首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
渤海风暴潮概况及温带风暴潮数值模拟   总被引:15,自引:4,他引:15  
分析研究表明,天津沿海是世界上风暴潮最频发区和最严重的区域之一,风暴潮灾一年四季均有发生,除夏季有台风风暴潮灾害发生外,春、秋、冬季均有灾害性温带风暴潮发生.采用球坐标系下的二维风暴潮模式,对1969年4月23日引起渤海最大温带风暴增水过程进行了数值模拟.对风场和增水过程的计算结果验证表明,该模式可用于温带风暴潮的工程计算,并且只要依据文中方法计算出预报气压场和风场,该模式也具有预报能力.  相似文献   

2.
渤海一年四季都易受到由温带风暴和热带气旋所致风暴潮的影响。为了缓解风暴潮灾害对海岸地区人员生命财产的影响,十分有必要了解大型风暴潮的发生过程和机制。目前大部分研究主要局限于单一的温带风暴潮或台风风暴潮。本文利用所构建的海气耦合数值模型研究了发生于渤海的两种类型的风暴潮,对发生在渤海的2次典型强风暴潮过程进行了模拟。由WRF模型模拟得到的风场强度和最低海平面气压与实测数据吻合较好,由ROMS模型模拟得到的风暴潮期间水位变化过程与潮位站观测结果也吻合较好。对两种类型风暴潮期间的风场结钩、海面风应力、海洋表面平均流场以及水位分布进行了分析对比,并将耦合模型结果与非耦合模型结果进行了对比。研究表明,渤海两种类型风暴潮期间的风场结钩、海面风应力、海洋表面平均流场以及水位分布等均存在巨大差异。渤海风暴潮的强度主要由海洋表面的驱动力所决定,但同时也受海岸地形地貌的影响。  相似文献   

3.
珠江口地区台风风暴潮的数值模拟试验   总被引:1,自引:0,他引:1  
本文选取了3个珠江口对造成严重风暴潮灾害的南海西北向路径的台风作为个例,利用国家海洋环境预报中心建立的业务化的台风风暴潮模式进行风暴潮后报检验.将结果与珠江口地区三个验潮站实际观测资料进行对比发现:模式的后报效果比较理想,对业务预报中最为关心的最大风暴增水值模拟较好,说明该模式对模拟这类型路径台风引起的风暴增水有较好的预报适用性.并且进一步发现:强度越大的台风,增水峰值模拟效果越好;该地区各验潮站的最大增水通常发生在台风中心距离验潮站最短的几个小时内.  相似文献   

4.
基于Delft3D模型建立了中国渤、黄海风暴潮数值模型,选取1979—2020年影响该海域的93场风暴过程(包括台风、寒潮和温带气旋),模拟了所产生的风暴增水和风暴潮总水位。采用泊松—皮尔逊复合极值分布理论,推算了渤、黄海对应不同重现期的极值水位;通过数值试验,对天文潮—风暴潮非线性相互作用对极值水位的贡献进行了量化分析。研究结果表明,渤海的莱州湾、渤海湾,以及黄海的江华湾、西朝鲜湾风暴增水最大,其中江华湾北侧和渤海湾西南侧的百年一遇风暴增水可达4 m;天文潮—风暴潮非线性相互作用在潮差较大、水深较浅的河口、湾顶区域更为显著,与耦合模型结果相比,非线性作用使极值水位值偏小,天文潮、风暴潮增水的线性叠加可显著高估极值水位,高估的幅值可达0.5~0.8 m。考虑重现期极值水位是海岸灾害防护工程的关键设计参数之一,对海岸构筑物的安全和建造成本影响极大,应重视天文潮—风暴潮非线性相互作用对重现期水位的影响。  相似文献   

5.
联合第三代浅水海浪模式SWAN和三维海流模式POM,建立考虑海浪影响的三维风暴潮模式,利用该模式,在渤黄海区域,对温带气旋830315诱发的风暴潮进行数值模拟,从海表风应力、辐射应力、底应力三方面入手,对海浪对风暴潮的影响进行了数值研究.研究表明:海浪通过风应力对风暴潮水位的影响最为显著,而波致辐射应力与依赖波流相互作用的底应力的影响只在渤海和北黄海相对明显;考虑海浪影响的风暴潮水住过程曲线模拟结果,比不考虑海浪影响的纯风暴潮模拟结果与实测水位曲线吻合的更好,尤其是在减水极值处,其相对误差不超过5.57%.  相似文献   

6.
联合第三代浅水海浪模式SWAN和三维海流模式POM,建立考虑海浪影响的三维风暴潮模式,利用该模式,在渤黄海区域,对温带气旋830315诱发的风暴潮进行数值模拟,从海表风应力、辐射应力、底应力三方面入手,对海浪对风暴潮的影响进行了数值研究.研究表明海浪通过风应力对风暴潮水位的影响最为显著,而波致辐射应力与依赖波流相互作用的底应力的影响只在渤海和北黄海相对明显;考虑海浪影响的风暴潮水住过程曲线模拟结果,比不考虑海浪影响的纯风暴潮模拟结果与实测水位曲线吻合的更好,尤其是在减水极值处,其相对误差不超过5.57%.  相似文献   

7.
利用实测资料分析了天津近海增减水的变化规律,冬季温带气旋引起的增水在全年中所占的频率较高,夏季热带气旋引起的增水幅度较大,这两者较容易引起较大的风暴灾害。本文通过统计历史台风过程,确定了最大热带气旋参数,建立了风暴增减水数值模拟模型,计算了该海区台风引起的可能最大增水,增水值为3.6 m。构建了温带敏感性实验,确定了该海区温带气旋最大增水的方向,计算了温带可能最大增减水,增水值为3.3 m,减水值为-3.7 m。由此确定了该海区可能最大风暴潮增水值为3.6 m,减水值为-3.7 m。  相似文献   

8.
宁波镇海海洋站为浙北沿岸较典型的验潮站,且其风暴潮增水资料序列也相对较长。文中通过对近几十年来镇海站70 cm以上风暴增水过程的分析,研究其强风暴潮增水过程的总体特征。文章还具体分析了3种不同路径台风造成的强风暴潮增水的特点,从而为以后该站强风暴潮增水的预报提供借鉴。  相似文献   

9.
本文研究了围填海对连云港海区海洋动力环境的影响,通过分析连云港海洋站的实测数据,给出了连云港近海的水动力特征;基于ADCIRC建立了渤黄海的潮汐和风暴潮模型,利用海洋站的潮位资料和增减水资料验证了模型的适用性,模拟了填海前和填海后的潮位,分析了不同情况下潮汐的变化;并利用该模型研究了围填海对可能最大风暴潮的影响。研究结果表明:围填海引起了分潮振幅的变大,尤其是M2分潮,最大增幅能达到5.5 cm;围填海对风暴潮增减水有一定影响,距离填海区越近影响越大,徐圩港区周边可能最大增水极值变化范围为-27~18 cm。  相似文献   

10.
一个高分辨率的长江口台风风暴潮数值预报模式及其应用   总被引:13,自引:1,他引:13  
利用河口海岸海洋模式(ECOM-Si)建立了一个适用于长江口区风暴潮的数值预报模式.该模式采用对岸线有较好拟合能力的自然正交水平坐标系统和能分辨较复杂海底地形的垂直σ坐标系统.模式考虑了长江口径流量对风暴潮的影响,部分地考虑了天文潮和风暴潮非线性相互作用对风暴增水的影响.风暴潮预报的大气强迫场用模型气压场和模型风场.利用所建立的模式对长江口区台风风暴潮进行了8个个例模拟,模拟增水与实测增水的峰值相比较,平均绝对误差不足10cm.利用本研究建立的模式,就气象因子对风暴潮位的敏感性进行了数值试验.试验结果表明,台风中心气压降低(升高)20hPa可导致约100cm的风暴潮位升高(或降低).台风最大风速半径误差对台风增水的变化影响也较显著.试验还表明,长江径流量增加1倍(减半),可以造成风暴潮的平均增加25cm(减小13cm).天文潮位相变化对风暴增水的影响数值试验表明,当台风暴潮与天文潮在不同位相相互作用,可使风暴潮位最大增加达70cm或减小90cm.  相似文献   

11.
鳌江站台风增水特征分析   总被引:1,自引:1,他引:1  
朱业  王晶  卢美 《海洋预报》2007,24(3):99-104
温州地区是浙江省受风暴潮灾害最严重的地区之一,鳌江站位于温州南部,是该地区的主要验潮站之一。本文统计了1949年~2006年登陆浙江的台风,通过对鳌江站的风暴增水特征的分析,探讨该站台风增水的预报方法和预报着眼点。  相似文献   

12.
基于ADICRC-SWAN耦合模式,文章模拟了山东半岛1985— 2017年的61场风暴潮过程,研究了佳益、明波、富瀚3个海洋牧场的增水与有效波高的分布特征。通过分析3个海洋牧场的风暴增水与有效波高的年极值序列得出,台风风暴潮发生次数最多,但强度没有明显的规律;温带气旋频率最低,但引起的平均增水较高。寒潮引起的风暴潮主要在明波海洋牧场形成高增水,同时在佳益海洋牧场形成大浪。以年极值序列为基础,利用Gumbel极值分布计算了出3个海洋牧场的百年一遇增水与有效波高,增水在明波最高,在佳益最低,而有效波高则相反。进一步考虑波高与增水的联合概率分布,佳益海洋牧场的百年一遇有效波高在增水为50 cm时降低至6.5~7.1 m,在增水150 cm的情况再降至3.9~4.6 m;富瀚海洋牧场的波高在50 cm增水条件下降幅比较明显,在水位增加到150 cm时变化不大,都在2.6~3.2 m;明波海洋牧场在增水为0,50 cm和150 cm时的波高在1.9~2.8 m,与考虑单变量极值情况差别不大。模拟结果对海洋牧场的风暴潮防灾减灾工作有一定参考价值。  相似文献   

13.
以实验室二维温带风暴潮数值模型为基础,综合考虑海洋潮波动力与风应力联合作用,建立温带风暴潮三维数值计算模型.模型从推导三维风暴潮基本控制方程出发,并应用交替方向隐格式(ADI)方法对方程进行离散求解.对于浅水动边界,模型采取局部深槽、缩小水域的活动边界处理方法.利用拟三维数值计算方法,并提出了非平面水深等分模式和平面等水深分布模式,应用这两种计算模式分别对渤海湾2009年5月8~10日发生的风暴潮过程进行了数值模拟.将风暴潮位计算结果和增水位计算结果与塘沽验潮站的实际观测数值进行对比验证,结果显示受风应力与潮波联合作用的风暴潮位和增水位与实测数据吻合良好;通过比较得到了平面等水深分布模式的计算成果要比非平面水深等分模式的计算成果更接近观测资料的结论,为风暴潮预报提供了理论依据.  相似文献   

14.
我国风暴潮灾害风险评估方法的基本问题   总被引:6,自引:0,他引:6  
乐肯堂 《海洋预报》1998,15(3):38-44
一、我国风暴潮灾害的基本特征研究表明,在我国已发生的海洋自然灾害中,发生频率最高、经济损失最重且危害最大的是风暴潮灾害(Le,1996)。在我国风暴潮是由两类天气系统所诱发。一类是由温带气旋(如江淮气旋、西南倒槽、渤海气旋和黄海气旋等)或西伯利亚—蒙...  相似文献   

15.
选择20个对舟山海域有较大影响的历史台风案例,开展定海站实测潮位数据的分析与归纳,总结得出20个台风中风暴潮过程增水最大值为5612号台风的207.1 cm,风暴潮高潮位最大值为9711号台风的283.7 cm。同时,在三维斜压水动力模型SELFE的基础上加入台风气压场和风场模块,建立了一个采用非结构三角形网格的天文潮-风暴潮耦合模型,模拟表明定海站的斜压效应较为明显,非线性耦合作用相对较弱,但两潮耦合风暴潮增水结果仍优于风暴潮单因子增水结果,与实际增水更为接近。在此基础上,以一定间隔在5612号台风原路径南北两侧各设计了2条平行路径,分别模拟两潮耦合风暴潮增水,结果表明5612号台风参数沿其原路径偏南1个最大风速半径距离的S1路径运动时可模拟得到定海站可能最大风暴潮增水为243.9 cm。最后,在S1路径下模拟可能最大风暴潮增水分别遭遇天文高、中、低潮位时的风暴潮高潮位,结果表明天文潮高潮时可得到可能最大风暴潮高潮位约为400 cm,天文中潮时次之,而天文低潮时风暴潮高潮位最低。  相似文献   

16.
莱州湾温带风暴潮预报研究   总被引:1,自引:1,他引:1  
本文依据莱州湾羊角沟、夏营两站建国以来的风暴增水资料,对莱州湾建国后发生的风暴潮进行了统计分析,并探讨了温带风暴潮产生的物理机制,此外还对莱州湾温带风暴增水以及诱发增水的天气形势进行了分析分类。在此基础上建立了莱州湾温带风暴潮统计预报方法,并在作业预报中对模型进行了检验,取得较为理想的效果。  相似文献   

17.
近10多年来,我国围填海工程发展迅速,渤海海岸线变化明显,岸线变化会改变潮波传播并影响风暴潮增水。基于FVCOM海洋动力学模型,利用潮汐和风场强迫,建立了渤海风暴潮模型,根据2000年岸线和2010年岸线,分别模拟了包括台风风暴潮和寒潮风暴潮在内的4次典型风暴潮过程,对模拟数据和实测数据进行统计分析,模拟结果与实测数据基本一致。研究了岸线变化前后,渤海风暴潮对近岸増水的影响,并对曹妃甸港、天津港和黄骅港的风暴潮增水灾害进行了风险评估。  相似文献   

18.
1409号"威马逊"台风是1949年以来登陆我国华南地区的最强台风。本文首先以铁山港海域的潮位站和气象站实测资料为基础,对铁山港海域的风暴增水特征进行了初步分析,结果表明:铁山港湾内最大风暴增水值要大于湾口处,通过对历史增水值进行重现期推算可知1409号台风造成的最大增水强度达到了200年一遇。台风登陆期间铁山港海域发生先减水后增水的现象,是因为铁山港海域的风向发生了转变,先是吹离岸风,后改为向岸风。然后基于MIKE21和Holland台风风场建立二维风暴潮数学模型分析了1409号台风的最大增水空间分布规律,模型结果显示地形与风暴潮增水的关系十分密切,铁山港内部湾顶位置处最大风暴增水超过了3.2 m,比铁山港口门处增加了1.2 m,因此需要格外重视铁山港湾顶处的风暴潮防灾减灾工作。  相似文献   

19.
基于已有潮位站的台风风暴潮历史资料,利用业务化台风风暴潮数值预报模式对影响宁波的5次较显著台风风暴潮过程进行模拟检验,分析表明模式能较好的模拟台风风暴潮过程,尤其是对最大过程增水的模拟.因此,以镇海潮位站为切入点,选用引发宁波最大风暴增水的5612号热带气旋(Wanda)的路径,平移后组合不同等级的热带气旋参数,构建出多组假想最优热带气旋进行宁波地区风暴潮风险的计算,得到从强热带风暴至超级台风共5类热带气旋登陆宁波时所可能引发的最大风暴增水,并使用皮尔逊Ⅲ型统计计算出对应的历史重现期,为宁波地区今后有效地防范各类热带气旋强度的风暴潮提供决策支持.  相似文献   

20.
《海洋世界》2008,(2):4-4
国家海洋局2008年1月15日发布了2007年《中国海洋灾害公报》(以下简称“公报”)。公报显示,2007年我国共发生风暴潮、海浪、海冰、赤潮和海啸等海洋灾害163次,造成直接经济损失88.37亿元。2007年全年共发生13次台风风暴潮,较上年增加了4次,其中7次造成灾害,受灾严重岸段主要集中在浙江省、厂东省和海南省沿海。发生17次温带风暴潮过程,其中2次造成灾害,受灾严重岸段主要集中在辽宁省、山东省沿海。风暴潮灾害造成直接经济损失为87.15亿元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号