首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Recent studies have shown that major meteorite groups possess their own characteristic 54Cr values, demonstrating the utility of Cr isotopes for identifying genetic relationships between the planetary materials in conjunction with other classical tools, such as oxygen isotopes. In this study, we performed Cr isotope analyses for whole rocks and chemically separated phases of the new CM2 chondrite, Sutter's Mill (SM 43 and 51). The two whole rocks of Sutter's Mill show essentially identical ε54Cr excesses (SM 43 = +0.95 ± 0.09ε, SM 51 = +0.88 ± 0.07ε), relative to the Earth. These values are the same within error with that of the CM2‐type Murchison (+0.89 ± 0.08ε), suggesting that parent bodies of Sutter's Mill and Murchison were formed from the same precursor materials in the solar nebula. Large ε54Cr excess of up to 29.40ε is observed in the silicate phase of Sutter's Mill, while that of Murchison shows 15.74ε. Importantly, the leachate fractions of both Sutter's Mill and Murchison form a steep linear anticorrelation between ε54Cr and ε53Cr, cross‐cutting the positive correlation previously observed in carbonaceous chondrites. The fact that L4 acid leachate fraction contains higher 54Cr excesses than that of L5 step designed to dissolve refractory minerals suggests that spinel is not a major 54Cr carrier. We also note that L5 contains 53Cr anomalies lower than the solar initial value, suggesting it carries a component of nucleosynthetic anomaly unrelated to the 53Mn decay. We have identified five endmember components of nucleosynthetic origin among the early solar system materials.  相似文献   

2.
Abstract— A series of experiments carried out by Koscheev et al. (1998, 2001, 2004, 2005) showed that the bimodal release of heavy noble gases from meteoritic nanodiamonds can be reproduced by a single implanted component. This paper investigates the implications of this result for interpreting the noble gas compositions of meteoritic nanodiamonds and for their origin and history. If the bimodal release exhibited by meteorite diamonds reflects release of the P3 noble gas component, then the composition inferred for the pure Xe‐HL end member changes slightly, the excesses of heavy krypton isotopes that define Kr‐H become less extreme, evidence appears for a Kr‐L component, and the nucleosynthetic contribution to argon becomes much smaller. After correction for cosmogenic neon inherited from the host meteorites, the neon in presolar diamonds shows evidence for pre‐irradiation, perhaps in interstellar space, and a nucleosynthetic component perhaps consistent with a supernova source. After a similar correction, helium also shows evidence for presolar irradiation and/or a nucleosynthetic component. For the case of presolar irradiation, due to the small size of the diamonds, a large entity must have been irradiated and recoiling product nuclei collected by the nanodiamonds. The high 3He/21Ne ratio (?43) calls for a target with a (C + O)/heavier‐element ratio higher than in chondritic abundances. Bulk gas + dust (cosmic abundances) meet this criteria, as would solids enriched in carbonaceous material. The long recoil range of cosmogenic 3He argues against a specific phase. The excess 3He in presolar diamonds may represent trapped cosmic rays rather than cosmogenic 3He produced in the vicinity of the diamond crystals.  相似文献   

3.
Chromium isotopic data of physically separated components (chondrules, CAIs, variably magnetic size fractions) of the carbonaceous chondrites Allende and Murchison and bulk rock data of Allende, Ivuna, and Orgueil are reported to evaluate the origin of isotopic heterogeneity in these meteorites. Allende components show ε53Cr and ε54Cr from ?0.23 ± 0.07 to 0.37 ± 0.05 and from ?0.43 ± 0.08 to 3.7 ± 0.1, respectively. In components of Murchison, ε53Cr and ε54Cr vary from ?0.06 ± 0.08 to 0.5 ± 0.1 and from 0.7 ± 0.2 to 1.7 ± 0.1, respectively. The non‐systematic variations of ε53Cr and 55Mn/52Cr in the components of Allende and Murchison were likely caused by small‐scale, alteration‐related redistribution of Mn >20 Ma after formation of the solar system. Chondrule fractions show the lowest 55Mn/52Cr and ε54Cr values of all components, consistent with evaporation of Mn and ε54Cr‐rich carrier phases from chondrule precursors. Components other than the chondrules show higher Mn/Cr and ε54Cr, suggestive of chemical and isotopic complementarity between chondrules and matrix‐rich fractions. Bulk rock compositions calculated based on weighted compositions of components agree with measured Cr isotope data of bulk rocks, in spite of the Cr isotopic heterogeneity reported by the present and previous studies. This indicates that on a sampling scale comprising several hundred milligrams, these meteorites sampled isotopically and chemically homogeneous nebular reservoirs. The linear correlation of 55Mn/52Cr with ε53Cr in bulk rocks likely was caused by variable fractionation of Mn/Cr, subsequent mixing of phases in nebular domains, and radiogenic ingrowth of 53Cr.  相似文献   

4.
Abstract– An IDP nicknamed Andric, from a stratospheric dust collector targeted to collect dust from comet 55P/Tempel‐Tuttle, contains five distinct presolar silicate and/or oxide grains in 14 ultramicrotome slices analyzed, for an estimated abundance of approximately 700 ppm in this IDP. Three of the grains are 17O‐enriched and probably formed in low‐mass red giant or asymptotic giant branch (AGB) stars; the other two grains exhibit 18O enrichments and may have a supernova origin. Carbon and N isotopic analyses show that Andric also exhibits significant variations in its N isotopic composition, with numerous discrete 15N‐rich hotspots and more diffuse regions that are also isotopically anomalous. Three 15N‐rich hotspots also have statistically significant 13C enrichments. Auger elemental analysis shows that these isotopically anomalous areas consist largely of carbonaceous matter and that the anomalies may be hosted by a variety of components. In addition, there is evidence for dilution of the isotopically heavy components with an isotopically normal endmember; this may have occurred either as a result of extraterrestrial alteration or during atmospheric entry. Isotopically primitive IDPs such as Andric share many characteristics with primitive meteorites such as the CR chondrites, which also contain isotopically anomalous carbonaceous matter and abundant presolar silicate and oxide grains. Although comets are one likely source for the origin of primitive IDPs, the presence of similar characteristics in meteorites thought to come from the asteroid belt suggests that other origins are also possible. Indeed the distinction between cometary and asteroidal sources is somewhat blurred by recent observations of icy comet‐like planetesimals in the outer asteroid belt.  相似文献   

5.
Abstract— ‐Nitrogen‐isotopic compositions of the bencubbinites—Bencubbin, Hammadah al Hamra (HH) 237, and Queen Alexandra Range (QUE) 94411—and in a petrographically similar chondrite Grosvenor Mountains (GRO) 95551 were measured by stepped‐combustion static mass spectrometry. Hammadah al Hamra 237 and QUE 94411 contain isotopically heavy N, but not as heavy as that in Bencubbin or Weatherford. Grosvenor Mountains 95551 contains isotopically near‐normal N and light N and, hence, it is not related to the bencubbinites, which is also indicated by its O‐isotopic composition. The N carriers in these meteorites were investigated using secondary ion mass spectrometry. In the bencubbinites, N is mostly located around sulfide in metal clasts and in impact‐melt areas. The N carriers in the former are taenite, carbide, or both; whereas those in the latter are molten metal, tiny graphitic carbon in metal, oxi‐nitride glass, or both. In the various N carriers, N is isotopically equilibrated, and therefore the carriers are not pristine presolar grains. Isotopically near‐normal N in GRO 95551 is located in graphite. The carrier of isotopically light N in GRO 95551 has not been found.  相似文献   

6.
Abstract– Interplanetary dust particles (IDPs) are the most primitive extraterrestrial material available for laboratory studies and may, being likely of cometary origin, sample or represent the unaltered starting material of the solar system. Here we compare IDPs from a “targeted” collection, acquired when the Earth passed through the dust stream of comet 26P/Grigg‐Skjellerup (GSC), with IDPs from nontargeted collections (i.e., of nonspecific origin). We examine both sets to further our understanding of abundances and character of their isotopically anomalous phases to constrain the nature of their parent bodies. We identified ten presolar silicates, two oxides, one SiC, and three isotopically anomalous C‐rich grains. One of seven non‐GSC IDPs contains a wealth of unaltered nebula material, including two presolar silicates, one oxide, and one SiC, as well as numerous δD and δ15N hotspots, demonstrating its very pristine character and suggesting a cometary origin. One of these presolar silicates is the most 17O‐rich discovered in an IDP and has been identified as a possible GEMS (glass with embedded metal and sulfides). Organic matter in an anhydrous GSC IDP is extremely disordered and, based on Raman spectral analyses, appears to be the most primitive IDP analyzed in this study, albeit only one presolar silicate was identified. No defining difference was seen between the GSC and non‐GSC IDPs studied here. However, the GSC collectors are expected to contain IDPs of nonspecific origin. One measure alone, such as presolar grain abundances, isotopic anomalies, or Raman spectroscopy cannot distinguish targeted cometary from unspecified IDPs, and therefore combined studies are required. Whilst targeted IDP populations as a whole may not show distinguishable parameters from unspecified populations (due to statistics, heterogeneity, sampling bias, mixing from other cometary sources), particular IDPs in a targeted collection may well indicate special properties and a fresh origin from a known source.  相似文献   

7.
Abstract— The N and C abundances and isotopic compositions of acid-insoluble carbonaceous material in thirteen primitive chondrites (five unequilibrated ordinary chondrites, three CM chondrites, three enstatite chondrites, a CI chondrite and a CR chondrite) have been measured by stepped combustion. While the range of C isotopic compositions observed is only ~δ13C = 30%, the N isotopes range from δ15N ' -40 to 260%. After correction for metamorphism, presolar nanodiamonds appear to have made up a fairly constant 3–4 wt% of the insoluble C in all the chondrites studied. The apparently similar initial presolar nanodiamond to organic C ratios, and the correlations of elemental and isotopic compositions with metamorphic indicators in the ordinary and enstatite chondrites, suggest that the chondrites all accreted similar organic material. This original material probably most closely resembles that now found in Renazzo and Semarkona. These two meteorites have almost M-shaped N isotope release profiles that can be explained most simply by the superposition of two components, one with a composition between δ15N = -20 and -40% and a narrow combustion interval, the other having a broader release profile and a composition of δ15N ~ 260%. Although isotopically more subdued, the CI and the three CM chondrites all appear to show vestiges of this M-shaped profile. How and where the components in the acid-insoluble organics formed remains poorly constrained. The small variation in nanodiamond to organic C ratio between the chondrite groups limits the local synthesis of organic matter in the various chondrite formation regions to at most 30%. The most 15N-rich material probably formed in the interstellar medium, and the fraction of organic N in Renazzo in this material ranges from 40 to 70%. The isotopically light component may have formed in the solar system, but the limited range in nanodiamond to total organic C ratios in the chondrite groups is consistent with most of the organic material being presolar.  相似文献   

8.
Abstract— Scanning electron microscopy and secondary ion mass spectrometry of the unequilibrated CH chondrite Pecora Escarpment (PCA) 91467 revealed four carriers of isotopically heavy N: (1) aggregates of carbonaceous material and silicates, (2) iron‐nickel metal grains with fine Fe‐Cr sulfide inclusions, (3) Si‐rich Fe‐Ni metal associated with Fe‐sulfide and (4) hydrated areas in the matrix. N in carbon‐silicate aggregates is isotopically heavy (δ15N is as high as 2500%0), whereas the other elements are isotopically normal, suggesting interstellar origin of carbonaceous material in the aggregates. Based on isotopic and textural evidence, we suggest that the carriers (2) and (3) were formed by brief heating in the solar nebula, whereas the carrier (4) was formed in a parent‐body asteroid. The carbon‐silicate aggregates are likely to be related to interstellar graphite found in Murchison and may also be the source of heavy N in bencubbinites.  相似文献   

9.
Abstract— Nitrogen and Ar in more than 20 primitive ordinary chondrites were studied by a stepped combustion method. Several N carriers that are characterized by N isotopic composition, N release pattern and trapped Ar release pattern are recognized in the primitive ordinary chondrites. Large fractions of anomalous N and associated Ar are removed by acid treatment in most cases. The N isotopic anomalies cannot be explained by known presolar grains (with a possible exception of graphite), and some of the N isotopic anomalies may be due to unknown presolar grains. There is no specific relationship between the type of N carriers contained in an ordinary chondrite and the chemical type (H, L, or LL) of the chondrite. It is likely that as a result of impacts, the carriers of isotopically anomalous N were mixed in various parent bodies as rock fragments rather than as individual fine particles. The presence of distinctive N isotopic anomalies in primitive meteorites indicates that the primitive solar nebula may have been heterogeneous either spatially or temporally.  相似文献   

10.
Transmission electron microscope (TEM) investigations have revealed Os, Ru, Mo‐rich refractory metal nuggets within four different presolar graphites, from both the high‐density (HD) Murchison (MUR) and low‐density (LD) Orgueil (ORG) fractions. Microstructural and chemical data suggest that these are direct condensates from the gas, rather than forming later by exsolution. The presolar refractory metal nugget (pRMN) compositions are variable (e.g., from 8 < Os atom% < 77), but follow the same chemical fractionation trends as isolated refractory metal nuggets (mRMNs) previously found in meteorites (Berg et al. 2009). From these compositions one can infer a temperature of last equilibration with the gas of 1405–1810 K (e.g., Berg et al. 2009 at approximately 100 dyne cm?2 pressure), which implies that the host graphites form over roughly the same range (in agreement with predictions) and that the pRMNs are chemically isolated from the gas when captured by graphite. Further, the pRMN compositions give evidence that HD graphites form at a higher T than LD ones. Chemical and phase similarities with the isolated mRMNs suggest that the mRMNs also condense directly from a gas, although from the early solar nebula rather than a presolar environment. Although the pRMNs themselves are too small for detection of isotopic anomalies, NanoSIMS isotopic measurements of their host graphites confirm a presolar origin for the assemblages. The two pRMN‐containing LD graphites show evidence of a supernova (SN) origin, whereas the stellar origins of the pRMNs in HD graphite are unclear, because only less‐diagnostic 12C enrichments are detectable (as is commonly true for HD graphites).  相似文献   

11.
We present high precision, low‐ and high‐resolution tungsten isotope measurements of iron meteorites Cape York (IIIAB), Rhine Villa (IIIE), Bendego (IC), and the IVB iron meteorites Tlacotepec, Skookum, and Weaver Mountains, as well as CI chondrite Ivuna, a CV3 chondrite refractory inclusion (CAI BE), and terrestrial standards. Our high precision tungsten isotope data show that the distribution of the rare p‐process nuclide 180W is homogeneous among chondrites, iron meteorites, and the refractory inclusion. One exception to this pattern is the IVB iron meteorite group, which displays variable excesses relative to the terrestrial standard, possibly related to decay of rare 184Os. Such anomalies are not the result of analytical artifacts and cannot be caused by sampling of a protoplanetary disk characterized by p‐process isotope heterogeneity. In contrast, we find that 183W is variable due to a nucleosynthetic s‐process deficit/r‐process excess among chondrites and iron meteorites. This variability supports the widespread nucleosynthetic s/r‐process heterogeneity in the protoplanetary disk inferred from other isotope systems and we show that W and Ni isotope variability is correlated. Correlated isotope heterogeneity for elements of distinct nucleosynthetic origin (183W and 58Ni) is best explained by thermal processing in the protoplanetary disk during which thermally labile carrier phases are unmixed by vaporization thereby imparting isotope anomalies on the residual processed reservoir.  相似文献   

12.
Abstract— A wide range of stellar nucleosynthetic sources has been analyzed to derive their contributions of short‐lived and stable nuclei to the presolar cloud. This detailed study is required to infer the most plausible source(s) of short‐lived nuclei through a critical comparison among the various stellar sources that include AGB stars, novae, supernovae II, Ia, and Wolf‐Rayet stars that evolved to supernovae Ib/c. In order to produce the canonical value of 26Al/27Al in the early solar system, almost all stellar sources except low‐mass AGB stars imply large isotopic anomalies in Ca‐Al‐rich inclusions (CAIs). This is contrary to the observed isotopic compositions of CAIs. The discrepancy could impose stringent constraints on the formation and thermal evolution of CAIs from different chondrites. Among the various stellar scenarios, the injection of short‐lived nuclei into the previously formed solar protoplanetary disc by a massive star of an ad hoc chosen high‐injection mass cut is a possible scenario. There is a possibility of the contribution of short‐lived nuclides by a 1.5–3 M AGB star as it implies the smallest shift in stable isotopes. A low‐mass AGB star of relatively low metallicity would be even a better source of short‐lived nuclei. However, this scenario would require independent gravitational collapse of the presolar cloud coupled with ambipolar diffusion of magnetic flux. Alternatively, numerous scenarios can be postulated that involve distant (≥10 pc) massive stars can contribute 60Fe to the presolar cloud and can trigger its gravitational collapse. These scenarios would require production of 26Al and 41Ca by irradiation in the early solar system. Significant production of 26Al and 60Fe can be explained if massive, rotating Wolf‐Rayet stars that evolved to supernovae Ib/c were involved.  相似文献   

13.
Abstract— Aqueous activity on meteorite parent bodies is indicated by the presence of carbonates. High spatial resolution ion microprobe analyses of nine individual carbonate grains (four dolomites, five breunnerites) from the Orgueil meteorite reveal linear correlations between 53Cr excesses and Mn/Cr ratios in all grains, indicative of in situ decay of radioactive 53Mn (half‐life 3.7 million years). The well‐defined isochrons appear to have chronological significance. If this is the case, then 53Mn/55Mn ratios between 2.1 and 4.7 × 10?6 are inferred for the time of carbonate formation and absolute ages of between 4561 and 4565 Ma are calculated (systematic uncertainty of ±2 Ma). Dolomites tend to have formed slightly earlier than the breunnerites. Our data imply extensive aqueous activity on the Orgueil parent body over a period of several million years, starting ~3–4 Myr after formation of the solar system, that most likely was the result of impact heating and latent heat from the decay of radioactive 26Al and 60Fe.  相似文献   

14.
Abstract— We have determined the recoil losses from silicon carbide (SiC) grain‐size fractions of spallation Ne produced by irradiation with 1.6 GeV protons. During the irradiation, the SiC grains were dispersed in paraffin wax in order to avoid reimplantation into neighboring grains. Analysis for spallogenic 21Ne of grain‐size separates in the size range 0.3 to 6 μm and comparison with the 22Na activity of the SiC + paraffin mixture indicates an effective recoil range of 2–3 μm with no apparent effect from acid treatments, which are routinely used in the isolation of meteoritic SiC grains. Our results indicate that the majority of presolar SiC grains in primitive meteorites, which are micrometer‐sized, will have lost essentially all spallogenic Ne produced by cosmic‐ray interaction in the interstellar medium. This argues against the validity of previously published presolar ages of Murchison SiC (~10 to ~130 Ma, increasing with grain size; Lewis et al., 1994), where recoil losses had been based on calculated recoil energies. It is argued that the observed variations in meteoritic SiC grain‐size fractions of 21Ne/22Ne ratios are more likely due to the effects of nucleosynthesis in the He‐burning shell of the parent AGB stars which imposes new boundary conditions on nuclear parameters and stellar models. It is suggested that spallation‐Xe produced on the abundant Ba and REE in presolar SiC, rather than spallogenic Ne, may be a promising approach to the presolar age problem. There is a hint in the currently available Xe data (Lewis et al., 1994) that the large (>1 μm) grains may be younger than the smaller (<1 μm) grains. The retention of spallogenic 21Ne produced by the bombardment of SiC grains of different grain sizes with 1.6 GeV protons, avoiding reimplantation into neighboring grains by dispersing the SiC grains in paraffin wax, has been derived from a comparison of mass spectrometrically determined 21Ne, retained in the grains, with the 22Na activity of the grains‐plus‐paraffin mixture. Compared to estimates of retention used in previous attempts to determine presolar ages for SiC (Tang and Anders, 1988b; Lewis et al., 1990, 1994), the results indicate significantly lower values. They do, however, agree with retention as expected from previous measurements of recoil ranges in similar systems (Nyquist et al., 1973; Steinberg and Winsberg, 1974). The prime reason for the discrepancy must lie in the energy of the recoiling nuclei entering in the calculation of retention by Tang and Anders (1988b), which is based on considerations by Ray and Völk (1983). Based on the results, it appears questionable that spallation contributes significantly to the observed variations of 21Ne/22Ne ratios among various SiC grain‐size separates (Lewis et al., 1994). We rather suggest that the variations, just as it has been observed for Kr and Ba already (Lewis et al., 1994; Prombo et al., 1993), have a nucleosynthetic origin. Confirmation needs input of improved nuclear data and stellar models into new network calculations of the nucleosynthesis in AGB stars of elements in the Ne region. Finally we argue that, to determine presolar system irradiation effects, spallation Xe is more favorable than is Ne, primarily because of smaller recoil losses for Xe. Although preliminary estimates hint at the possibility that the larger (>1 μm) grains are younger than the smaller (<1 μm) ones, the major uncertainty for a quantitative evaluation lies in the exact composition of the Xe‐N component thought to originate from the envelope of the SiC grains' parent stars.  相似文献   

15.
KAr and/or 40Ar39Ar plateau ages of Allende samples—whole rock, matrix, chondrules, white inclusions–range from 3.8 AE for matrix of ?5 AE for some white inclusions, but cluster strongly near 4.53 AE. This age marks the dominant KAr resetting of Allende materials. Age spectra show disturbances due to 39Ar recoil or some other argon redistribution processes. Possible explanations for the apparent presolar ages (>4.6 AE) include: ?20% loss of 39Ar; ?40% loss of 40K ~3.8 AE ago with no loss of 40Arl trapped argon of unique 40Ar/36Ar isotopic composition; admixture of “very old” presolar grains.  相似文献   

16.
Abstract— Nitrogen abundances and isotopic compositions of four CK chondrites (ALH85002, EET92002, Yamato6903 and Karoonda) were measured by a stepped-combustion method. Neon and Ar were also measured for the same samples. Two types of isotopically light N were observed. One of them is labile N released at low temperatures (~300 °C). This N is observed only in ALH85002. The other N is extracted at high temperatures (900?1200 °C) from all CK chondrites; although, the isotopic compositions are somewhat variable. There is a fair correlation between the excess 15N values and the abundance of trapped 36Ar for the high-temperature component, suggesting presolar origin of these species. The light N (δ15N = ?106.8‰) observed in Karoonda is one of the lightest N components ever reported for bulk chondrites.  相似文献   

17.
Highly siderophile elements (HSE) strongly partition into metal phases over silicate minerals and so offer important constraints on nebular and core formation processes acting on early planetesimals. Abundances of the HSE are also an important tool for constraining relationships between metal-rich meteorites. The first bulk rock and in situ HSE abundance and 187Re-187Os data are reported for the ungrouped metal-rich achondrite Tafassasset to examine models of its petrogenesis and origin. Bulk rock and metal grain HSE abundances are elevated at ~2 and ~15 times CI chondrite abundances, respectively, and are largely unfractionated from one another. Metal within Tafassasset is therefore likely to have quenched shortly after partial melting without significant fractional crystallization. Metal grain HSE abundances can be used to calculate a metal fraction of 14 ± 4 wt%, overlapping with the parent bodies of CC iron meteorites, which have also been related to Tafassasset using nucleosynthetic isotope anomalies. Despite such similarities, HSE systematics of bulk rock Tafassasset are not equivalent to any known chondrites, and metal grains do not overlap with iron meteorites or chondrite metal grains, precluding a direct genetic relationship.  相似文献   

18.
Abstract— The presence of several short-lived (now extinct) radionuclides in the early solar system demands that they were synthesized and added to preexisting solar system materials shortly (on a time scale on the order of the relevant radionuclide lifetime) before formation of solar system solids. For diverse reasons, it is often suggested that the solar system distributions of these radionuclides were radically heterogeneous, perhaps because of the late addition. Much attention has been given to the astrophysical circumstances that might govern the synthesis and distribution of these short-lived radionuclides, but comparatively little attention has been devoted to the distribution of cosynthesized isotopes. The focus of this paper is a systematic, quantitative evaluation of the collateral consequences in stable and long-lived isotopes that might be expected if short-lived radionuclides, in particular 26Al or 53Mn, were injected at their canonical levels and inhomogeneously distributed in the early solar system. We mix model massive star yields of Meyer et al. (1995) and Woosley and Weaver (1995) into a reservoir of cosmic composition, as tabulated by Anders and Grevesse (1989). To mitigate the effects of systematic deviations that may be present in these mixtures due to uncertainties in model stellar yields, we follow Timmes and Clayton (1996) and also mix into a “renormalized” proxy solar system composition computed from a galactic chemical evolution model based primarily on the stellar yields of Woosley and Weaver (1995). The results are very unfavorable to the likelihood of heterogeneously distributed 26Al derived from supernova ejecta. If a massive star is invoked to account for 26Al, its ejecta must have been rather uniformly distributed, as inferred from the lack of measured collateral anomalies in several elements, notably Ca, Cr, and Ni. Conversely, if 26Al were indeed radically heterogeneously distributed, some other nucleosynthetic source more efficient at producing 26Al is required. In principle, a similar statement applies to 53Mn, but the situation is more complicated. The inferred anomalies at 53Cr will depend not only on how much 53Mn is added by a heterogeneous component, but also more sensitively on the contributions to the associated stable nuclides, 53Cr, 52Cr, and 50Cr. Consideration of predicted collateral anomalies provides no direct support for heterogeneously distributed supernova-derived 53Mn, but the required quantity of supernova contribution, and thus also the collateral anomalies, are much less for 53Mn than for 26Al. With allowance for model calculation uncertainties, it could be argued that anomalies collateral to heterogeneous 53Mn might be small enough to have evaded detection.  相似文献   

19.
Planetary bodies a few hundred kilometers in radii are the precursors to larger planets but it is unclear whether these bodies themselves formed very rapidly or accreted slowly over several millions of years. Ordinary H chondrite meteorites provide an opportunity to investigate the accretion time scale of a small planetary body given that variable degrees of thermal metamorphism present in H chondrites provide a proxy for their stratigraphic depth and, therefore, relative accretion times. We exploit this feature to search for nucleosynthetic isotope variability of 54Cr, which is a sensitive tracer of spatial and temporal variations in the protoplanetary disk's solids, between 17 H chondrites covering all petrologic types to obtain clues about the parent body accretionary rate. We find no systematic variability in the mass‐biased corrected abundances of 53Cr or 54Cr outside of the analytical uncertainties, suggesting very rapid accretion of the H chondrite parent body consistent with turbulent accretion. By utilizing the μ54Cr–planetary mass relationship observed between inner solar system planetary bodies, we calculate that the H chondrite accretion occurred at 1.1 ± 0.4 or 1.8 ± 0.2 Myr after the formation of calcium‐aluminum‐rich inclusions (CAIs), assuming either the initial 26Al/27Al abundance of inner solar system solids determined from angrite meteorites or CAIs from CV chondrites, respectively. Notably, these ages are in agreement with age estimates based on the parent bodies’ thermal evolution when correcting these calculations to the same initial 26Al/27Al abundance, reinforcing the idea of a secular evolution in the isotopic composition of inner disk solids.  相似文献   

20.
Abstract— We have used a variety of complementary microanalytical techniques to constrain the mineralogy, trace‐element distributions, and oxygen‐isotopic compositions in a 50 × 50 μm area of Acfer 094 matrix. The results reveal the exceptional mineralogical and compositional heterogeneity of this material at the sub‐μm level. We observe μm‐scale and sub‐μm grains with elemental associations suggesting feldspar, metal with widely varying Ni contents, and a Cr‐Fe alloy (in addition to forsterite, pyroxene, sulfide, ferrihydrite, and amorphous groundmass previously described). A new class of μm‐scale CAI (μCAI) is also observed, which show sub‐μm compositional zoning, and a range of oxygen isotopic compositions. Unlike the larger CAIs in Acfer 094, which are uniformly 16O‐enriched, two of the three μCAIs we analyzed are isotopically normal. We also observed a Li‐rich hotspot that detailed analysis by ToF‐SIMS suggests may be a LiCr‐oxide grain. Within the resolution of the NanoSIMS, this grain has isotopically normal Li. Finally, in our 50 × 50 μm area, we positively identified a presolar grain that is the most 18O‐rich silicate found so far in meteorites. The grain may originate from an asymptotic giant branch (AGB) star, or more likely, a supernova. In line with previous TEM studies (Greshake 1997), we find no evidence for clastic material (e.g., fragmental chondrules) in the matrix of Acfer 094: although the matrix is volatile‐depleted, this depletion does not appear to result from dilution of a primordial starting material with (depleted) chondrule fragments. Assuming that matrix experienced the depletion event, our data on the detailed mineralogy of Acfer 094 are currently equivocal in constraining the nature of that event. We observe carrier phases for several elements consistent with conditions approaching equilibrium condensation; however, the presence of an amorphous groundmass is suggestive of more rapid cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号