首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

2.
Despite many years of study, the processes involved in the development of the continental margin of southern Africa and the distinctive topography of the hinterland remain poorly understood. Previous thermochronological studies carried out within a monotonic cooling framework have failed to take into account constraints provided by Mesozoic sedimentary basins along the southern margin. We report apatite fission track analysis and vitrinite reflectance data in outcrop samples from the Late Jurassic to Early Cretaceous sedimentary fill of the Oudtshoorn, Gamtoos and Algoa Basins (Uitenhage Group), as well as isolated sedimentary remnants further west, plus underlying Paleozoic rocks (Cape Supergroup) and Permian‐Triassic sandstones from the Karoo Supergroup around the Great Escarpment. Results define a series of major regional cooling episodes. Latest Triassic to Early Jurassic cooling which began between 205 and 180 Ma is seen dominantly in basement flanks to the Algoa and Gamtoos Basins. This episode may have affected a wider region but in most places any effects have been overprinted by later events. The effects of Early Cretaceous (beginning between 145 and 130 Ma) and Early to mid‐Cretaceous (120–100 Ma) cooling are both delimited by major structures, while Late Cretaceous (85–75 Ma) cooling appears to have affected the whole region. These cooling events are all interpreted as dominantly reflecting exhumation. Higher Late Cretaceous paleotemperatures in samples from the core of the Swartberg Range, coupled with evidence for localised Cenozoic cooling, are interpreted as representing Cenozoic differential exhumation of the mountain range. Late Cretaceous paleotemperatures between 60°C and 90°C in outcropping Uitenhage Group sediments from the Oudtshoorn, Gamtoos and Algoa Basins require burial by between 1.2 and 2.2 km prior to Late Cretaceous exhumation. Because these sediments lie in depositional contact with underlying Paleozoic rocks in many places, relatively uniform Late Cretaceous paleotemperatures across most of the region, in samples of both basin fill and underlying basement, suggest the whole region may have been buried prior to Late Cretaceous exhumation. Cenozoic cooling (beginning between 30 and 20 Ma) is focussed mainly in mountainous regions and is interpreted as representing denudation which produced the modern‐day relief. Features such as the Great Escarpment are not related to continental break up, as is often supposed, but are much younger (post‐30 Ma). This history of post‐breakup burial and subsequent episodic exhumation is very different from conventional ideas of passive margin evolution, and requires a radical re‐think of models for development of continental margins.  相似文献   

3.
The central and southern Perth Basin in southwestern Australia has a geological history involving multiple regional unconformity‐forming events from the Permian to Recent. This study uses sonic transit time analysis to quantify the magnitudes of net and gross exhumation for four stratigraphic periods from 43 wells. Most importantly, we quantify gross exhumation of the Permian–Triassic, Triassic–Jurassic, Valanginian break‐up and post‐Early Cretaceous events. Post‐Early Cretaceous gross exhumation averages 900‐m offshore and 600‐m onshore. Up to 200 m of this exhumation may be attributed to localized fault block rotation during extension in the Late Cretaceous and/or reverse fault re‐activation due to the compressive stresses in Australia in the last 50 Ma. The remainder is attributed to regional exhumation caused by epeirogenic processes either during the Cenozoic or at the Aptian–Albian boundary. Maximum burial depths prior to the Valanginian unconformity‐forming event were less than those reached subsequently, so that the magnitude of Valanginian break‐up exhumation cannot be accurately quantified. Gross exhumation prior to the break‐up of Gondwana was defined by large magnitude differences (up to 2500 m) between adjoining sub‐basins. At the end of Triassic, exhumation is primarily attributed to reverse re‐activation of faults that were driven by short‐wavelength inversion and exhumation at the end Permian is likely caused by uplift of rotated fault blocks during extension. The evidence from quantitative exhumation analysis indicates a switch in regime, from locally heterogeneous before break‐up to more regionally homogeneous after break‐up.  相似文献   

4.
Knowledge of the tectonic history of the Pamir contributes to our understanding of both the evolution of collisional orogenic belts as well as factors controlling Central Asian aridification. It is, however, not easy to decipher the Mesozoic–Cenozoic tectonics of the Pamir due to extensive Neogene deformation in an orogen that remains largely understudied. This study reports detrital apatite and zircon fission-track (FT) ages from both the eastern Tajik Basin sedimentary rocks and Pamir modern river sands. These FT data, supported by vitrinite reflectance and zircon and apatite U–Pb double dating, suggest that the majority of the FT ages are unreset and record exhumation stages of the Pamir, which has served as the source terrane of the Tajik Basin since the Cretaceous. Furthermore, we combine the new data with a compilation of published detrital apatite and zircon FT data from both the Tajik Basin sedimentary rocks and Pamir modern river sands, to explore the Mesozoic–Cenozoic tectonic history of Pamir. Deconvolved FT Peak Ages document two major Mesozoic exhumation events associated with the Late Triassic–Early Jurassic Cimmerian orogeny that reflects accretion of the Pamir terranes, as well as the Early–early Late Cretaceous deformation associated with the northward subduction of the Neo-Tethys Ocean beneath Pamir. The compiled data also show significant Late Eocene–Neogene exhumation associated with the ongoing formation of the Pamir, which peaks at ca. 36, 25, 14 and 7 Ma.  相似文献   

5.
We present results from interpretation of a 3D seismic data set, located within the NW German sedimentary basin, as part of the Southern Permian Basin. We focused on the development of faults, the timing of deformation, the amount of displacement during multiphase deformation, strain partitioning, and the interaction between salt movements and faulting. We recognised the central fault zone of the study area to be the Aller-lineament, an important NW-trending fault zone within the superimposed Central European Basin System. From structural and sedimentological interpretations we derived the following evolution: (1) E–W extension during Permian rifting, (2) N–S extension within cover sediments, and E–W transtension affecting both basement and cover, contemporaneously during Late Triassic and Jurassic, (3) regional subsidence of the Lower Saxony Basin during Late Jurassic/Early Cretaceous, (4) N–S compression within cover sediments, and E–W transpression affecting both basement and cover, contemporaneously during Late Cretaceous/Early Tertiary inversion and (5) major subsidence and salt diapir rise during the Cenozoic. We suggest that the heterogeneity in distribution and timing of deformation in the working area was controlled by pre-existing faults and variations in salt thickness, which led to stress perturbations and therefore local strain partitioning. We observed coupling and decoupling between pre- and post-Zechstein salt units: in decoupled areas deformation occurred only within post-salt units, whereas in coupled areas deformation occurred in both post- and pre-salt units, and is characterised by strike-slip faulting.  相似文献   

6.
The main Karoo Basin of South Africa is a Late Carboniferous–Middle Jurassic retroarc foreland fill, developed in front of the Cape Fold Belt (CFB) in relation to subduction of the palaeo-Pacific plate underneath the Gondwana plate. The Karoo sedimentary fill corresponds to a first-order sequence, with the basal and top contacts marking profound changes in the tectonic setting, i.e. from extensional to foreland and from foreland to extensional, respectively. Sedimentation within the Karoo Foreland Basin was closely controlled by orogenic cycles of loading and unloading in the CFB. During orogenic loading, episodes of subsidence and increase in accommodation adjacent to the orogen correlate to episodes of uplift and decrease in accommodation away from the thrust-fold belt. During orogenic unloading the reverse occurred. As a consequence, the depocentre of the Karoo Basin alternated between the proximal region, during orogenic loading, and the distal region, during orogenic unloading. Orogenic loading dominated during the Late Carboniferous–Middle Triassic interval, leading to the accumulation of thick foredeep sequences with much thinner forebulge correlatives. The Late Triassic–Middle Jurassic interval was dominated by orogenic unloading, with deposition taking place in the distal region of the foreland system and coeval bypass and reworking of the older foredeep sequences. The out of phase history of base-level changes generated contrasting stratigraphies between the proximal and distal regions of the foreland system separated by a stratigraphic hinge line. The patterns of hinge line migration show the flexural peripheral bulge advancing towards the craton during the Late Carboniferous–Permian interval in response to the progradation of the orogenic front. The orogenward migration of the foreland system recorded during the Triassic–Middle Jurassic may be attributed to piggyback thrusting accompanied by a retrogradation of the centre of weight within the orogenic belt during orogenic loading (Early Middle Triassic) or to the retrogradation of the orogenic load through the erosion of the orogenic front during times of orogenic unloading (Late Triassic–Middle Jurassic).  相似文献   

7.
ABSTRACT The regional thermal history of the north‐eastern Sverdrup Basin, Canadian Arctic Archipelago, has been assessed using apatite fission‐track thermochronology and vitrinite reflectance data. Fission‐track data for 27 samples from six wells through the Mesozoic section on Axel Heiberg and Ellesmere Islands reveal significant Palaeocene cooling associated with basin inversion during the Eurekan Orogeny. Fission‐track data for 29 outcrop samples, ranging in stratigraphic age from Cambrian to Tertiary, also reveal significant Palaeocene cooling. Vitrinite reflectance data from carbonaceous shales and coal seams in well and outcrop samples are consistent with these conclusions. The degree of Palaeocene cooling observed is greatest for well and outcrop samples in the cores of anticlines or the hanging walls of thrust faults, such as the Fosheim anticline, and faults, such as the Lake Hazen fault system, and the East Cape and Vesle Fiord thrust faults. Palaeocene cooling is largely attributed to the denudation of structures during the Eurekan Orogeny. At one locality on north‐western Ellesmere Island, which is on the northern flank of the Sverdrup Basin, the underlying Franklinian basement rocks yield Early Cretaceous fission track ages with relatively long mean track lengths. This indicates that this part of the basin was uplifted at this time and that subsequent sedimentation and subsidence in the Cretaceous and early Tertiary were modest. This locality thus appears to be on the rift shoulder, which developed along the flank of the Amerasia Basin in the Lower Cretaceous. At a locality on western Axel Heiberg Island, which is downflank from the rift shoulder, the Upper Jurassic Awingak sandstone has a Late Cretaceous fission track age. This is best explained by heating above the total annealing temperature for fission‐tracks in apatite by extensive Lower Cretaceous intrusions and subsequent heat dissipation and cooling in the Late Cretaceous followed by further substantial cooling due to Tertiary denudation. These results indicate that maximum burial temperatures occurred in the presently exposed Mesozoic section prior to basin inversion during the Eurekan Orogeny. It can therefore be inferred that peak hydrocarbon generation and primary migration predated the formation of structural traps during the Tertiary at shallow depths within the northern Sverdrup Basin.  相似文献   

8.
An inferred burial and exhumation history of Pennsylvanian strata in the central Appalachian foreland basin is constrained by integrating palaeothermometers, geochronometers and estimated palaeogeothermal gradients. Vitrinite reflectance data and fluid inclusion homogenization temperatures indicate that burial of Lower and Upper Pennsylvanian strata of the Appalachian Plateau in West Virginia exceeded ~4.4 km during the late Permian and occurred at a rate of ~100 m Myr?1. Exhumation rates of ~10 m Myr?1 from the late Permian to the early Cretaceous are constrained using maximum burial conditions and published apatite fission track (AFT) ages. AFT and radiogenic helium ages indicate exhumation rates of ~30–50 m Myr?1 from the early to late Cretaceous. Radiogenic helium dates and present day sampling depths indicate that exhumation rates from the late Cretaceous to present were ~25 m Myr?1. Exhumation rates for Upper and Lower Pennsylvanian strata within the Appalachian Plateau are remarkably similar. Early slow exhumation was possibly driven primarily by isostatic rebound associated with Triassic rifting. The later, more rapid exhumation can be attributed to thermal expansion followed by lithospheric flexure related to sediment loading along the passive margin.  相似文献   

9.
In this paper, a literature‐based compilation of the timing and history of salt tectonics in the Southern Permian Basin (Central Europe) is presented. The tectono‐stratigraphic evolution of the Southern Permian Basin is influenced by salt movement and the structural development of various types of salt structures. The compilation presented here was used to characterize the following syndepositional growth stages of the salt structures: (a) “phase of initiation”; (b) phase of fastest growth (“main activity”); and (c) phase of burial’. We have also mapped the spatial pattern of potential mechanisms that triggered the initiation of salt structures over the area studied and summarized them for distinct regions (sub‐basins, platforms, etc.). The data base compiled and the set of maps produced from it provide a detailed overview of the spatial and temporal distribution of salt tectonic activity enabling the correlation of tectonic phases between specific regions of the entire Southern Permian Basin. Accordingly, salt movements were initiated in deeply subsided graben structures and fault zones during the Early and Middle Triassic. In these areas, salt structures reached their phase of main activity already during the Late Triassic or the Jurassic and were mostly buried during the Early Cretaceous. Salt structures in less subsided sub‐basins and platform regions of the Southern Permian Basin mostly started to grow during the Late Triassic. The subsequent phase of main activity of these salt structures took place from the Late Cretaceous to the Cenozoic. The analysis of the trigger mechanisms revealed that most salt structures were initiated by large‐offset normal faults in the sub‐salt basement in the large graben structures and minor normal faulting associated with thin‐skinned extension in the less subsided basin parts.  相似文献   

10.
《Basin Research》2018,30(Z1):336-362
The subsidence evolution of the Tethyan Moroccan Atlas Basin, presently inverted as the Central High Atlas, is characterized by an Early Jurassic rifting episode, synchronous with salt diapirism of the Triassic evaporite‐bearing rocks. Two contrasting regions of the rift basin – with and without salt diapirism – are examined to assess the effect of salt tectonics in the evolution of subsidence patterns and stratigraphy. The Djebel Bou Dahar platform to basin system, located in the southern margin of the Atlas Basin, shows a Lower Jurassic record of normal faulting and lacks any evidence of salt diapirism. In contrast, the Tazoult ridge and adjacent Amezraï basin, located in the centre of the Atlas Basin, reveals spectacular Early Jurassic diapirism. In addition, we analyse alternative Central High Atlas post‐Middle Jurassic geohistories based on new thermal and burial models (GENEX® 4.0.3 software), constrained by new vitrinite reflectance data from the Amezraï basin. The comparison of the new subsidence curves from the studied areas with published subsidence curves from the Moroccan Atlas, the Saharan Atlas (Algeria) and Tunisian Atlas show that fast subsidence peaks were diachronous along the strike, being younger towards the east from Early–Middle Jurassic to Late Cretaceous. This analysis also evidences a close relationship between these high subsidence rate episodes and salt diapirism.  相似文献   

11.
The upper Campanian–Lower Eocene synorogenic sedimentary wedge of the Ranchería Basin was deposited in an intraplate basin resting on a tilted continental crustal block that was deformed by collision and subsequent subduction of the Caribbean Plate. Upper Cretaceous–Lower Eocene strata rest unconformably upon Jurassic igneous rocks of the Santa Marta Massif, with no major thrust faults separating the Santa Marta Massif from the Ranchería Basin. The upper Campanian–Lower Eocene succession includes, from base to top: foraminifera‐rich calcareous mudstone, mixed carbonate–siliciclastic strata and mudstone, coal and immature fluvial sandstone beds. Diachronous collision and eastward tilting of the plate margin (Santa Marta Massif and Central Cordillera) favoured the generation of accommodation space in a continuous intraplate basin (Ranchería, Cesar and western Maracaibo) during the Maastrichtian to Late Palaeocene. Terrigenous detritus from the distal colliding margin filled the western segments of the continuous intraplate basin (Ranchería and Cesar Basins); in the Late Paleocene, continental depositional systems migrated eastwards as far as the western Maracaibo Basin. In Early Eocene time, reactivation of former extensional structures fragmented the intraplate basin into the Ranchería‐Cesar Basins to the west, and the western Maracaibo Basin and Palmar High to the East. This scenario of continent–oceanic arc collision, crustal‐scale tilting, intraplate basin generation and fault reactivation may apply for Upper Cretaceous–Palaeogene syntectonic basins in western Colombia and Ecuador, and should be considered in other settings where arc–continent collision is followed by subduction.  相似文献   

12.
Mapping and correlation of 2D seismic reflection data define the overall subsurface structure of the East Gobi basin (EGB), and reflect Jurassic–Cretaceous intracontinental rift evolution through deposition of at least five distinct stratigraphic sequences. Three major northeast–southwest‐trending fault zones divide the basin, including the North Zuunbayan (NZB) fault zone, a major strike‐slip fault separating the Unegt and Zuunbayan subbasins. The left‐lateral NZB fault cuts and deforms post‐rift strata, implying some post‐middle‐Cretaceous movement. This fault likely also had an earlier history, based on its apparent role as a basin‐bounding normal or transtensional fault controlling deposition of the Jurassic–Cretaceous synrift sequence, in addition to radiometric data suggesting a Late Triassic (206–209 Ma) age of deformation at the Tavan Har locality. Deposits of the Unegt subbasin record an early history of basin subsidence beginning ~155 Ma, with deposition of the Upper Jurassic Sharilyn and Lower Cretaceous Tsagantsav Formations (synrift sequences 1–3). Continued Lower Cretaceous synrift deposition is best recorded by thick deposits of the Zuunbayan Formation in the Zuunbayan subbasin, including newly defined synrift sequences 4–5. Geohistory modelling supports an extensional origin for the EGB, and preliminary thermal maturation studies suggest that a history of variable, moderately high heat flow characterized the Jurassic–Cretaceous rift period. These models predict early to peak oil window conditions for Type 1 or Type 2 kerogen source units in the Upper Tsagantsav/Lower Zuunbayan Formations (Synrift Sequences 3–4). Higher levels of maturity could be generated from distal depocentres with greater overburden accumulation, and this could also account for the observed difference in maturity between oil samples from the Tsagan Els and Zuunbayan fields.  相似文献   

13.
Early Mesozoic Basins in the Yanshan Fold–Thrust Belt (YFTB), located along the northern margin of the North China Craton (NCC), record significant intraplate deformation of unknown age. In this article, we present evidence for the rapid exhumation of high‐grade basement rocks along the northern margin of the NCC in the Early Mesozoic. U–Pb geochronology of detrital zircons constrains the maximum depositional ages of syntectonic sedimentary units that formed during the unroofing of basement rocks and plutons in the Xiabancheng Basin. In the Early Mesozoic, the Xiabancheng Basin recorded a dramatic transformation in depositional environments, related to a significant change in the regional tectonic setting. In this study, the tectonic evolution of the YFTB is established from paleocurrent data and U–Pb zircon ages of sandstone and granitic gravels of the Xingshikou Formation, Xiabancheng Basin. The paleocurrent direction of meandering fluvial facies in the Triassic Liujiagou and Ermaying Formations are from east to west. In contrast, the overlying Xingshikou Formation consists of alluvial fan facies with paleocurrent directions from north‐northwest to south‐southeast. The lower and middle segments of the Xingshikou Formation record rapid exhumation of basement rocks along the northern margin of the NCC. U‐Pb ages of detrital zircons within the Xingshikou Formation are characterized by three major U–Pb age groups: 2.2–2.5 Ga, 1.7–1.8 Ga and 193–356 Ma. From 193 Ma to 356 Ma, a subsidiary peak occurs at 198 ± 5 Ma, constraining the sedimentation age of the Xingshikou Formation to the Early Jurassic. Zircon from the Wangtufang pluton in the northern portion of the Xiabancheng Basin yields U–Pb ages of 191 ± 1 Ma and 207 ± 1 Ma. Within error, these crystallization ages are identical to detrital zircon ages of 206 ± 1 Ma and 206 ± 2 Ma obtained for granitic gravel clasts in the Xingshikou Formation. Thus, the Wangtufang pluton and surrounding basement rocks must have experienced rapid uplift and exhumation during the Early Jurassic. The onset of exhumation along the northern margin of the NCC occurred at ca. 198–180 Ma.  相似文献   

14.
Four Mesozoic–Cenozoic palaeothermal episodes related to deeper burial and subsequent exhumation and one reflecting climate change during the Eocene have been identified in a study of new apatite fission‐track analysis (AFTA®) and vitrinite reflectance data in eight Danish wells. The study combined thermal‐history reconstruction with exhumation studies based on palaeoburial data (sonic velocities) and stratigraphic and seismic data. Mid‐Jurassic exhumation (ca. 175 Ma) was caused by regional doming of the North Sea area, broadly contemporaneous with deep exhumation in Scandinavia. A palaeogeothermal gradient of 45 °C km?1 at that time may be related to a mantle plume rising before rifting in the North Sea. Mid‐Cretaceous exhumation affecting the Sorgenfrei–Tornquist Zone is probably related to late Albian tectonic movements (ca. 100 Ma). The Sole Pit axis in the southern North Sea experienced similar inversion and this suggests a plate‐scale response along crustal weakness zones across NW Europe. Mid‐Cenozoic exhumation affected the eastern North Sea Basin and the onset of this event correlates with a latest Oligocene unconformity (ca. 24 Ma), which indicates a major Scandinavian uplift phase. The deeper burial that caused the late Oligocene thermal event recognized in the AFTA data reflect progradation of lower Oligocene wedges derived from the uplifting Scandinavian landmass. The onset of Scandinavian uplift is represented by an earliest Oligocene unconformity (ca. 33 Ma). Late Neogene exhumation affected the eastern (and western) North Sea Basin including Scandinavia. The sedimentation pattern in the central North Sea Basin shows that this phase began in the early Pliocene (ca. 4 Ma), in good agreement with the AFTA data. These three phases of Cenozoic uplift of Scandinavia also affected the NE Atlantic margin, whereas an intra‐Miocene unconformity (ca. 15 Ma) on the NE Atlantic margin reflects tectonic movements of only minor amplitude in that area. The study demonstrates that only by considering episodic exhumation as an inherent aspect of the sedimentary record can the tectonic evolution be accurately reconstructed.  相似文献   

15.
《Basin Research》2018,30(5):926-941
Constraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year.  相似文献   

16.
The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW-trending half-grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S-oriented extension gave rise to E–W-striking minor normal faults and reactivation of the pre-existing basin bounding faults that propagated upwards as left-stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression-causing basin inversion is dated as Middle Eocene to Miocene by a well-preserved syn-inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near-orthogonal NW–SE dextral strike-slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn-inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.  相似文献   

17.
A complex basin evolution was studied using various methods, including thermal constraints based on apatite fission‐track (AFT) analysis, vitrinite reflectance (VR) and biomarker isomerisation, in addition to a detailed analysis of the regional stratigraphic record and of the lithological properties. The study indicates that (1) given the substantial amount of data, the distinction and characterisation of successive stages of heating and burial in the same area are feasible, and (2) the three thermal indicators (AFT, VR and biomarkers) yield internally consistent thermal histories, which supports the validity of the underlying kinetic algorithms and their applicability to natural basins. All data pertaining to burial and thermal evolution were integrated in a basin model, which provides constraints on the thickness of eroded sections and on heat flow over geologic time. Three stages of basin evolution occurred in northern Switzerland. The Permo‐Carboniferous strike–slip basin was characterised by high geothermal gradients (80–100°C km?1) and maximum temperature up to 160°C. After the erosion of a few hundreds of metres in the Permian, the post‐orogenic, epicontinental Mesozoic basin developed in Central Europe, with subsidence triggered by several stages of rifting. Geothermal gradients in northern Switzerland during Cretaceous burial were relatively high (35–40°C km?1), and maximum temperature typically reached 75°C (top middle Jurassic) to 100°C (base Mesozoic). At least in the early Cretaceous, a stage of increased heat flow is needed to explain the observed maturity level. After erosion of 600–700 m of Cretaceous and late Jurassic strata during the Paleocene, the wedge‐shaped Molasse Foreland Basin developed. Geothermal gradients were low at this time (≤20°C km?1). Maximum temperature of Miocene burial exceeded that of Cretaceous burial in proximal parts (<35 km from the Alpine front), but was lower in more distal parts (>45 km). Thus, maximum temperature as well as maximum burial depth ever reached in Mesozoic strata occurred at different times in different regions. Since the Miocene, 750–1050 m were eroded, a process that still continues in the proximal parts of the basin. Current average geothermal gradients in the uppermost 2500 m are elevated (32–47°C km?1). They are due to a Quaternary increase of heat flow, most probably triggered by limited advective heat transport along Paleozoic faults in the crystalline basement.  相似文献   

18.
The Upper Devonian Rhinestreet black shale of the western New York state region of the Appalachian Basin has experienced multiple episodes of overpressure generation manifested by at least two sets of natural hydraulic fractures. These overpressure events were thermal in origin and induced by the generation of hydrocarbons during the Alleghanian orogeny close to or at the Rhinestreet's ~3.1 km maximum burial depth. Analysis of differential gravitational compaction strain of the organic‐rich shale around embedded carbonate concretions that formed within a metre or so of the seafloor indicates that the Rhinestreet shale was compacted ~58%. Compaction strain was recalculated to a palaeoporosity of 37.8%, in excess of that expected for burial >3 km. The palaeoporosity of the Rhinestreet shale suggests that porosity reduction caused by normal gravitational compaction of the low‐permeability carbonaceous sediment was arrested at some depth shy of its maximum burial depth by pore pressure in excess of hydrostatic. The depth at which the Rhinestreet shale became overpressured, the palaeo‐fluid retention depth, was estimated by use of published normal compaction curves and empirical porosity‐depth algorithms to fall between 850 and 1380 m. Early and relatively shallow overpressuring of the Rhinestreet shale likely originated by disequilibrium compaction induced by a marked increase in sedimentation rate in the latter half of the Famennian stage (Late Devonian) as the Catskill Delta Complex prograded westward across the Appalachian Basin in response to Acadian tectonics. The regional Upper Devonian stratigraphy of western New York state indicates that the onset of overpressure occurred at a depth of ~1100 m, well in advance of the Rhinestreet shale's entry into the oil window during the Alleghanian orogeny.  相似文献   

19.
Abstract The Jurassic-Cretaceous subsidence history of the Eromanga Basin, a large intracratonic sedimentary basin in central eastern Australia, has been examined using standard backstripping techniques, allowing for porosity reduction by compaction and cementation. Interpretation of the results suggests that during the Jurassic the basin was subsiding in a manner consistent with the exponentially decreasing form predicted by simple thermally based tectonic models. By the Early Cretaceous, the rate of subsidence was considerably higher than that expected from such models and nearly half of the total sediment thickness was deposited over the final 20 Myr of the basin's 95 Myr Mesozoic depositional history. The Early Cretaceous also marks the first marine incursion into the basin, consistent with global sea-level curves. Subsequently, however, the sediments alternate between marine and non-marine, with up to 1200 m of fluvial sediments being deposited, and this was followed by a depositional hiatus of about 50 Myr in the Late Cretaceous. This occurred at a time when global sea-level was rising to its peak. A model is presented which is consistent with the rapid increase in tectonic subsidence rate and the transgressive-regressive nature of the sediments. The model incorporates a sediment influx which is greater than that predicted by the thermally based tectonic models implied by the Jurassic subsidence history. The excess sedimentation results in the basin region attaining an elevation which exceeds that of the contemporary sea-level, and thereby giving the appearance of a regression. The present day elevation of the region predicted by the model is about 100–200 m above that observed. This discrepancy may arise because the primary tectonic subsidence is better represented by a linear function of time rather than an exponentially decreasing form.  相似文献   

20.
Constraining the burial history of a sedimentary basin is crucial for accurate prediction of hydrocarbon generation and migration. Although the Ghadames Basin is a prolific hydrocarbon province, with recoverable oil discovered to date in excess of 3.5 billion bbl, exploration on the eastern margin is still limited and the prospectivity of the area depends on the identification of effective source rocks and the timing of hydrocarbon generation. Sonic velocity, apatite fission track (FT) and vitrinite reflectance analysis offer three complementary methods to determine burial history and provide independent analytical techniques to evaluate the timing and amount of exhumation. The results indicate that two phases of tectonic activity had the biggest influence on basin evolution: the Hercynian (Late Carboniferous–Triassic) and Alpine (Late Mesozoic/Cenozoic) tectonic events. Exhumation during the Hercynian tectonic event increases from the SE, where an almost complete Palaeozoic section is preserved, towards the NW. This study quantifies the significant regional Alpine exhumation of the southern and eastern margins of the basin, with important implications for the timing of hydrocarbon maturation and expulsion, particularly for the Silurian source rock interval. Incorporating elevated Alpine exhumation values into burial history models for wells in the eastern (Libyan) part of the basin allows calibration with available maturity (Roeq) data using moderate values of Hercynian erosion. The result is preservation of the generation potential of Silurian (Tanezzuft) source rocks until maximum burial during Mesozoic/Cenozoic time, which improves the chance for preservation of hydrocarbon accumulations following entrapment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号