首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The first occurrence (FO) of Marthasterites furcatus was correlated with the FOs of other nannofossils, inoceramid bivalves and foraminifers in the Bohemian Cretaceous Basin and Outer Flysch Carpathians. The correlation showed that the FO of M. furcatus was diachronous, becoming younger from east to west. In the Silesian Unit it appears in the lower Turonian in association with Eprolithus moratus (UC6b nannofossil Zone). In the Pavlovské vrchy klippes it appears in the upper middle Turonian together with Lithastrinus septenarius (UC9 Zone). In the Bohemian Cretaceous Basin, the FO of M. furcatus was observed in the lower upper Turonian just above the FO of Liliasterites angularis. The presence of M. furcatus in Turonian strata is scarce and discontinuous up to its sudden quantitative increase (represented by 5–27% in assemblages) below the FO of the inoceramid bivalve species Cremnoceramus waltersdorfensis and C. deformis erectus in the Turonian–Coniacian boundary interval. The top of the M. furcatus acme was recorded below the FO of Micula staurophora. The second quantitative rise of M. furcatus (12% in assemblage) was found in the lower lower Campanian of the Pavlovské vrchy klippes above the FO of Broinsonia parca parca in the UC14a Zone and the last occurrence of the planktonic foraminifer Whiteinella baltica. Above this second acme M. furcatus disappears. The significantly earlier appearance of M. furcatus in the Silesian Basin may be connected with a southeast-heading surface current from the North European epicontinental sea where the species appeared in the early Turonian too.  相似文献   

2.
Lower to Middle Turonian deposits within the Bohemian Cretaceous Basin (Central Europe) consist of coarse‐grained deltaic sandstones passing distally into fine‐grained offshore sediments. Dune‐scale cross‐beds superimposed on delta‐front clinoforms indicate a vigorous basinal palaeocirculation capable of transporting coarse‐grained sand across the entire depth range of the clinoforms (ca 35 m). Bi‐directional, alongshore‐oriented, trough cross‐set axes, silt drapes and reactivation surfaces indicate tidal activity. However, the Bohemian Cretaceous Basin at this time was over a thousand kilometres from the shelf break and separated from the open ocean by a series of small islands. The presence of tidally‐influenced deposits in a setting where co‐oscillating tides are likely to have been damped down by seabed friction and blocked by emergent land masses is problematic. The Imperial College Ocean Model, a fully hydrodynamic, unstructured mesh finite element model, is used to test the hypothesis that tidal circulation in this isolated region was capable of generating the observed grain‐size distributions, bedform types and palaeocurrent orientations. The model is first validated for the prediction of bed shear stress magnitudes and sediment transport pathways against the present‐day North European shelf seas that surround the British Isles. The model predicts a microtidal to mesotidal regime for the Bohemian Cretaceous Basin across a range of sensitivity tests with elevated tidal ranges in local embayments. Funnelling associated with straits increases tidal current velocities, generating bed shear stresses that were capable of forming the sedimentary structures observed in the field. The model also predicts instantaneous bi‐directional currents with orientations comparable with those measured in the field. Overall, the Imperial College Ocean Model predicts a vigorous tide‐driven palaeocirculation within the Bohemian Cretaceous Basin that would indisputably have influenced sediment dispersal and facies distributions. Palaeocurrent vectors and sediment transport pathways however vary markedly in the different sensitivity tests. Accurate modelling of these parameters, in this instance, requires greater palaeogeographic certainty than can be extracted from the available rock record.  相似文献   

3.
The phylostratigraphy, taphonomy and palaeoecology of the Late Cretaceous neoselachian Ptychodus of northern Germany appears to be facies related. Ptychodus is not present in lower Cenomanian shark-tooth-rich rocks. First P. oweni records seem to relate to middle Cenomanian strata. P. decurrens appears in the middle to upper Cenomanian mainly in non-coastal environments of the shallow marine carbonate ramp and swell facies which isolated teeth were found partly in giant ammonite scour troughs on the Northwestphalian-Lippe High submarine swell in the southern Pre-North Sea Basin. They are recorded rare in deeper basin black shales facies (upwelling influenced, OAE Event II). P. polygyrus seems to be restricted to upwelling influenced basin and deeper ramp facies mainly of the uppermost Cenomanian and basal lower Turonian (OAE II Event). P. mammillaris is mostly represented during the lower to middle Turonian in the inoceramid-rich ramp and the near shore greensand facies along the Münsterland Cretaceous Basin coast north of the Rhenish Massif mainland. Finally, P. latissimus is recorded by two new tooth sets and appears in the upper Turonian basin swell facies and the coastal greensands. Autochthonous post-Turonian Ptychodus remains are unrecorded in the Santonian–Campanian of Germany yet. Reworked material from Cenomanian/Turonian strata was found in early Santonian and middle Eocene shark-tooth-rich condensation beds. With the regression starting in the Coniacian, Ptychodus disappeared in at least the Münster Cretaceous Basin (NW-Germany), but remained present at least in North America in the Western Interior Seaway. The Cenomanian/Turonian Ptychodus species indicate a rapid neoselachian evolution within the marine transgression and global high stand. A correlation between inoceramid shell sizes, thicknesses and their increasing size during the Cenomanian and Turonian might explain the more robust and coarser ridged enamel surfaces in Ptychodus teeth, if Ptychodus is believed to have preyed on epifaunistic inoceramid bivalves.  相似文献   

4.
The late Turonian to early Campanian calcareous nannofossil biostratigraphy of the Austrian Gosau Group is correlated with ammonite and planktonic foraminiferal zones. The standard Tethyan zonations for nannofossils and planktonic foraminifers are applied with only minor modifications. The basal marine sediments of the Gosau Group, bearing late Turonian-early Coniacian macrofossils, belong to the Marthasterites furcatus nannofossil Zone (CC13). The Micula decussata Zone (middle Coniacian to early Santonian) is combined with the Reinhardtites anthophorus Zone because of the rare occurrence of Renhardtites cf. R. anthophorus already in the Coniacian and taxonomic problems concerning the correct identification of this species. The Santonian-Campanian boundary lies within the Calculites obscures Zone (CCl7).  相似文献   

5.
We report a new find of the fish trail Undichna unisulca in fluvial sediments of the Lower Cretaceous Oliván Group of the Cameros Basin (Aptian-Albian; Valtrujal, La Rioja, northern Spain). It is the second Mesozoic record of Undichna unisulca after the first discovery in the Lower Cretaceous of central Spain (Las Hoyas, Cuenca, central Spain). The trails are characterized by single sinusoidal waves which in this case are often surrounded by well-preserved lateral levees that rule out an undertrail hypothesis.The continental depositional setting, a floodplain fluvial system, reflects the known broad palaeoenvironmental distribution of Undichna and confirms its occurrences in freshwater settings.  相似文献   

6.
D. Uli&#;ný 《Sedimentology》2001,48(3):599-628
Deposits of coarse‐grained, Gilbert‐type deltas showing varying degrees of reworking of foresets by basinal currents were identified in Middle Turonian to Early Coniacian sandstones of the Bohemian Cretaceous Basin. The progradation of the deltaic packages, earlier interpreted as large‐scale subaqueous dunes, shelf ridges or subaqueous fault‐scarp ‘accumulation terraces’, was controlled by high‐ and low‐frequency, relative sea‐level changes in a relatively slowly subsiding, intracontinental strike‐slip basin. End‐member types of the Bohemian Cretaceous coarse‐grained deltas are deep‐water deltas, characterized by thick (50–80 m) foreset packages with steep (10–30°) foresets, and shallow‐water deltas, which deposited thin (<15 m) packages with foresets typically between 4° and 10°. The differences in thickness and foreset slope angle were controlled predominantly by the accommodation available during progradation. The depositional regime of the deltas was governed by (i) the fluvial input of abundant sand bedload, with a minor proportion of gravel; (ii) gravity flows, most probably caused by liquefaction of the upper part of the unstable foreset slope; and (iii) migration of sandy bedforms on the foreset slopes. The bedform migration was driven by unidirectional currents of possible tidal origin. Individual foreset packages represent systems tracts, or parts of systems tracts, of depositional sequences. A variety of stacking patterns of high‐frequency sequences exists in the basin, caused by low‐frequency relative sea‐level changes as well as by local changes in sediment input. Because of generally low subsidence rates, fluvial or beach topset strata were not preserved in the cases studied. The absence of preserved fluvial facies, which has been one of the main arguments against the fluvio‐deltaic origin of the sandstone bodies, is explained by erosion of the topsets during transgression and their reworking into coarse‐grained lags of regional extent covering ravinement surfaces.  相似文献   

7.
Glauconitic siliciclastic rocks and phosphate components from the Pecínov Member of the Peruc–Korycany Formation (Upper Cenomanian), the lower part of the Bílá Hora Formation (Lower Turonian) and the lower part of the Teplice Formation (Upper Turonian) are studied. Geochemical indices suggest that the siliciclasts were derived from the weathering and recycling products of variable rock types of the Bohemian Massif, with a pronounced signature of felsic-derived source lithologies and a minor contribution from the sources of a chemically intermediate nature. Geochemical and mineralogical criteria suggest that the climate in the mid-Cretaceous was generally humid with possible intermittent arid episodes, which resulted in a long-term weathering of source rocks and the development of residual clay minerals in the source area. Several geochemical indications point toward highly reducing marine conditions during deposition of the mudstones, which are composed of quartz, glauconite, kaolinite, smectite, apatite and calcite. The glauconites show a highly mature character with >8 wt. % K2O and bear evidence of long residence time near the sediment–water interface. They are depleted in Fe and rich in Al indicating a mixed layer mica–smectite as a precursor. Carbonate-fluorapatite is the only phosphate phase identified in the phosphate components, with up to 8 wt. % CO32−, excess F and significant amounts of Na+ and SO42− in the apatite structure. A short-lived phosphogenic event(s) took place in the latest Cenomanian and involved large areas of the Bohemian Cretaceous Basin in association with the Oceanic Anoxic Event 2. The phosphate nodules were initially precipitated under suboxic conditions around the Cenomanian–Turonian boundary and were later reworked and emplaced in the earliest Turonian units. Phosphate coprolites mark another phosphogenic event in the early Upper Turonian. The development of the phosphate coprolites took place under variable redox conditions; the release of organically-bound phosphate and subsequent phosphatisation of fecal material took place under suboxic environment, followed by reworking in oxic realms.  相似文献   

8.
Dark grey strata belonging to the basal horizons of the Bílá Hora Formation (lower Turonian) were exposed during quarrying at the locality of Plaňany (Bohemian Cretaceous Basin). Based mainly on quarry maps, the early Turonian rocky bottom was reconstructed in the area of about 14,800 m2. Two sedimentologic and palaeoecological settings were recognized in the area. Dark grey deposits form part of the first setting, representing a fill of large and deep depressions on the northern foot of the Plaňany elevation. The second setting with a phosphatic lag is located on the elevated part of the area. Dark grey sedimentation belongs to the UC6a and particularly to the UC6b nannoplankton zones. During the latter zone the dark sedimentation passed upwards into light siltstones. The enrichment of Corg and S, clay minerals with an important kaolinite peak, formation of framboidal pyrite and the enrichment of macrofauna and phosphatic particles are characteristic of the basal portions of the dark deposits. The sulphate reduction zone is suggested for this sedimentary environment. In the associations of phosphatic particles, shark coprolites, faecal pellets and sponge fragments prevail. No phosphatic lag is developed. On the other hand, the phosphatic lag directly overlying the Cenomanian relics is most characteristic of the second setting. This lag is a product of sedimentary condensation, characterized by a long-lasting concentration of phosphatic particles and phosphogenesis, accompanied by encrustation of closely adjacent free rock surfaces by a faunal community with Terebella. Additional biostratigraphic data presently contributed to a proposed correlation of both settings. Micropalaeontological data (foraminifera, palynomorphs, nannoplankton) indicate that the phosphatic lag and basal dark grey deposits may be approximately coeval. The stagnant depositional conditions with only very slow sea-level rise are thought to have lasted for a relatively long period that includes a significant part of the Whiteinella archaeocretacea Zone (lowermost Turonian). In elevated parts, condensation could proceed under conditions of prevailingly weak currents and strong oxidation of organic matter, while decomposition of organic matter was probably very slow and incomplete in depressions below the elevation. The sedimentary condensation in both settings is highlighted by the remarkable formation of abundant glauconite in local deposits.  相似文献   

9.
The sedimentary cycles of the Cenomanian to Maastrichtian were investigated in the Basco-Cantabrian Basin (BCB) in northern Spain (Provinces of Alava, Vizcaya and Burgos). The depositional area was a distally steepened carbonate ramp which extended from Catalonia northwestwards to the Basque country. The investigated sediments range from calciturbidites and pelagic marls to marl-limestone alternations deposited on a distal carbonate ramp. Shallow marine limestones, marls and intertidal clastics and carbonates were deposited on the proximal part of the carbonate ramp. The establishment of a regional sequence analysis is based on the investigation of seismic profiles, well logs and outcrop sections. Examples of outcrop sections are interpreted in terms of sequence stratigraphy (unconformities of third- and second-order cycles, depositional geometries, systems tracts). The sequence stratigraphic interpretation of outcrop sections is based on facies analysis, interpretation of observed depositional geometries and correlation of unconformities and marine flooding surfaces through the basin. A biostratigraphic framework is established based on ammonites, inoceramids, planktonic and benthic foraminifera. As a result, a regional sequence stratigraphic cycle chart is presented and compared with published global cycle charts. The correlation of the regional cycle chart with published cycle charts is good. In the Cenomanian and Turonian, several sequence boundaries in the BCB are shifted by up to one biozone compared with the global chart. Some type 1 boundaries of the standard chart are only type 2 in the BCB. Important type 1 boundaries in the BCB are: top Geslinianum Zone with a 100 m lowstand wedge at the basis of the sequence (sequence boundary 92.2) ; base Petrocoriense Zone with a 250 m shallowing-upwards lowstand wedge at the basis (sequence boundary 89.2); and within the Syrtale Zone (sequence boundary 85.0).The Campanian-Maastrichtian sequence record is strongly disturbed by local compressive tectonics. Several sequences are recognizable and can be correlated with the global cycle chart. Correlation is hampered by the low biostratigraphic resolution in the western basin part. Subsidence analysis of several sections of the Upper Cretaceous of the BCB and its interpretation in the regional tectonic context leads to a discussion of the causes of the observed cyclicity. A regional eustatic curve is presented for the Upper Cretaceous of the BCB. Stage and substage names were used according Code-Committee (1977). Correspondence to: K.-U. Gräfe  相似文献   

10.
The Late Cretaceous (Cenomanian to Coniacian) marine sediments of central India prevalently known as ‘Bagh Beds,’ have been deposited in the E-W extending Narmada Basin. The stratigraphy of these Cenomanian — Coniacian sediments has been reviewed and summarized. The Bagh Beds have been found to consist of three formations: Nimar Sandstone, Nodular Limestone and Corallian Limestone in ascending order. Main emphasis has been given to Nodular Limestone Formation (Turonian), which is the most fossiliferous horizon of the Bagh Beds. Nodular Limestone Formation has more or less alternating bands of varying thickness of nodular limestone and marl. It yielded numerous ammonoid specimens, which have been found to belong to a morphologically highly variable ammoniod taxon Placenticeras mintoi Vredenburg.  相似文献   

11.
The occurrence of the genus Aquilapollenites in Upper Cretaceous and Neogene sediments of northwestern Pakistan is reported here. Aquilapollenites amplus, Aquilapollenites reductus, and Aquilapollenites sp. occur in the Maastrichtian palynomorph assemblage from an outcrop sample of the Mir Ali section, northern Waziristan. Aquilapollenites medeis in the Neogene Murgha Faqir Zai Formation of the Pishin Basin, Balochistan, is considered a reworked Cretaceous specimen. The Upper Cretaceous sediments of the Asian plate on the Tethys margin are considered to be the source of Aquilapollenites spp. in these samples.  相似文献   

12.
《Cretaceous Research》2008,29(1):40-64
The proposed definition of the Turonian/Coniacian boundary, at the first occurrence of the inoceramid bivalve Cremnoceramus deformis erectus (Meek) (= Cremnoceramus rotundatus (sensu Tröger non Fiege)), prompted a rigorous study of the calcareous nannofossil events through this interval, both for calibration of the calcareous nannofossil biostratigraphy, and to provide an assessment of the suitability, in calcareous nannofossil terms, of the proposed stratotype section. New calcareous nannofossil data are presented here, detailing the biostratigraphy of the boundary interval from four locations. These include the candidate boundary-stratotype, the Salzgitter-Salder Quarry section (northern Germany), as well as the Slupia Nadbrzezna outcrop (central Poland), a potential secondary reference section. Also included is the Brezno Pd-1 Borehole and outcrops in the Brezno Formation (= Priesener Schichten) type-area (north-western Czech Republic), which represents an original boundary candidate (Copenhagen Stage Boundaries Meeting, 1983), and the Langdon Stairs coastal section (south-eastern England), part of the British Chalk succession. The calcareous nannofossil events derived from each section provide a sequence across the boundary of (in stratigraphical order): below the boundary, the first occurrence of Lithastrinus septenarius followed by that of Broinsonia parca expansa; above the boundary, the last occurrence of Helicolithus turonicus followed by the first occurrence of Micula staurophora (= Micula decussata of some authors). This places the boundary within Nannofossil Subzone UC9c. A similar sequence of events has previously been determined from sections in north-eastern England and in the south-eastern Indian Ocean. The presented data and correlations suggest that either the Salzgitter-Salder Quarry section or the Slupia Nadbrzezna outcrop section would make a suitable Global Stratotype Section for the Turonian/Coniacian boundary, as far as calcareous nannofossils are concerned. The use of the calcareous nannofossil Marthasterites furcatus, widely quoted as an indicator of this boundary, is discussed and proved to be untenable.  相似文献   

13.
The western part of the Tarim Basin in Xinjiang is one of the main areas in China where the marineCretaceous is well developed. The Upper Cretaceous Yingjisha Group represented mainly by sediments of lit-toral, near-shore neritic and estuarine facies is divided in ascending order into the Kukebai Formation, theOytak Formation, the Ygezya Formation and the Tuylouk Formation. For about thirty years, the basal beds of the Kukebai Formation had been considered to be the lowermostmarine horizon of the Cretaceous in the western part of the Tarim Basin, which represents the earliest trans-gression of the Cretaceous Sea into this region. Recently. marine trace fossils, Ophiomorpha nodosa, O.tuberosa and Thalassinoides? spp. were found in abundance and fine preservation from the upper subcycle andupper part of the lower subcycle of the Kezlesu Group underlying the Kukebai Formation. The fact indicatesthat the marine transgression there took place earlier than the Kukebaian. Process of transgression and regression and change of environment in the West Tarim Basin during the pe-riod from the late Early Cretaceous to the end of the Cretaceous is also discussed in this paper.  相似文献   

14.
An almost complete Upper Cretaceous sedimentary sequence recently recovered on the Kerguelen Plateau (southern Indian Ocean) during ODP Leg 183 was analysed for planktonic foraminifera in order to refine and integrate the zonal schemes previously proposed for the Southern Ocean area. Detailed biostratigraphic analysis carried out on holes 1135A, 1136A and 1138A (poleward of 50°S palaeolatitude during Late Cretaceous time) has allowed recognition of low and mid–high latitude bioevents, useful for correlation across latitudes, in addition to known Austral bioevents. The low latitude biozonation can be applied to Turonian sediments, because of the occurrence of Helvetoglobotruncana helvetica, which marks the boundary between Whiteinella archaeocretacea and Helvetoglobotruncana helvetica zones. The base of the Whiteinella archeocretacea Zone falls within the uppermost Cenomanian–Turonian black shale level in Hole 1138A. The stratigraphic interval from upper Turonian to uppermost Santonian can be resolved using bioevents recognized in the mid–high latitude sections. They are, in stratigraphic order: the last occurrence of Falsotruncana maslakovae in the Coniacian, the first occurrence of Heterohelix papula at the Coniacian/Santonian boundary, the extinction of the marginotruncanids in the late Santonian, and the first occurrence of Globigerinelloides impensus in the latest (?) Santonian. The remainder of the Late Cretaceous fits rather well in the Austral zonal scheme, except that Globigerinelloides impensus exhibits a stratigraphic range in agreement with its record at the mid–high latitude sections and extends further downwards than previously recorded at southern sites. Therefore, despite the poor recovery in certain intervals and the presence of several hiatuses of local and regional importance as revealed by correlation among holes, a more detailed zonal scheme has been obtained (mainly for the less resolved Turonian–Santonian interval). Remarks on some species often overlooked in literature are also provided.  相似文献   

15.
The Bohemian Cretaceous Basin combines features of a shallow‐water (mostly < 100 m) epicontinental seaway formed during a global transgression with those of a tectonically active, transtensional setting. The basin formed under a greenhouse climate and was affected by strong axial currents. Dense well‐log coverage, combined with locally high‐quality exposures and biostratigraphic control, make it possible to examine in three dimensions the geometries of genetic sequences and interpret their controlling variables. Sand‐dominated deltas formed sequences at several spatial scales that reflect nested transgressive–regressive cycles with durations ranging from tens of thousands of years to millions of years. Progradation directions and distances, thicknesses and internal geometry of the individual sequences were controlled primarily by intrabasinal faulting, basin‐scale changes in subsidence rate, eustatic fluctuations and localized bathymetric changes due to successive filling of the basin. Along‐strike change in sediment input from different parts of the source area and a short‐lived uplift of a secondary clastic source provided additional controls on the sequence geometry. Efficient hypopycnal transport combined with redeposition of fine clastics in shallow water promoted development of steep slopes of sand‐dominated deltas while preventing downlap of muddy clinoforms; most of the suspended load became deposited downcurrent in subhorizontal or gently dipping bottomsets. Long‐term accommodation rates were low during the Early to Middle Turonian, with minor intrabasinal faulting, but became accelerated in the Late Turonian and Early Coniacian. This acceleration was caused at least partly by increased subsidence rate accompanied by structural partitioning of the depocentre and partly compensated by increased sediment input indicating increased uplift rates in the Western Sudetic Island source area. This event probably reflected an increase in the regional strain rate in Central Europe. The succession of two major flooding events in the Early Turonian and late Early Coniacian, separated by a low‐accommodation interval in the Middle Turonian, shows a close similarity to published estimates of long‐term eustatic curves. However, the eustatic component of accommodation rate in the Bohemian Late Turonian and Coniacian is difficult to separate from accelerated subsidence. In several cases, evidence for short‐term (100 kyr scale) forced regressions, independent of basinal structural activity, suggests small‐scale eustatic falls at rates which, as presently understood, cannot be explained other than by a glacio‐eustatic mechanism.  相似文献   

16.
Dinosaur eggs or fragments are abundant and extensively distributed in China. They can be very informative in biostratigraphic division and correlation of continental strata where other fossils are relatively lacking. Despite remarkable discoveries of vertebrate fossils, particularly dinosaur eggs and skeletons from the middle and Late Cretaceous of both northern and southern China, there is hardly any direct evidence for the ages of the vertebrate-bearing terrestrial deposits. To constrain their depositional ages, here we have obtained SIMS U–Pb zircon ages from the tuffs interbedded with dinosaur egg-bearing sediments from the Laijia and Chichengshan formations of the terrestrial red deposits of the Late Cretaceous in the Tiantai Basin, Zhejiang Province, southeastern China. The SIMS zircon U–Pb ages from the Laijia and Chichengshan formations are about 96–99 Ma (Cenomanian) and 91–94 Ma (Turonian), respectively, providing direct time constraints on the vertebrate and dinosaur egg evolution in the Late Cretaceous as well as a basis for correlation with terrestrial Cretaceous deposits in other regions of southern and northern China.  相似文献   

17.
Carbon and oxygen isotope data from Cenomanian–Turonian sediments from the southwest of the Crimea are presented. The sediments consist of limestones, marls and organic-rich claystones, the latter with total organic carbon values up to 2.6 wt. %, representing Oceanic Anoxic Event 2. A shift to more negative δ18O values through the uppermost Cenomanian into the lowermost Turonian may be the result of warming; however, petrographic analysis shows that the samples have undergone a degree of diagenetic alteration. The carbon isotope data reveal a positive excursion from 2.7‰ to a peak of 4.3‰ at the Cenomanian/Turonian boundary; values then decrease in the early Turonian. This excursion is comparable to those of other Cenomanian–Turonian sections, such as those seen in the Anglo-Paris Basin, and is thought to be due to global changes in the oceanic carbon reservoir. On this curve are a number of negative δ13C excursions, just below the Cenomanian/Turonian boundary. It is suggested that these negative excursions are associated with the uptake of light carbon derived from the oxidation and deterioration of organic material during localised exposure of the sediments to oxic or meteoric diagenetic conditions, possibly during sea-level fluctuations.  相似文献   

18.
The exposed Cretaceous shelf succession of the Cauvery Basin, southeastern India, has provided a world-class record of mid and Late Cretaceous invertebrates, documented in a substantial literature. However, the lithostratigraphy of the succession has been little studied and previously subject to a range of nomenclature. It is revised here, on the basis of intensive regional mapping, to stabilize the definition and nomenclature of lithostratigraphic units. The Uttattur Group is restricted in outcrop to the Ariyalur district and divided into the Arogypapurum Formation (new; Albian), Dalmiapuram Formation (late Albian), and Karai Formation (late Albian–early Turonian) for which the Odiyam and Kunnam Members are recognized. The Trichinopoly Group follows unconformably and is also restricted in outcrop to the Ariyalur district. It is divided into the Kulakkalnattam Formation (Turonian) and Anaipadi Formation (late Turonian–Coniacian). The Ariyalur Group is more widely distributed. In the Ariyalur district, the Sillikkudi Formation (Santonian–Campanian) and its Kilpaluvari Member, the Kallakurichchi Formation (early Maastrichtian), the Kallamedu Formation (mid and Late Maastrichtian) and the Niniyur Formation (Danian) are recognized. The sequence in the Vriddhachalam area consists of the Parur and Patti formations (Campanian), Mattur Formation (late Campanian–earliest Maastrichtian) and Aladi Formation (Maastrichtian). For the Pondicherry district, the Valudavur and Mettuveli formations (Maastrichtian) and Kasur and Manaveli formations (Paleocene) comprise the succession. The interpreted depositional environments for the succession in the Ariyalur district indicate four eustatic cycles in the mid and Late Cretaceous and earliest Tertiary: late Albian–early Turonian, late Turonian–Santonian, Campanian, Maastrichtian, and Paleocene. Overall the Cauvery Basin sequence is arenaceous and relatively labile in terms of framework grain composition, and contrasts with the pelitic assemblage developed on the west Australian margin from which eastern India separated in the Early Cretaceous (Valanginian). The difference is ascribed to palaeoclimate as controlled by palaeolatitude. For the Late Cretaceous, the Cauvery Basin drifted north on the Indian plate from 40 to 30°S. This zone is inferred to constitute Southern Hemisphere horse latitudes for Late Cretaceous time, characterized by an arid climate, physical weathering and the production of labile sands. By contrast, the west Australian margin of matching tectonic history remained in a high palaeolatitude (>40°S) throughout the Late Cretaceous, experiencing a pluvial climate, the dominance of chemical weathering and the production of clays.  相似文献   

19.
Facies evolution and vertical changes within the Late Cretaceous sequence of the Bohemian Cretaceous Basin reveal fluctuations of intra- and extrabasinal circumstances. Evidence of periodic oscillations is recognized and two categories of aperiodic event indications are distinguished according to their significance and lateral persistence. Several lithoevents may be related to eustatic changes, while others indicate the independent evolution of the basin, influenced by epeirogenetic movements of segments of the Bohemian Massif.  相似文献   

20.
鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征   总被引:12,自引:0,他引:12  
沉积环境的判别是沉积盆地分析、古地理、古气候研究和储层评价的重要手段。石英具有较大的硬度和较高的化学稳定性,因而其沉积物颗粒表面特征能很好地反映沉积环境,而通过扫描电镜研究石英颗粒表面微细特征是分析沉积环境行之有效的方法。尽管鄂尔多斯盆地早白垩纪志丹群存在沙漠沉积已被广为接受,但石英颗粒表面微细特征分析还比较薄弱。对采自鄂尔多斯盆地白垩纪志丹群洛河组 (K1l)和罗汉洞组 (K1lh)的沙丘沙进行石英颗粒表面微细特征分析的结果表明,其石英沙颗粒表面特征具有明显的风成特征,及易与水成特征相区别。因此,本研究从石英沙颗粒表面特征方面进一步肯定了鄂尔多斯盆地白垩纪古沙漠的存在  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号