1.6× larger for burned basins). When normalized simultaneously for basin area, channel length, and channel gradient, burned areas produce significantly more debris (2.7–5.4 times as much). Burned areas in the Western USA are more sensitive to wildfire and produce larger debris flows than burned areas in more humid climates such as the Pacific Northwest.  相似文献   

11.
汶川震区映秀镇"8·14"特大泥石流灾害调查   总被引:2,自引:0,他引:2  
唐川  李为乐  丁军  黄翔超 《地球科学》2011,36(1):172-180
2010年8月14日强降雨过程导致汶川震区映秀镇红椿沟泥石流暴发,泥石流堰塞堆积体堵断岷江主河道,导致河水改道冲入映秀新镇,引发洪水泛滥;造成映秀镇13人死亡、59人失踪,受灾群众8 000余人被迫避险转移.由于这场泥石流灾害发生在汶川地震震中区,是地震与降雨共同作用下的结果,研究其形成与成灾过程对于进一步认识强震区泥...  相似文献   

12.
Debris flows in settings that have experienced net glacial erosion within the UK's Ice-scoured Quaternary domain are the result of a complex interaction of a range of geological and geomorphological factors. On the 11th of August 2016 a rainfall-triggered debris flow deposited 100 t of sediment onto local road and rail infrastructure blocking transport between town of Fort William and port of Mallaig in north-west Scotland. The debris flow occurred in an ice-scoured setting, where current 1:50,000-scale geological maps suggest that little or no sediment is expected on the valley slopes. In this study, we show how weathering and mass-wasting processes have interacted with bedrock structures to fill localised depressions with sediment on the upper parts of the slope. The intense rainfall event of August 2016 caused the destabilisation of this localised sediment, with eventual failure along bedrock joint surfaces resulting in two debris flows. This study demonstrates the combination of processes that can result in thick accumulations of sediment on slopes that are otherwise generally lacking in superficial sediment cover. These sediment accumulations have the potential to pose a significant landslide hazard in areas that might previously have been thought of as lower susceptibility. The research illustrates a need to improve understanding and representation of sediment thickness and distribution on hill slopes – particularly those that show an absence of superficial deposits at the scale of currently available geological maps.  相似文献   

13.
火后泥石流是一种裹挟大量松散物质的特殊性洪流,与林火密切相关,其成灾特征与常规泥石流差异显著,因此常规泥石流的防治经验对其不完全适用。西昌“3·30”火灾后,火烧迹地火后泥石流频发,严重威胁当地人民生命财产安全。研究火后泥石流的成灾特征,并针对性提出综合防治措施是必要且迫切的。文中以四川省凉山州西昌市新村电池厂沟为研究对象,分析了火烧迹地及流域特征,研究了火后泥石流成灾特征并提出相应的防治措施。结果表明,电池厂沟过火面积占总面积的83.37%,严重火烧区占33.47%,地表灰烬层广泛堆积于坡面,松散物源中坡面物源占69.83%。火后泥石流表现出频发性:首次暴发于火后一个月左右,首个雨季累计暴发5次;且泥石流起动降雨阈值低,易发性激增。据此,对该沟提出相应的防治措施:短期应急(坡面枯木清理、植被恢复、简易谷坊坝);中期治理(沟内拦砂坝辅以坝后沉沙池);长期预防(森林防火、植被保护、预警避险)。短期、中期方案已在电池厂沟实施,工程竣工后至今,综合治理效果得到了初步检验,可为今后火后泥石流防治提供参考。  相似文献   

14.
Debris flows: behaviour and hazard assessment   总被引:2,自引:0,他引:2  
Debris flows are water‐laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris‐flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris’ solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris‐flow hazard assessment.  相似文献   

15.
During the three flood seasons following the Wenchuan earthquake in 2008, two catastrophic groups of debris flow events occurred in the earthquake-affected area: the 2008-9-24 debris flow events, which had a serious impact on rebuilding; and the 2010-8-13/14 debris flow events, which destroyed much of the progress made in rebuilding. The Wenjia gully is a typical post-earthquake debris flow gully and at least five debris flows have occurred there. As far as the 2010-8-13 debris flow is concerned, the deposits of the Wenjia gully debris flow reached a volume of 3.1 × 106 m3 in volume and hundreds of newly built houses were buried. This study took the Wenjia gully debris flow as an example and discussed the formation and characteristics of post-earthquake debris flow on the basis of field investigations and a remote sensing interpretation. The conclusions drawn from the investigation and analysis were as follows: (1) Post-earthquake debris flows were a joint result of both the earthquake and heavy rainfall. (2) Gully incision and loose material provision are key processes in the initiation and occurrence of debris flows and a cycle can be presented as the following process: runoff—erosion—collapse—engulfment—debris flow—further erosion—further collapse—further engulfment—debris flow enlargement. (3) The amount of rainfall that triggered debris flows from the Wenjia gully was significantly less than the average daily rainfall, while the intraday rainfall threshold decreased by at least 23.3%. (4) The occurrence mechanism of Wenjia gully debris flow was an erosion type and there was a positive relationship between debris flow magnitude and rainfall, which fitted an exponential model. (5) There were five representative characteristics of Wenjia gully debris flow: the long duration of the occurring process; the long distance of deposition chain conversion during the process of damage; magnification in the scale of debris flow; and the high frequency of debris flow events.  相似文献   

16.
火后泥石流是火烧迹地最为严重的次生地质灾害,相对于传统泥石流和震后泥石流,其物源启动模式及致灾机理呈现出特殊性。通过对四川省乡城县仁额拥沟火烧迹地沟道不同时间尺度下的累积侵蚀量统计分析,将火烧迹地物源启动分为3个阶段:坡面侵蚀阶段、高含沙水流沟道侵蚀阶段和泥石流沟道刨蚀阶段,其中面蚀到沟蚀转变所需的汇流面积与斜坡倾斜度和火烈度呈负相关,高含沙水流转变为泥石流后常常造成沟道侵蚀率的激增;火烧后2 a的坡面侵蚀量相当于火烧前10~30 a的侵蚀总量,且主要发生在中度及严重火烧区;火烧区的滑坡发育率远高于未火烧区,但未发现火烈度对滑坡体积有明显影响,其主要受临空面高度影响,并呈幂函数正相关,滑坡物源启动模式为坡脚切坡触发的逐级牵引后退式补给。  相似文献   

17.
四川省都江堰市龙池地区泥石流危险性评价研究   总被引:1,自引:0,他引:1  
汶川地震灾区震后泥石流灾害较震前活跃,对灾区泥石流危险性进行评价是灾后重建过程中合理防灾减灾的基础工作。通过研究泥石流灾害事件中的泥石流规模、泥石流沟堆积扇面积及相应的灾害损失等基础资料,提出以泥石流在泥石流沟堆积扇上的平均堆积厚度替代泥石流规模作为主要危险因子的单沟泥石流危险性评价方法。用该方法对汶川震区都江堰市龙池镇龙溪河流域2010年"8.13"泥石流事件中的29条沟谷型泥石流进行危险性评价,评价结果中9条为高度危险,12条为中度危险,8条为低度危险。用以泥石流规模为主要危险因子的单沟泥石流危险性评价方法进行对比评价,2种评价方法中有65.5%的泥石流的危险性评价结果一致。以泥石流沟堆积扇平均堆积厚度为主要危险因子的单沟泥石流危险性评价方法更能突出规模对泥石流综合危险度的贡献,能更好地反映小泥石流流域和小泥石流堆积扇的泥石流在中小规模的泥石流总量下的危险程度。  相似文献   

18.
Glacial lake outburst floods occurred frequently during the last deglaciation of the Laurentide Ice Sheet. Within the Interior Plains, these floods carved large spillway systems; however, due to a lack of abundant sediment, deposits within prairie spillways are rarely preserved. Here, we present geomorphic and sedimentary evidence and hydraulic modelling of the eastern Beaver River Spillway, formed by the catastrophic drainage of the ice‐dammed glacial Lake Algar, in north central Alberta. During this flood, coarse‐grained sediment eroded from local till formed large pendant bars. Within the first ~50 km of the spillway (Reach 1), pendant bars contain downstream orientated foresets overlain by horizontally bedded coarser gravels. The remaining pendant bars (Reach 2), present downflow of a moraine barrier, differ, comprising massive, matrix‐supported, inversely graded gravels capped by a boulder layer. We use a HEC‐GeoRAS/HEC‐RAS system in conjunction with palaeostage indicators to estimate the steady‐state water surface elevation. Modelling results show that peak discharge within Reach 1 of the eastern Beaver River Spillway was approximately 14 000–21 000 m3 s?1. For Reach 2, 30 km downstream, the peak discharge was estimated at 23 000–40 000 m3 s?1 (nbulked 18 000–26 000 m3 s?1). The downstream discharge increase, consistent with the sedimentary change in pendant bar deposits, is attributed to sediment bulking of the flood flow. This provides the opportunity to observe a range of flow conditions, and associated sedimentology, from a single flood event. The reconstructed flow conditions, coupled with lake volume estimates from the ponding above the moraine barrier suggest a minimum flow duration of 3–5 days.  相似文献   

19.
Debris flow occurs frequently in mountainous regions in China. Because of the difficulties involved in predicting and catching live debris flows, an assessment of the potential for debris flow is crucial in hazard mitigation. Magnitude–frequency (MF) relations are of special significance in such assessments. In previous studies, MF relations have been inferred by analyzing environmental factors and historical records and using empirical relations. This paper is concerned with the derivation of MF relations at regional and valley scales, using a large database of statistics. At the regional scale, it is represented by the distribution of the valley area, because the area is often taken to indicate the potential magnitude of debris flow. Statistics from over 5,000 debris flow valleys in various provinces in China show that a power law holds for the distribution, i.e., p(A) ∼ A −n , where p(A) is the percentage of valleys with area A and n varies with region and thus describes regional differences. At the valley scale, a case study focusing on Jiangjia Gully (JJG) was conducted, and the MF relations derived from it were expressed by the distributions of discharge and runoff (i.e., the total volume) of living debris flows observed over the last 40 years. The distributions can be expressed as exponential functions where the exponents vary with the events. These MF relations provide not only a potential quantitative reference for practical purposes but also hint at the intrinsic properties of the debris flow.  相似文献   

20.
Carrasco  R.M.  Pedraza  J.  Martin-Duque  J.F.  Mattera  M.  Sanz  M.A.  Bodoque  J.M. 《Natural Hazards》2003,30(3):361-381
The Jerte Valley is anortheast-southwest tending graben located in the mountainous region of west central Spain (Spanish Central System). Mass movements have been a predominant shaping process on the Valley slopes during the Quaternary. Present day activity is characterized as either `first-time failure' (shallow debris slides and debris flows) or `reactivations' of pre-existing landslides deposits.A delineation of landslide hazard zoningwithin the Valley has been carried out by using the detailed documentation of a particular event (a debris slide and a sequel torrential flood, which occurred on the Jubaguerra stream gorge), and GIS techniques. The procedure has had four stages, which are: (1) the elaboration of a susceptibility map (spatial prediction) of landslides; (2) the elaboration of a map of `restricted susceptibility' in the particular case of slopes that are connected to streams and torrents (gorges); (3) the elaboration of a digital model which relates the altitude to the occurrence probability of those particular precipitation conditions which characterized the Jubaguerra event and (4) the combination of the probability model with the `restricted susceptibility map', to establish `critical zones' or areas which are more prone to the occurrence of phenomena that have same typology as this one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号