首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 908 毫秒
1.
Daily precipitation data during the period of 1960 to 2005 from 147 rain gauging stations over the Yangtze River Basin are analyzed to investigate precipitation variations based on precipitation indices and also consecutive rainfall regimes in both space and time. Results indicate decreasing annual/monthly mean precipitation. Distinct decreases in rainfall days are observed over most parts of the Yangtze River Basin, but precipitation intensity is increasing over most parts of the Yangtze River Basin, particularly the lower Yangtze River Basin. Besides, durations of precipitation regimes are shortening; however, the fractional contribution of short-lasting precipitation regimes to the total precipitation amount is increasing. In this sense, the precipitation processes in the Yangtze River Basin are dominated by precipitation regimes of shorter durations. These results indicate intensified hydrological cycle reflected by shortening precipitation regimes. This finding is different from that in Europe where the intensifying precipitation changes are reflected mainly by lengthening precipitation regimes, implying different regional responses of hydrological cycle to climate changes. The results of this study will be of considerable relevance in basin-scale water resources management, human mitigation of natural hazards, and in understanding regional hydrological responses to changing climate at regional scales.  相似文献   

2.
气候变暖背景下我国南方旱涝灾害时空格局变化   总被引:16,自引:7,他引:9  
我国南方地区各季节降水异常主要包含三种优势模态:长江及其以南地区降水呈整体偏多或偏少的一致型,长江中下游流域与华南呈反相变化的南北反相型以及东南与西南呈反相变化的东西反相型。其中一致型是南方地区各季节降水变率的第一优势模态。总体而言,在1961—2013年南方地区平均降水存在明显的年代际和长期趋势变化。其中,夏季和冬季南方区域平均降水具有相似的年代际变化特征,而秋季降水的年代际演变几乎与上述两个季节的相反。不过,在近30年南方各季降水量发生年代际转折的时间不尽相同:春季和秋季降水分别在21世纪初期和20世纪80年代中后期之后进入干位相,冬季和夏季降水则分别在80年代中期和90年代初期之后进入湿位相。自21世纪初期以来,南方夏季和冬季降水逐渐转入中性位相。此外,南方春季和秋季降水均呈减少趋势;而夏季和冬季则相反,均呈增多趋势。对于西南地区,除了春季外,其他三个季节的降水均呈减少趋势,出现了季节连旱的特征,尤其是秋旱最为严重。不过,不管是季节降水量还是旱/涝日数,在我国南方大部分地区其线性变化趋势并不十分显著,这与南方降水年代际分量对降水变率存在较大贡献相关。分析还发现,我国南方区域洪涝受灾面积具有比较明显的年代际变化,而干旱受灾面积则没有明显的年代际变化特征,近十多年来西南地区干旱和洪涝受灾出现了交替互现的特点。  相似文献   

3.
利用我国西南和华南地区131个测站1961~2010年近50 a降水和NECP资料,采用线性趋势分析、合成分析、功率谱分析等方法,基于秋季降水距平百分率,研究分析了近50 a我国西南和华南地区各级别秋旱的空间分布及时间变化特征,并初步讨论了各级别干旱形成的原因。结果表明:秋季干旱集中在川东、贵州中东部—华南,中旱、重旱、特旱主要出现在华南;近50 a来秋旱有显著增多的趋势,主要体现在轻旱的增多,而重旱和特旱趋势不明显。1960年代秋旱相对较多,1970年代初至1980年代后期秋旱较少,此后秋旱频繁,其中2002年以后秋旱突变性增多,干旱范围扩大的同时,其强度也在增强;秋旱频率具有显著的2.2 a周期,其中重旱有显著的12 a周期,特旱有显著的2.7 a周期;秋旱频率高的地方连旱频率也高,连旱高频区在川东—渝北、黔中—华南,连续5 a以上的秋旱较少,个别地方可达到6 a。700 h Pa上,西太平洋副热带高压、印缅槽、高原东部槽等是影响西南、华南地区秋季干湿的主要环流因子。  相似文献   

4.
In this study, we thoroughly analyzed abrupt behaviors, trends, and periodicity properties of water vapor flux and moisture budget entering and exiting the four edges of the Pearl River basin based on the NCAR/NCEP reanalysis dataset by using the continuous wavelet transform and the simple two-phase linear regression technique. Possible implications for hydrological cycle and water resource management of these changes are also discussed. The results indicate that: (1) the water vapor propagating through the four edges of the Pearl River basin is decreasing, and it is particularly true for the changes of the water vapor flux exiting from the north edge of the study river basin. The transition point from increase to decrease occurs in the early 1960s; (2) The wavelet transform spectra indicate that the monthly water vapor flux through the north edge decreases and this decrease is mainly reflected by intermittent distribution of the wavelet power spectra after early 1980s. The periodicity properties of the water vapor flux through the north edge imply that the northward propagation of water vapor flux decreases after the 1980s; (3) close relations between water vapor flux, precipitation and streamflow implies that the altered hydrological cycle in the Pearl River basin is mainly manifested by seasonal shifts of water vapor flux after early 1960s. One of the direct consequences of these changes of water vapor flux is the seasonal transition of wet and dry conditions across the Pearl River basin. Regional responses of hydrological cycle to climate variation/change could be different from one river basin to another. Hydrological responses of the Pearl River basin to the global warming are mainly demonstrated by seasonal shifts of precipitation changes: winter comes to be wetter and summer tends to be dryer. The finding of the seasonal transition of precipitation in the Pearl River basin is of great scientific and practical merits in basin scale water resource management in the Pearl River basin under the changing climate and global warming in particular.  相似文献   

5.
Regional trends in recent precipitation indices in China   总被引:20,自引:0,他引:20  
Summary Regional characteristics of recent precipitation indices in China were analyzed from a daily rainfall dataset based on 494 stations during 1961 to 2000. Some indices such as precipitation percentiles, precipitation intensity, and precipitation persistence were used and their inter-decadal differences were shown in this study. Over the last 40 years, precipitation indices in China showed increasing and decreasing trends separated into three main regions. A decreasing trend of annual precipitation and summer precipitation was observed from the southern part of northeast China to the mid-low Yellow River valley and the upper Yangtze River valley. This region also showed a decreasing trend in precipitation intensity and a decreasing trend in the frequency of persistent wet days. On the other hand, increasing trends in precipitation intensity were found in the Xinjiang region (northwest China), the northern part of northeast China, and southeast China, mainly to the south of the mid-low Yangtze River. The indices of persistent wet days and strong rainfall have contributed to the increasing frequency of floods in southeast China and the Xinjiang region in the last two decades. Persistent dry days and weakening rainfall have resulted in the increasing frequency of drought along the Yellow River valley including North China. Regional precipitation characteristics and trends in precipitation indices indicate the climate state variations in the last four decades. A warm-wet climate state was found in northwest China and in the northern part of northeast China. A warm-dry climate state extends from the southern part of northeast China to the Yellow River valley, while a cool-wet summer was found in southeast China, particularly in the mid-low Yangtze River valley over the last two decades.  相似文献   

6.
The Tibetan Plateau (TP) surfaces have been experiencing an overall rapid warming and wetting while wind speed and solar radiation have been declining in the last three decades. This study investigated how climate changes influenced the hydrological cycle on the TP during 1984??2006. To facilitate the analysis, a land surface model was used to simulate surface water budget at all CMA (China Meteorological Administration) stations on the TP. The simulated results were first validated against observed ground temperature and observation-derived heat flux on the western TP and observed discharge trends on the eastern TP. The response of evaporation and runoff to the climate changes was then analyzed. Major finding are as follows. (1) Surface water balance has been changed in recent decades. Observed precipitation shows insignificant increasing trends in central TP and decreasing trends along the TP periphery while evaporation shows overall increasing trends, leading to decreased discharge at major TP water resource areas (semi-humid and humid zones in the eastern and southern TP). (2) At the annual scale, evaporation is water-limited in dry areas and energy-limited (radiation and air temperature) in wet areas; these constraints can be interpreted by the Budyko-curve. Evaporation in autumns and winters was strongly controlled by soil water storage in summers, weakening the dependence of evaporation on precipitation at seasonal scales. (3) There is a complementary effect between the simulated actual evaporation and potential evaporation, but this complementary relationship may deviate from Bouchet??s hypothesis when vapor pressure deficit (or air temperature) is too low, which suppresses the power of vapor transfer.  相似文献   

7.
The ecosystem of the Tibetan Plateau is highly susceptible to climate change. Currently, there is little discussion on the temporal changes in the link between climatic factors and vegetation dynamics in this region under the changing climate.By employing Normalized Difference Vegetation Index data, the Climatic Research Unit temperature and precipitation data,and the in-situ meteorological observations, we report the temporal and spatial variations in the relationships between the vegetation dynamics and climatic factors on the Plateau over the past three decades. The results show that from the early 1980s to the mid-1990s, vegetation dynamics in the central and southeastern part of the Plateau appears to show a closer relationship with precipitation prior to the growing season than that of temperature. From the mid-1990s, the temperature rise seems to be the key climatic factor correlating vegetation growth in this region. The effects of increasing temperature on vegetation are spatially variable across the Plateau: it has negative impacts on vegetation activity in the southwestern and northeastern part of the Plateau, and positive impacts in the central and southeastern Plateau. In the context of global warming, the changing climate condition(increasing precipitation and significant rising temperature) might be the potential contributor to the shift in the climatic controls on vegetation dynamics in the central and southeastern Plateau.  相似文献   

8.
利用全球大气环流模式BCC_AGCM2.0,通过青藏高原不同区域不同粗糙度的改变,模拟了青藏高原风电场开发造成的动力和热力强迫扰动对我国气候变化的影响。模拟结果表明,青藏高原热力场和动力场扰动对我国不同区域气候变化有着显著的影响,热力场的扰动会使华北地区的夏季降水明显减少,长江以南地区冬季气温降低,而动力场的扰动则会引起南方地区夏季降水增加,冬季气温明显上升。而且随着粗糙度的增大,长江以南地区冬季850 hPa水汽输送明显减小,而华北地区夏季的水汽输送也呈现出显著减少趋势。  相似文献   

9.
This paper summarizes the recent progress in studies of the diurnal variation of precipitation over con- tiguous China. The main results are as follows. (1) The rainfall diurnal variation over contiguous China presents distinct regional features. In summer, precipitation peaks in the late afternoon over the south- ern inland China and northeastern China, while it peaks around midnight over southwestern China. In the upper and middle reaches of Yangtze River valley, precipitation occurs mostly in the early morning. Summer precipitation over the central eastern China (most regions of the Tibetan Plateau) has two diurnal peaks, i.e., one in the early morning (midnight) and the other in the late afternoon. (2) The rainfall diurnal variation experiences obvious seasonal and sub-seasonal evolutions. In cold seasons, the regional contrast of rainfall diurnal peaks decreases, with an early morning maximum over most of the southern China. Over the central eastern China, diurnal monsoon rainfall shows sub-seasonal variations with the movement of summer monsoon systems. The rainfall peak mainly occurs in the early morning (late afternoon) during the active (break) monsoon period. (3) Cloud properties and occurrence time of rainfall diurnal peaks are different for long- and short-duration rainfall events. Long-duration rainfall events are dominated by strat- iform precipitation, with the maximum surface rain rate and the highest profile occurring in the late night to early morning, while short-duration rainfall events are more related to convective precipitation, with the maximum surface rain rate and the highest profile occurring between the late afternoon and early night. (4) The rainfall diurnal variation is influenced by multi-scale mountain-valley and land-sea breezes as well as large-scale atmospheric circulation, and involves complicated formation and evolution of cloud and rainfall systems. The diurnal cycle of winds in the lower troposphere also contributes to the regional differences  相似文献   

10.
中国大陆降水日变化研究进展   总被引:32,自引:4,他引:28  
文章概述了中国大陆降水日变化的最新研究成果,给出了中国大陆降水日变化的整体图像,指出目前数值模式模拟降水日变化的局限性,为及时了解和掌握降水日变化研究进展、开展相关科学研究和进行降水预报服务提供了有价值的科学依据和参考。现有研究表明:(1)中国大陆夏季降水日变化的区域特征明显。在夏季,东南和东北地区的降水日峰值主要集中在下午;西南地区多在午夜达到降水峰值;长江中上游地区的降水多出现在清晨;中东部地区清晨、午后双峰并存;青藏高原大部分地区是下午和午夜峰值并存。(2)降水日变化存在季节差异和季节内演变。冷季降水日峰值时刻的区域差异较暖季明显减小,在冷季南方大部分地区都表现为清晨峰值;中东部地区暖季降水日变化随季风雨带的南北进退表现出清晰的季节内演变,季风活跃(间断)期的日降水峰值多发生在清晨(下午)。(3)持续性降水和局地短时降水的云结构特性以及降水日峰值出现时间存在显著差异。持续性降水以层状云特性为主,地表降水和降水廓线的峰值大多位于午夜后至清晨;短时降水以对流降水为主,峰值时间则多出现在下午至午夜前。(4)降水日变化涉及不同尺度的山-谷风、海-陆风和大气环流的综合影响,涉及复杂的云雨形成和演变过程,对流层低层环流日变化对降水日变化的区域差异亦有重要影响。(5)目前数值模式对中国降水日变化的模拟能力有限,且模拟结果具有很强的模式依赖性,仅仅提高模式水平分辨率并不能总是达到改善模拟结果的目的,关键是要减少存在于降水相关的物理过程参数化方案中的不确定性问题。  相似文献   

11.
Understanding variations in precipitation from a variety of aspects is important for the utilization of water resources. Based on daily precipitation records at 98 meteorological stations in Sichuan province, southwestern China, the spatial and temporal changes in wet/dry spells were investigated by using 14 precipitation indices. The Mann–Kendall trend test is used to detect trends in the index series. Results suggest that the decrease of precipitation in central and eastern Sichuan was significant in terms of decreasing tendencies of wet spell indices. However, the decreasing trend of dry spell indices suggested an increase in precipitation in western Sichuan province. A higher risk of droughts can be expected in autumn and wet spell indices in winter and spring are increasing, implying obvious seasonality and seasonal shifts of change in precipitation within this province. Wet/dry spells with short duration were accounted for a large proportion of spells in Sichuan. The occurrence and fractional contribution of short-duration wet spells were increasing. The same trend was found in dry spells with short and moderate duration in Sichuan  相似文献   

12.
近50年我国西部地区气象要素的变化特征   总被引:6,自引:2,他引:4       下载免费PDF全文
利用1951-2000年全国194站地面观测资料和高空观测资料,对近50年我国西部地区的气候变化特征进行分析。结果表明:从20世纪70年代开始,我国西部地区年平均气温呈上升趋势,其中河套区和新疆区气温上升最为明显,其次为青藏高原区和河西区,西南区气温增幅最不明显,地表温度变化与气温的变化基本同步,但地温变化要比气温变化更加剧烈一些。西南区的地温从70年代中期开始回升,但始终未达到50年代初期的水平,因此从线性变化上表现为下降趋势。西部地区除了河套区外,其他4个区的年平均降水量均增加,增加最明显的是新疆区和青藏高原区。我国整个西部地区年平均总云量和低云量均呈线性减少趋势,减少最明显的是西南区和河套区。在辐射变化上,我国西部总辐射呈减少趋势,青藏高原区减少最多;西南区的散射辐射呈增加趋势,其他4个区减少,其中新疆区和青藏高原区散射辐射减幅明显。散射辐射的大小与天空中云量和气溶胶含量的多少成正比,西南区散射辐射呈增加趋势,而总云量和低云量呈下降趋势,可以推测是气溶胶含量增加导致了散射辐射的增加。  相似文献   

13.
1961—2010年云南干湿气候变化   总被引:1,自引:0,他引:1  
纪智荣  黄中艳  谢国清 《气象科技》2013,41(6):1073-1079
利用15个站点1961—2010年日照时数、降水量和平均温度等气候资料,计算云南5个区域各季节相对湿润度指数,分析云南干湿气候变化特征。结果表明,相对湿润度指数可定量、准确地表达云南各区域自然气候干湿程度,能客观反映云南干湿气候的波动变化和区域性差别。20世纪90年代中期以来,云南干季、雨季潜在蒸散量呈增大变化趋势,同期降水量有减小的趋势变化,从而在气候变暖背景下引发云南气候的干旱化趋势。干季各地相对湿润度指数年际波动变化大,年代际差异明显;雨季各地干湿状况年际波动相对较小,且呈现明显的周期性波动变化趋势。云南5个区域的干湿气候变化既有一致性也有差异性:滇中和滇西南比较一致,滇西北与滇东南差异明显,滇西北与滇东北雨季差异突出、干季较为相似。  相似文献   

14.
Surface energy balance and the partitioning of sensible heat flux(SHF) and latent heat flux(LHF) play key roles in land–atmosphere feedback. However,the lack of long-term observations of surface energy fluxes,not to mention spatially extensive ones,limits our understanding of how the surface energy distribution has responded to a warming climate over recent decades(1979–2009) at the national scale in China. Using four state-of-the-art reanalysis products with long-term surface energy outputs,we identified robust changes in surface energy partitioning,defined by the Bowen ratio(BR = SHF/LHF),over different climate regimes in China. Over the past three decades,the net radiation showed an increasing trend over almost the whole of China. The increase in available radiative energy flux,however,was balanced by differential partitioning of surface turbulent fluxes,determined by local hydrological conditions. In semi-arid areas,such as Northeast China,the radiative energy was transferred largely into SHF. A severe deficiency in near-surface and soil moistures led to a significant decreasing trend in LHF. The combined effect of increased SHF and decreased LHF resulted in significant upward trends in the BR and surface warming over Northeast China. In contrast,in the wet monsoon regions,such as southern China,increased downward net radiation favored a rise in LHF rather than in SHF,leading to a significant decreasing trend in the BR. Meanwhile,the increased LHF partly cancelled out the surface warming. The warming trend in southern China was smaller than that in Northeast China. In addition to impacts on heat-related events,the changes in the BR also reflected recent cases of extreme drought in China. Our results indicate that information regarding the BR may be valuable for drought monitoring,especially in regions prone to such conditions.  相似文献   

15.
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.  相似文献   

16.
基于1921—2016年天津地区降水、气温观测数据,对全球降水气候中心降水(GPCC-P)、东英吉利大学气候研究中心气温(CRU-T)进行适用性评估后发现GPCC-P和CRU-T均能较好地反映天津地区降水和气温的变化。在此基础上,进一步利用GPCC-P、CRU-T计算的标准化降水蒸散指数(SPEI)分析天津地区近百年干旱时空演变特征并判断其未来变化趋势。结果表明:(1)天津干旱主要发生于1940年代初期、1990年代末和2000年代初期,四季均以轻旱和中旱为主,干旱高频季节由秋、冬季逐渐转为春、夏季。(2)天津全区SPEI气候趋势在6个时期除秋季整体呈"升、降、升"分布特征外,春、夏、冬季均表现为"升、降"的分布特征,且夏季下降趋势最为显著,1961—2010年宁河每10 a下降0.30。(3)1921—1970、1931—1980、1941—1990年天津春、冬季湿润化趋势由降水主导,而夏、秋季则由气温和降水协同影响;1951—2000、1961—2010、1971—2016年春季干旱趋势主要受气温影响,夏、冬季则为气温和降水协同影响,随着全球变暖,气温升高对干旱的影响逐渐增强。(4)1921—2016年天津地区四季SPEI与PDO呈负相关关系,春、夏季相关性从西北向东南递减,而秋、冬季相关性则由东南向西北递减。(5)未来夏季天津全区、冬季天津西南部呈干旱化趋势,春季干旱化趋势、秋季湿润化趋势不明显。  相似文献   

17.
近60年来中国主要流域极端降水演变特征   总被引:1,自引:0,他引:1  
江洁  周天军  张文霞 《大气科学》2022,46(3):707-724
在全球增暖背景下,中国极端降水事件及洪涝、干旱等次生灾害近年来频发,严重影响生态系统、人民的生产生活和社会经济发展。本文基于气候变化检测和指数专家组(ETCCDI)定义的10个降水指数,利用中国台站日降水资料,系统分析了1961~2017年中国及九大流域片降水变化情况,并利用空间场显著性检验考察不同降水指数的显著变化是否与外强迫作用有关。结果表明,各降水指数的变化具有区域性特征。整体而言,全国范围内平均降水、降水强度、极端强降水和连续性强降水呈增强趋势的台站数多于呈减弱趋势的台站数,呈显著增强趋势的台站占比不可能仅由气候系统内部变率引起,还受到外强迫的影响。此外,中国大部分站点连续干旱日数(CDD)减少,观测中CDD呈显著减弱趋势的台站占比也与外强迫作用有关。九大流域片中,内陆河片能够观测到平均降水、降水强度、极端强降水和连续性强降水的增多以及连续干旱日数的减少,有洪涝灾害增多的风险,且上述变化可归因为外强迫的作用。长江流域片、东南诸河片和珠海流域片平均降水、极端强降水和连续性强降水均增强,其中强降水的变化与外强迫作用有关。西南诸河片极端强降水增强,但大部分站点CDD呈增加趋势,有干旱增加的风险。黄河流域片、海河流域片、淮河流域片及松辽河流域片的大部分站点及区域平均结果中,降水指数多无显著变化趋势。增暖背景下,不同流域片呈现出不同的降水变化特征,将面临不同的气候灾害风险。  相似文献   

18.
利用日本东京大学气候系统研究中心、日本环境研究所和日本地球环境研究中心联合研制的全球海气耦合气候系统模式(MIROC_Hires)输出的逐日降水资料,探讨CO2浓度增加下我国极端降水非均匀性的响应及其可能机制。结果表明:(1)就气候平均而言,CO2浓度增加后,我国南部地区极端降水事件的发生更为集中,而北方地区的极端降水事件分布较平均。(2)从年际变率来看,我国南部地区极端降水事件集中度在"A1B试验"中偏小,年际之间的差异不大,而北方地区的极端降水集中度增加,年际之间变化剧烈。(3)CO2浓度增加后,南方和北方地区在水平和垂直上的增温幅度不一致,且整层大气平均的稳定度呈现出南北反相差异。这种不均匀增暖的分布很可能是导致我国极端降水非均匀性在CO2浓度增加后变化的原因。  相似文献   

19.
中国近50年气温及降水量的变化趋势分析   总被引:261,自引:33,他引:228  
通过对我同385个站的观测资料序列进行分析研究,得到我国气候变化的一些特征。近25年全国平均温度有明显的上升趋势,只有极少数测站有明显的降温趋势,华北及东北的广大地区是增温最快、范围最大的地区。全国平均降水量没有明显的变化趋势。逐站分析降水量的年际变化后发现,我国降水量的变化存在着明显的区域特征,新疆地区足降水量增加最快的地区;华中华北地区的降水则存在明显的减少趋势;这两个地区的、平均降水量都与全球海表温度距平有很好的相关性。文中还利用同期大气再分析资料(NCEP/NCAR)尝试分析了气候变化与大气环流特征的关系。  相似文献   

20.
河西走廊地区以其独特的生态环境和气候特征一直成为众多学者研究的焦点区域,文中从该区温度、降水特征及其背景下区内绿洲生态环境变化两方面,对国内在这些方面的研究成果作了初步的归纳整理和分析综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号