首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
2.
The microphysical model with the bulk water parameterization is applied to simulated both contact and deposition nucleation as well as the imersion freezing for unseeded cases and the cases immediately after seeding performed for the cold continental Cb clouds with small cloud droplets. The injection of agent AgI is performed in temperature region between –8°C and –12°C. The four groups of sensitivity experiments are executed.
a.  The Brownian coagulation of rain drops is the most important contact nucleation mechanism for seeded cases with great amount of rain drops. When cloud droplets mainly contribute to the liquid water content for seeded cases, the Brownian coagulation of cloud droplets is the primary nucleation mechanism while the inertial impact is the less effective contact nucleation mechanism;
b.  the mutual interdependence of contact and deposition nucleation mechanisms shows that the contact nucleation is more effective for graupel production than the deposition one for the temperature region considered in this model;
c.  the imersion freezing is the most important mechanism for all cases with significant amount of rain drops. It is more effective than the contact nucleation mechanism in unseeded cases with insufficient number of rain drops;
d.  the nucleation mechanisms are more sensitive to temperature changes than to pressure changes.
With 14 Figures  相似文献   

3.
Rate coefficients have been measured for the reactions of hydroxyl radicals with five aliphatic ethers over the temperature range 242–328 K. Competitive studies were carried out in an atmospheric flow reactor in which the hydroxyl radicals were generated by the photolysis of methyl nitrite in the presence of air containing nitric oxide. The reaction of OH with 2,3-dimethyl-butane was used as the reference reaction and the following Arrhenius parameters have been obtained for the reactions: OH+RORproducts:
RORE/kJ mol–1 1012 A/cm3 molecule–1 s–1
dethyl ether–2.8±0.43.5±0.6
di-n-propyl ether–1.2±0.611.5±2.7
methylt-butyl ether0.85±0.594.0±1.3
ethyln-butyl ether–1.3±0.58.7±1.7
ethylt-butyl ether–1.2±0.63.0±0.8
  相似文献   

4.
Namibia is an arid country where many rural and urban centres depend on ephemeral rivers for their water supply. These water sources are, however, limited and display seasonal salinisation. Fog occurs along the coast and extends for some distance inland, and it could be used as a source of drinking water. Data on groundwater salinisation and fog deposition were collected at villages of the indigenous communities and at the Gobabeb Training and Research Centre (GTRC) in the Central Namib Desert. Fog collection experiments were done with Standard Fog Collectors (SFCs) and 1-m2 fog collectors made from the Raschel mesh that is used in SFCs from 1996 onwards. The results indicate that fog occurs throughout the year and that it has low major ion concentrations (chemical composition). The period of high fog deposition coincides with that of high groundwater salinity and would suit mixing of the two waters to provide water of good drinking quality to people in these areas. In conclusion, fog is a viable source of water in the Namib and could supplement traditional sources in rural settlements and perhaps also in urban water supply schemes in this region as in other parts of the world where it is used as a source of drinking water.
Full-size image (24K)
Author Keywords: Namib Desert; Fog climatology; Fog chemistry; Groundwater salinisation; Fog collection  相似文献   

5.
This paper discusses the retrieval scheme associated with the gas correlated radiometer- MOPITT which will be on board of EOS-AM1 to measure the global vertical profiles of car-bon monoxide. The vertical resolution and retrieval errors caused by errors in the temperature profiles and in the surface temperature have been assessed. The main results are: a. Assuming the noise equivalent radiance (NER) of 1.8 × 105 W m-2 sr-1, the surface tem?perature can be deduced from the wide band signals with uncertainly less than 1 K, and the atmospheric term of the modulated signal can be deduced with errors almost equal to the NER which does not significantly increase errors in the retrieved CO profiles. b. With typical uncertainty in temperature profiles, errors in the retrieved profiles at lati-? tudes lower than 70o are generally less than 20% with the first guess of 100 ppbv. (If a better first guess was used, the errors may decrease). c. By incorporating the total column CO amount derived from the reflected solar radiation in 2.3 μm spectral region into the retrieval, the accuracy of the retrieved CO profile below 6 km may be greatly improved. d. In the retrieval experiment with 10 CO profiles representing the typical CO profiles, the r.m.s. relative / absolute errors of the retrieved CO profiles are about 10% / 15-20 ppbv.  相似文献   

6.
The linear dynamics of the unstably stratified geophysical flows is investigated with a two-layer formulation. A ‘convective’ deformation radius classifies the dynamics into three regimes:
  • 1. 
    1. the scales smaller than the deformation radius: the dynamics characterized by unstable inertial-gravity modes;
  • 2. 
    2. the scales larger than the deformation radius: a quasi-geostrophic regime;
  • 3. 
    3. the scales close to the deformation radius, where the dynamics transits from the inertial-gravity regime to the quasi-geostrophic regime.
The Rossby wave can propagate eastward in the unstably stratified quasi-geostrophic regime. The baroclinic instabilities are basically realized as a larger-scale extent of the inertial-gravity instabilities, but the former can be isolated from the latter in a limit of small β-effect, with a very deep lower layer. The results suggest that the convectively unstable Jovian atmospheric dynamics can be well described as a quasi-geostrophic system.  相似文献   

7.
Based on daily rainfall data over a period of 80 years (1901–1980) taken at 75 stations, this paper reports interannual and long term fluctuations of the following parameters of the periods contributing each of 2, 5, 10, 20–90 and 95% rainfall to annual total over each of North Kerala and South Kerala rainfall subregions of India:
(i)  the starting date,
(ii)  the ending date,
(iii)  the length of the rainfall period or duration,
(iv)  the total rainfall (which is a fixed percentage of the annual total) of the rainfall period, and
(v)  the rainfall time-distribution characteristic which has been quantified by computing Oliver's precipitation concentration index (PCI) using daily rainfall data of the concerned rainfall period.
For most of the rainfall periods, the time series of starting and ending dates and length are homogeneous and random, and tend to observe the normal probability distribution. The different PCI series of North Kerala and the annual rainfall series of South Kerala show significantly decreasing trend which are indicative of considerable change in the hydroclimatic environment of Kerala. Possible changes in the southwest monsoon circulation along the west coast of India and excessive deforestation in Kerala which might have caused these rainfall changes are discussed.  相似文献   

8.
9.
The spatial auto-correlation of minimum temperature was analyzed for a topoclimatological station network in the Huleh Valley of Israel on radiation cooling nights, using the method of optimum interpolation. Only a few stations all of which are situated in a flat area along the longitudinal central axis, exhibited a distinct dependence of the auto-correlation with distance. These stations were less representative of the entire valley compared with sites close to the slopes.The more varied topography near the edges of the valley leaves its stamp on the auto-correlation field in two specific ways:
(a)  Due to the more sloping surface, the increased randomness on the microscale diminishes and more generally obscures the dependence of the auto-correlation with distance from a given reference station.
(b)  The increased mixing associated with the slope-induced airflow increases the areal auto-correlation surrounding a given station.
  相似文献   

10.
The First Garp Global Experiment data collected during 1979 at sea level and 850 mb level have been used to examine the origin and characteristics of the westwards moving disturbances in the western Indian Ocean.From the analyses of the above data the following sequence of events in the westwards moving disturbances has emerged:
(i)  Increase (decrease) in the pressure of the Mascarene High causes intensification (weakening) of the meridional pressure gradient in the region between 25°S and the equator.
(ii)  This increase in the pressure gradient in the region leads to increase in the zonal wind and convergence in the region. It is noteworthy that the zonal wind responds to the pressure near the Mascarene High at the quasi-biweekly period.
(iii)  The increase in convergence at the surface and at 850 mb level, in the region equator to 5°S and between 60°E and 75°E, gives rise to the genesis of a disturbance in this region.
(iv)  The disturbances are then carried westwards in the low level easterly winds to affect the Seychelles Islands and the eastern African coastal regions.
  相似文献   

11.
The Institute of Atmospheric Physics Land Surface Model (IAP94) has been incorporated into the IAP two-level atmospheric general circulation model (IAP GCM). Global and regional climatology averaged over the last 25 years of 100 year integrations from the IAP GCM with and without IAP94 (“bucket” scheme) is compared. The simulated results are also compared with the reanalysis data. Major findings are:(1) The IAP GCM simulation without IAP94 has extensive regions of warmer than observed surface air tempera?tures, while the simulation with IAP94 very much improves the surface air temperature.(2) The IAP GCM simulation with IAP94 gives improvement of the simulated precipitation pattern and intensity, especially the precipitation of East Asian summer monsoon and its intraseasonal migration of the rainbelts.(3) In five selected typical regions, for most of the surface variables such as surface air temperature, precipitation, precipitation minus evaporation, net radiation, latent heat flux and sensible heat flux, the IAP GCM with IAP94 pro?vides better simulations.  相似文献   

12.
This paper is written to report observations of the structure of the atmospheric surface layer over a coastal industrialized equatorial area. The observations were recorded at Prai Industrial Park, Penang (5° 22′ N, 100° 23′ E) a relatively simple terrain area during the south-west monsoon season in the period of three months using slow response systems. The limitations of the instruments used and its effects on the results are discussed. Wind turbulence and temperature were measured on a 10 m tower and analyzed using eddy correlation method and Monin–Obukhov similarity relations to obtain the normalized standard deviation of longitudinal (σu/u), lateral (σv/u) and vertical wind velocity fluctuations (σw/u) with respect to stability parameter z/L. From the results of the analysis, we found that most of turbulence is generated by shear or mechanical force. It was found that the average neutral value of σu/u is 2.35, 1.98 for σv/u and 1.47 for σw/u with a significantly lower than the proportionality to the power of 1/3 during unstable atmospheric conditions, and thus do not obey Monin–Obukhov similarity theory. It was observed that σu/u and σv/u values increase linearly in the range of 0 < z/L < 2 and fairly well correlated while σw/u does not.  相似文献   

13.
Multi-century climate simulations obtained with the GISS atmospheric general circulation model coupled to the hybrid-isopycnic ocean model HYCOM are described. Greenhouse gas concentrations are held fixed in these experiments to investigate the coupled model’s ability to reproduce the major features of today’s climate with minimal drift. Emphasis is placed on the realism of the oceanic general circulation and its effect on air–sea exchange processes. Several model runs using different closures for turbulent vertical exchange as well as improvements to reduce vertical numerical diffusion are compared with climate observations. As in previous studies, the Southern Ocean emerges as the Achilles Heel of the ocean model; deficiencies in its physical representation had far-reaching consequences in early experiments with the coupled model and have provided the strongest impetus for model improvement. The overarching goal of this work is to add diversity to the pool of ocean models available for climate prediction and thereby reduce biases that may stand in the way of assessing climate prediction uncertainty.
Shan Sun (Corresponding author)Email:
Rainer BleckEmail:
  相似文献   

14.
The convective heat transfer coefficient (CHTC) of an urban canopy is a crucial parameter for estimating the turbulent heat flux in an urban area. We compared recent experimental research on the CHTC and the mass transfer coefficient (MTC) of urban surfaces in the field and in wind tunnels. Our findings are summarised as follows.
(1)  In full-scale measurements on horizontal building roofs, the CHTC is sensitive to the height of the reference wind speed for heights below 1.5 m but is relatively independent of roof size.
(2)  In full-scale measurements of vertical building walls, the dependence of the CHTC on wind speed is significantly influenced by the choice of the measurement position and wall size. The CHTC of the edge of the building wall is much higher than that near the centre.
(3)  In spite of differences of the measurement methods, wind-tunnel experiments of the MTC give similar relations between the ratio of street width to canopy height in the urban canopy. Moreover, this relationship is consistent with known properties of the flow regime of an urban canopy.
(4)  Full-scale measurements on roofs result in a non-dimensional CHTC several tens of times greater than that in scale-model experiments with the same Reynolds number.
Although there is some agreement in the measured values, our overall understanding of the CHTC remains too low for accurate modelling of urban climate.  相似文献   

15.
The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where \(C = 3d_{3}\,+\,1 (d_{3}\) is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when \(C \approx 1\), and anisotropic when \(C \ll 1\). Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability \(\xi = (z-z_{\mathrm{d}})/L_{{\textit{MO}}}\), where z is the measurement height, \(z_{\mathrm{d}}\) is the displacement height, and \(L_{{\textit{MO}}}\) is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., \(\xi < 0\)) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.  相似文献   

16.
Vertical vorticity characteristics within individual cumulonimbus (Cb) cloud moving over complex terrain are investigated by cloud-resolving mesoscale model. Orography impact on vorticity is recognized by comparison of its characteristics within the storm moving over flat terrain under the same other conditions. In present study, two cases are considered: complex terrain case (referred to as CT case) and flat terrain case (referred to as FT case). A sensitivity study shows that orographical effects on vorticity are important. Main findings are:
– For CT case vortices produced by convective tilting of horizontal vortices are closer to each other and more stretched in form owing to valley configuration. The vortex with positive vorticity is mainly stronger in magnitude compared to its negative counterpart.
– Magnitudes of vorticities for CT case are greater at lowest levels and initial time intervals compared to those for FT case.
– For CT case the vortices with opposite signs of vorticity produced by precipitation appear later than in FT case. Their duration is shorter and they are weaker in intensity compared to those formed within a cloud over flat terrain.
– Complex terrain intensifies the splitting of simulated cloud.
Keywords: Mesoscale model; Vertical vorticity; Orography effects; Vortices  相似文献   

17.
To investigate the stability of the bottom boundary layer induced by tidal flow (oscillating flow) in a rotating frame, numerical experiments have been carried out with a two-dimensional non-hydrostatic model. Under homogeneous conditions three types of instability are found depending on the temporal Rossby number Rot, the ratio of the inertial and tidal periods. When Rot < 0.9 (subinertial range), the Ekman type I instability occurs because the effect of rotation is dominant though the flow becomes more stable than the steady Ekman flow with increasing Rot. When Rot > 1.1 (superinertial range), the Stokes layer instability is excited as in the absence of rotation. When 0.9 < Rot < 1.1 (near-inertial range), the Ekman type I or type II instability appears as in the steady Ekman layer. Being much thickened (100 m), the boundary layer becomes unstable even if tidal flow is weak (5 cm/s). The large vertical scale enhances the contribution of the Coriolis effect to destabilization, so that the type II instability tends to appear when Rot > 1.0. However, when Rot < 1.0, the type I instability rather than the type II instability appears because the downward phase change of tidal flow acts to suppress the latter. To evaluate the mixing effect of these instabilities, some experiments have been executed under a weak stratification peculiar to polar oceans (the buoyancy frequency N2  10−6 s−2). Strong mixing occurs in the subinertial and near-inertial ranges such that tracer is well mixed in the boundary layer and an apparent diffusivity there is evaluated at 150–300 cm2/s. This suggests that effective mixing due to these instabilities may play an important role in determining the properties of dense shelf water in the polar regions.  相似文献   

18.
We quantify the spatial and temporal aspects of the urban heat-island (UHI) effect for Kanpur, a major city in the humid sub-tropical monsoon climate of the Gangetic basin. Fixed station measurements are used to investigate the diurnality and inter-seasonality in the urban–rural differences in surface temperature (\({\Delta } T_\mathrm{s}\)) and air temperature (\({\Delta } T_\mathrm{c}\)) separately. The extent of the spatial variations of the nighttime \({\Delta } T_\mathrm{c}\) and \({\Delta } T_\mathrm{s}\) is investigated through mobile campaigns and satellite remote sensing respectively. Nighttime \({\Delta } T_\mathrm{c}\) values dominate during both the pre-monsoon (maximum of 3.6 \(^\circ \hbox {C}\)) and the monsoon (maximum of 2.0 \(^\circ \hbox {C}\)). However, the diurnality in \({\Delta } T_\mathrm{s}\) is different, with higher daytime values during the pre-monsoon, but very little diurnality during the monsoon. The nighttime \({\Delta } T_\mathrm{s}\) value is mainly associated with differences in the urban–rural incoming longwave radiative flux (\(r^{2}=0.33\) during the pre-monsoon; 0.65 during the monsoon), which, in turn, causes a difference in the outgoing longwave radiative flux. This difference may modulate the nighttime \({\Delta } T_\mathrm{c}\) value as suggested by significant correlations (\(r^{2}=0.68\) for the pre-monsoon; 0.50 for the monsoon). The magnitude of \({\Delta } T_\mathrm{c}\) may also be modulated by advection, as it is inversely related with the urban wind speed. A combination of in situ, remotely sensed, and model simulation data were used to show that the inter-seasonality in \({\Delta } T_\mathrm{s}\), and, to a lesser extent, in \({\Delta } T_\mathrm{c}\), may be related to the change in the land use of the rural site between the pre-monsoon and the monsoon periods. Results suggest that the degree of coupling of \({\Delta } T_\mathrm{s}\) and \({\Delta } T_\mathrm{c}\) may be a strong function of land use and land cover.  相似文献   

19.
The formulation of a new land surface scheme (LSS) with vegetation dynamics for coupling to the McGill Paleoclimate Model (MPM) is presented. This LSS has the following notable improvements over the old version: (1) parameterization of deciduous and evergreen trees by using the models climatology and the output of the dynamic global vegetation model, VECODE (Brovkin et al. in Ecological Modelling 101:251–261 (1997), Global Biogeochemical Cycles 16(4):1139, (2002)); (2) parameterization of tree leaf budburst and leaf drop by using the models climatology; (3) parameterization of the seasonal cycle of the grass leaf area index; (4) parameterization of the seasonal cycle of tree leaf area index by using the time-dependent growth of the leaves; (5) calculation of land surface albedo by using vegetation-related parameters, snow depth and the models climatology. The results show considerable improvement of the models simulation of the present-day climate as compared with that simulated in the original physically-based MPM. In particular, the strong seasonality of terrestrial vegetation and the associated land surface albedo variations are in good agreement with several satellite observations of these quantities. The application of this new version of the MPM (the green MPM) to Holocene millennial-scale climate changes is described in a companion paper, Part II.
Yi WangEmail: Phone: +1-514-3987448Fax: +1-514-3986115
  相似文献   

20.
Two types of neutral planetary boundary layer (PBL) are distinguished:truly neutral – developed against a neutrally stratified free flow, and conventionally neutral – developed against a background stable stratification. Atmospheric PBLs treated asneutral are almost always conventionally neutral. Theoretical reasoning and results from large-eddy simulation (LES) show that A and B coefficients of the Rossby-number similarity theory are not constants. The same is true for thecoefficient Ch in the Rossby–Montgomery formula for the neutral boundary-layer depth h = Chu*/|f|, where u* is the friction velocity. Contrary to classical ideas, A, B and Ch depend on the ratio N N/|f| of the free-flow Brunt–V*auml;isäl ä frequency N to the absolute value of the Coriolis parameter |f|. This new development can explain why atmospheric and LES estimates of A, B and Ch appear inconsistent. It results from neglecting the fact that atmospheric data for N 102 were compared with LES data for N = 0, violating an obvious requirement of similarity with respect to N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号