首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drainage patterns and tectonic forcing: a model study for the Swiss Alps   总被引:1,自引:0,他引:1  
ABSTRACT A linear surface process model is used to examine the effect of different patterns of rock uplift on the evolution of the drainage network of the Swiss Alps. An asymmetric pattern of tectonic forcing simulates a phase of rapid retrothrusting in the south of the Swiss Alps (‘Lepontine’‐type uplift). A domal pattern of tectonic forcing in the north of the model orogen simulates the phase of the formation of the ‘Aar massif’, an external basement uplift in the frontal part of the orogenic wedge (‘Aar’‐type uplift). Model runs using the ‘Lepontine’‐type uplift pattern result in a model mountain chain with a water divide in the zone of maximum uplift and orogen‐normal rivers. Model runs examining the effect of ‘Lepontine’‐type uplift followed by ‘Aar’‐type uplift show that the initially formed orogen‐normal river system and the water divide are both very stable and hardly affected by the additional uplift. This indifference to changes in tectonic forcing is mainly due to the requirement of a high model erosion capacity for the river systems in order to reproduce the exhumation data (high‐grade rocks in the south of the Swiss Alps point to removal of a wedge‐shaped nappe stack with a maximum thickness of about 25 km). The model behaviour is in agreement with the ancestral drainage pattern of the Alps in Oligocene and Miocene times and with the modern pattern observed in the Coast Range of British Columbia; in both cases river incision occurred across a zone of rapid uplift in the lower course of the rivers. The model behaviour does not, however, explain the modern drainage pattern in the Alps with its orogen‐parallel rivers. When the model system is forced to develop two locally independent main water divides (simultaneous ‘Lepontine’‐ and ‘Aar’‐type uplift), a zone of reduced erosional potential forms between the two divides. As a consequence, the divides approach each other and eventually merge. The new water divide remains fixed in space independent of the two persisting uplift maxima. The model results suggest that spatial and temporal changes in tectonic forcing alone cannot produce the change from the orogen‐normal drainage pattern of the Swiss Alps in Oligocene–Miocene times to the orogen‐parallel drainage observed in the Swiss Alps today.  相似文献   

2.
The combined information about sedimentary petrography from the North Alpine Foreland Basin and structural geology from the Alps allows a qualitative reconstruction of the drainage network of the central Swiss Alps between 30 Ma and the present. This study suggests that crustal thickening and crustal thinning significantly controlled the location of the drainage divide. It also reveals the possible controls of crustal thickening/thinning on the change of the orientation of the drainage network from across-strike between 30 and 14 Ma to along-strike thereafter. Initial crustal thickening in the rear of the wedge is considered to have formed the drainage divide between north and south at 30 Ma. Because the location of crustal thickening shifted from east to west between ≈30–20 Ma, the catchment areas of the eastern dispersal systems reached further south than those of the western Alpine palaeorivers for the same time slice. Similarly, the same crustal dynamics appear to have controlled two phases of denudation that are reflected in the Molasse Basin by petrographic trends. Uplift in the rear of the wedge caused the Alpine palaeorivers to expand further southward. This is reflected in the foreland basin by increasing admixture of detritus from structurally higher units. However, tectonic quiescence in the rear of the wedge allowed the Alpine palaeorivers to cut down into the Alpine edifice, resulting in an increase of detritus from structurally lower units. Whereas uplift in the rear of the wedge was responsible for initiation of the Alpine drainage systems, underplating of the external massifs some 50 km further north is thought to have caused along-strike deviation of the major Alpine palaeorivers. Besides crustal thickening, extension in the rear of the wedge appears to have significantly controlled the evolution of the drainage network of the western Swiss Alps. Slip along the Simplon detachment fault exposed the core of the Lepontine dome, and caused a 50-km-northward shift of the drainage divide.  相似文献   

3.
The Southern Alps of New Zealand are the topographic expression of active oblique continental convergence of the Australian and Pacific plates. Despite inferred high rates of tectonic and climatic forcing, the pattern of differential uplift and erosion remains uncertain. We use a 25-m DEM to conduct a regional-scale relief analysis of a 250-km long strip of the western Southern Alps (WSA). We present a preliminary map of regional erosion and denudation by overlaying mean basin relief, a modelled stream-power erosion index, river incision rates, historic landslide denudation rates, and landslide density. The interplay between strong tectonic and climatic forcing has led to relief production that locally attains 2 km in major catchments, with mean values of 0.65–0.68 km. Interpolation between elevations of major catchment divides indicates potential removal of l01–103 km3, or a mean basin relief of 0.51–0.85 km in the larger catchments. Local relief and inferred river incision rates into bedrock are highest about 50–67% of the distance between the Alpine fault and the main divide. The mean regional relief variability is ± 0.5 km.Local relief, valley cross-sectional area, and catchment width correlate moderately with catchment area, and also reach maximum values between the range front and the divide. Hypsometric integrals show scale dependence, and together with hypsometric curves, are insufficient to clearly differentiate between glacial and fluvial dominated basins. Mean slope angle in the WSA (ψ = 30°) is lower where major longitudinal valleys and extensive ice cover occur, and may be an insensitive measure of regional relief. Modal slope angle is strikingly uniform throughout the WSA (φ = 38–40°), and may record adjustment to runoff and landsliding. Both ψ and φ show non-linear relationships with elevation, which we attribute to dominant geomorphic process domains, such as fluvial processes in low-altitude valley trains, surface runoff and frequent landsliding on montane hillslopes, “relief dampening” by glaciers, and rock fall/avalanching on steep main-divide slopes.  相似文献   

4.
Despite abundant data on the early evolution of the Central Alps, the latest stage exhumation history, potentially related to relief formation, is still poorly constrained. We aim for a better understanding of the relation between glaciation, erosion and sediment deposition. Addressing both topics, we analysed late Pliocene to recent deposits from the Upper Rhine Graben and two modern river sands by apatite fission‐track and (U‐Th‐Sm)/He thermochronology. From the observed age patterns we extracted the sediment provenance and paleo‐erosion history of the Alpine‐derived detritus. Due to their pollen and fossil record, the Rhine Graben deposits also provide information on climatic evolution, so that the erosion history can be related to glacial evolution during the Plio‐Pleistocene. Our data show that Rhine Graben deposits were derived from Variscan basement, Hegau volcanics, Swiss Molasse Basin, and the Central Alps. The relations between glaciation, Alpine erosion, and thermochronological age signals in sedimentary rocks are more complex than assumed. The first Alpine glaciation during the early Pleistocene did not disturb the long‐term exhumational equilibrium of the Alps. Recent findings indicate that main Alpine glaciation occurred at ca. 1 Ma. If true, then main Alpine glaciation was coeval with an apparent decrease of hinterland erosion rates, contrary to the expected trend. We suggest that glaciers effectively sealed the landscape, thus reducing the surface exposed to erosion and shifting the area of main erosion north toward the Molasse basin, causing sediment recycling. At around 0.4 Ma, erosion rates increased again, which seems to be a delayed response to main glaciation. The present‐day erosion regime seems to be dominated by mass‐wasting processes. Generally, glacial erosion rates did not exceed the pre‐glacial long‐term erosion rates of the Central Alps.  相似文献   

5.
青海湖流域土壤可蚀性K值研究   总被引:13,自引:1,他引:12  
以土壤亚类为基础,依据青海省第二次土壤普查资料建立了青海湖流域土壤亚类理化性质数据库.使用Wischmeier建立的通用方程计算土壤可蚀性K值,利用三次样条函数插值方法转换不同粒径标准的土壤质地;分别使用土壤有机质含量和土壤最小饱和水力传导率来确定土壤的结构和渗透级别.根据计算结果,建立了青海湖流域土壤可蚀性的分级指标.结果显示,中等和高等可蚀性K值的土壤面积分别占流域土壤总面积的72.1%和15.5%,土壤易于侵蚀.使用Arc/Info对青海湖流域土壤地图进行数字化得到值的K空间分布图,分析了流域可蚀性K值的分布规律及其土壤沙化原因,这对青海湖流域水土保持及流域长期规划具有重要意义.  相似文献   

6.
《中华人民共和国地貌图集》的研究与编制   总被引:3,自引:0,他引:3  
周成虎  程维明 《地理研究》2010,29(6):970-979
《中华人民共和国地貌图集(1∶100万)》是全面反映我国地貌宏观规律、揭示区域地貌空间分异的国家级基本比例尺基础性图集。本文回顾了我国地貌制图的发展历程,阐述了全国百万数字地貌遥感综合解译和地貌图集编制的过程,从图集内容结构、数值地貌分类体系、数据基础、地貌遥感解析技术、数字地貌数据库共享系统、地貌图图例系统、图集编制及印刷技术、图集蝴蝶装帧技术等方面详细分析了地貌图集的研究内容和编制特色。地貌图集研究成果已在全国土地调查、区域规划、环境保护和灾害监测等多个方面得到广泛应用。  相似文献   

7.
The process of laboratory compilation of the natural landscape chorological map of one of the uluses (administrative districts) of the Sakha (Yakutia) Republic is presented at a scale of 1:2 500 000. The GIS tools were used to reference thematic cartographic documents to the topographic base of the ulus containing contour lines, elevations and the main river network. The final river network is drawn on the basis of other data sources. A significant role in the subsequent map compilation stages was played by data from the Google Earth website: 2D and 3D images were used to identify floodplains. Units of glacial landforms of foothill areas and the main types of geological and geomorphological units of the ulus were determined using both published data sources and the Google Earth imagery. The map of natural vegetation has been compiled having regard to the humidity conditions and the vertical zonation of the climate and soils. The digital map layers in GIS were gradually combined into the synthetic natural landscape map of the ulus, and the identified natural landscape units were also incorporated into the regional classification of the landscapes of Siberia. It is established that the hierarchical system of natural landscapes of the ulus differentiates three levels of classification: high (the landscapes are differentiated with respect to their geographical location into the landscapes of lowlands and high mountains), intermediate (the differentiation of the landscapes with respect to the genesis and topography dissection in a relevant climatic zone) and low (the natural landscapes are determined by a combination of vegetation covering the type of soil that developed on a given geological substrate).  相似文献   

8.
The landscape of the Canadian Rockies in southern Alberta is not a direct result of constructional processes; that is, the ridges and peaks have not been pushed into the positions in which we see them today. Tectonic activity provided original elevation but not mountains: at the end of Laramide time, what are now the front ranges and foothills of the Rockies comprised a high-elevation upland of relatively low relief. The present mountain physiography is the result of 55–60 million years of post-orogenic differential erosion, in which more resistant rocks have been left at higher elevations than less-resistant rocks.The Canadian Rockies and the foothills are developed in a thin-skinned, thrust-and-fold belt created during the Laramide Orogeny; the adjacent Interior Plains cut across foreland basin sediments derived from the mountains. The mountains currently consist of large parts of ridges of well-indurated Paleozoic and, locally, Proterozoic rock alternating with valleys developed in soft Mesozoic clastic rock. In the foothills, where the soft Mesozoic rock is at the surface, relief is subdued, but ridges of more-resistant sandstone rise above shaley lowlands. The plains are relatively flat but also contain erosional outliers of higher paleo-plains-surfaces.Numerous lines of evidence suggest that the mountains and foothills have lost several kilometers of overburden since the end of the Laramide Orogeny, while the western plains have lost at least 2 km, requiring that the local relief of the mountains and foothills that we see is erosional in origin. Local physiography is adjusted to lithology: the mountains have high relief because the exposed sub-Mesozoic rocks can hold up high, steep slopes, whereas the foothills have low relief because the underlying Cretaceous rocks cannot hold up high, steep slopes. The east-facing escarpment at the mountain front is a fault-line scarp along a low-angle thrust.Mesozoic rocks involved in the deformation originally extended all the way across the thrust and fold belt, and physiography of the belt at the end of Laramide time (60–55 Ma) depended mainly on whether Mesozoic or Paleozoic/Proterozoic rocks were exposed at the surface at that time. A reconstruction using critical-taper theory generally agrees with reconstructions from earlier stratigraphic and paleothermometry studies: what are now the front ranges at the eastern edge of the Rocky Mountains were mostly or perhaps entirely covered with Mesozoic rocks and despite that high elevation had a hilly, not mountainous, character. The main ranges, in the central Rocky Mountains, were in part stripped of Mesozoic cover by then and more mountainous. Treeline was higher then, and the thrust belt may have been largely or entirely vegetated. Generation of modern relief in the front ranges, including the escarpment at the mountain front, had to await stripping of Mesozoic rocks and incision of rivers into harder substrates in post-Laramide time.The Interior Plains are an erosional surface that was cut 1 to 3 km below the aggradational top of the foreland basin sediments. Although some of the present low local relief of the plains results from weakness of underlying Cretaceous/Tertiary rocks, the low relief is probably largely related to the process of denudation.  相似文献   

9.
Smaller glaciers (<0.5 km2) react quickly to environmental changes and typically show a large scatter in their individual response. Accounting for these ice bodies is essential for assessing regional glacier change, given their high number and contribution to the total loss of glacier area in mountain regions. However, studying small glaciers using traditional techniques may be difficult or not feasible, and assessing their current activity and dynamics may be problematic. In this paper, we present an integrated approach for characterizing the current behaviour of a small, avalanche‐fed glacier at low altitude in the Italian Alps, combining geomorphological, geophysical and high‐resolution geodetic surveying with a terrestrial laser scanner. The glacier is still active and shows a detectable mass transfer from the accumulation area to the lower ablation area, which is covered by a thick debris mantle. The glacier owes its existence to the local topo‐climatic conditions, ensured by high rock walls which enhance accumulation by delivering avalanche snow and reduce ablation by providing topographic shading and regulating the debris budget of the glacier catchment. In the last several years the glacier has displayed peculiar behaviour compared with most glaciers of the European Alps, being close to equilibrium conditions in spite of warm ablation seasons. Proportionally small relative changes have also occurred since the Little Ice Age maximum. Compared with the majority of other Alpine glaciers, we infer for this glacier a lower sensitivity to air temperature and a higher sensitivity to precipitation, associated with important feedback from increasing debris cover during unfavourable periods.  相似文献   

10.
Debris flows are very important and widespread mass movements, and represent a remarkable geomorphological hazard. This research deals with debris flows in an alpine environment, studied using dendrogeomorphological dating techniques, outlining their relation with precipitation, and analysing possible changes in their frequency and intensity over time. The study area is the upper Valle del Gallo (Northern Italy), a typical high mountain environment dominated by mass wasting processes, where many debris-flow fans occupy the valley bottom. Dendrogeomorphological research was conducted on twelve of these fans and two channels located on slopes. Tree growth anomalies (abrasion scars, compression wood and abrupt growth changes) were used as dating methods. Two hundred and thirty nine debris debris-flow events between 1875 and 2003 were dated using 757 trees (Pinus montana Mill.). Analysis between dated events and precipitation suggests that debris flows in the study area could be triggered by 20–30 mm of rain concentrated in a few hours. The debris-flow frequency tends to increase gradually, but the highest value seems to have occurred in the period 1974–1983. This trend agrees with the historical occurrence of flooding events in Northern Italy as inferred by literature, and with similar studies conducted in the Swiss Alps. The results of this research are intended as a contribution for understanding the response of geomorphological processes to climatic changes.  相似文献   

11.
Giant landslides, which usually have volumes up to several tens of km3, tend to be related to mountainous reliefs such as fault scarps or thrust fronts. The western flank of the Precordillera in southern Peru and northern Chile is characterized by the presence of such mega-landslides. A good example is the Latagualla Landslide (19°15′S), composed of ~ 5.4 km3 of Miocene ignimbritic rock blocks located next to the Moquella Flexure, a structure resulting from the propagation of a west-vergent thrust blind fault that borders the Precordillera of the Central Depression. The landslide mass is very well preserved, allowing reconstitution of its movement and evolution in three main stages. The geomorphology of the landslide indicates that it preceded the incision of the present-day valleys during the late Miocene. Given the local geomorphological conditions 8–9 Ma ago (morphology, slopes and probably a high water table), large-magnitude earthquakes could have provided destabilization forces enough to cause the landslide. On the other hand, present seismic forces would not be sufficient to trigger such landslides; therefore the hazard related to them in the region is low.  相似文献   

12.
Abstract

Field work in geography often involves an exercise in which the student is required to make some type of map. Although most areas of the United States are well mapped, seldom are extremely large-scale (larger than 1:24,000) relief maps available. A method of contour-line mapping using small contour intervals and a large scale is appropriate in teaching several mapping principles and requires only a few simple tools and the use of elementary mathematics. Percent slope is established at uniform intervals along closely spaced traverses of the area to be mapped. Spot elevations are thus established from which contour lines can be determined. Accuracy in field-data collection and care in cartography will yield a very satisfactory map of terrain characteristics of small areas. Several concepts of maps and mapping are taught through direct student involvement.  相似文献   

13.
The well‐constrained seismic stratigraphy of the offshore Canterbury basin provides the opportunity to investigate long‐term changes in sediment supply related to the formation of a transpressive plate boundary (Alpine Fault). Reconstructions of the relative motion of the Australian and Pacific plates reveal divergence in the central Southern Alps prior to ~20.1 Ma (chron 6o), followed by increasing average rates of convergence, with a marked increase after ~6 Ma (late Miocene). A strike–slip component existed prior to 33.5 Ma (chron 13o) and perhaps as early as Eocene (45 Ma). However, rapid strike–slip motion (>30 mm yr?1) began at ~20.1 Ma (chron 6o). Since ~20.1 Ma there has been no significant change in the strike–slip component of relative plate motion. Sedimentation rates are calculated from individual sequence volumes that are then summed to represent sequence groups covering the same time periods as the tectonic reconstructions. Rates are relatively high (>22 mm yr?1), from 15 to ~11.5 Ma (sequence group 1). Rates decrease to a minimum (<15 mm yr?1) during the ~11.5–6 Ma interval (sequence group 2), followed by increased rates during the periods of ~6–2.6 Ma (21 mm yr?1; group 3) and 2.6–0 Ma (~25 mm yr?1; group 4). Good agreement between sedimentation and tectonic convergence rates in sequence groups 2–4 indicates that tectonism has been the dominant control on sediment supply to the Canterbury basin since ~11.5 Ma. In particular, high sedimentation rates of 21 and ~25 mm yr?1 in groups 3 and 4, respectively, may reflect increased plate convergence and uplift at the Southern Alps at ~6 Ma. The early‐middle Miocene (~15–11.5 Ma) high sedimentation rate (22 mm yr?1) correlates with low convergence rates (~2 mm yr?1) and is mainly a response to global climatic and eustatic forcing.  相似文献   

14.
Aiming to analyze the site conditions of treeline trees at the highest elevations, we investigated 360 km of treelines in the Upper Valtellina, Italian Alps. We analyzed approximately five trees per km and determined the environmental factors limiting treeline elevation by distinguishing between geomorphologic constraints (mean elevation 2355 m), climatic constraints (2530 m), and human impacts (2335 m). Up to 82% of the 1814 analyzed treeline trees were influenced by geomorphological constraints, whereas human impacts influenced only 3% of the trees. Climatic treelines (15% of trees) were most common in the western sector. Moreover we analyzed the frequency distributions of elevation, slope, and aspect. Elevation was the most important variable that was also strongly associated with climatic treelines. The slope variable was more strongly associated with treelines limited by geomorphology than by climate. By reconstructing the altitudinal dynamics at the Mt. Confinale study site, we found rates of an ongoing treeline upward shift of up to 2.6 m/y in the period 2000–2009. Our results indicate that climatic conditions related to the ongoing air temperature rise in this region will likely enhance the treeline shift, especially at high elevations (>2400 m a.s.l.) and on non-extreme slopes (<45°).  相似文献   

15.
Hugh H. Mills   《Geomorphology》2003,55(1-4):263
Measures of local relief, regional relief, and slope were calculated from digital elevation models (DEMs) for 50 bedrock units in the Ridge and Valley and Blue Ridge provinces of Tennessee. Each of these measures was normalized and the three were then averaged to produce the erosional resistance index (ERI). Bedrock units with higher ERI values include coarse clastics, intermediate clastics, and metaplutonics. Units with lower values include shales, limestones, limestones plus dolostones, and carbonates plus fine clastics. Dolostones tend to have intermediate values. The calculated ERI values were compared with subjective ratings by a geologist with decades of field experience in east Tennessee. Generally, the agreement between the two ratings was good, the most glaring exception being several shales with improbably high ERI values. These turned out to be thin units cropping out beneath very hard sandstones, allowing them to stand higher and steeper than would otherwise be possible. A systematic method for detecting such erroneously high ERI values is suggested. Inspection of a drainage map superimposed on the geology map shows that in a given area, streams tend to flow on rock units with the lowest ERI values. In addition, statistical analysis shows that bedrock units with the lowest ERI values are, on average, almost three times closer to the nearest stream and six times as likely to have streams flowing on them than are units with highest values. Further, the effect of ERI on stream location is strongest for streams with drainage areas between 1 and 30 km2. Thus, small streams appear to be subject to greater lithologic control than are larger streams.  相似文献   

16.
根据模型和分布函数,本文首先依据多年平均气温、地温和SRTM等数据对研究区域冰缘地貌的分布范围进行分别提取,并利用遥感数据和人工解译方式对其进行了修正。在此基础上,采用一定指标,利用SRTM数据对冰缘地貌次级类型(如起伏度、海拔高度和坡度等)进行了提取,从而完成研究区域冰缘地貌信息的提取。研究结果表明:①研究区域冰缘地貌总面积约5.15×104km2,主要分布在研究区域的西北部和西南部,另外在东北部也有少量分布;通过提取,研究区域中最重要的冰缘地貌类型是冰缘作用的中起伏缓极高山,面积约0.82×104km2,分布范围较广。②冰缘地貌的分布与海拔高度、气温和地温等有密切的关系,基于此提取的结果可为冰缘地貌的解译提供一定的参考;由于青藏高原气象站点较少,数据精度较低,自动提取精度受到很大限制,因此进行人工解译修正是非常重要和必不可少的。  相似文献   

17.
We present a new palaeogeographic reconstruction of the Helvetic zone based on the palinspastic restoration of 18 recently published and new retrodeformed structural cross‐sections through the Swiss Alps, Haute Savoie (France) and Vorarlberg (Austria). The reconstruction resulted in two palaeogeographic maps, one of the pre‐Mesozoic basement, the other for the sedimentary cover of the Helvetic shelf including the Nummulitic deposits of the Palaeocene–Eocene, which mark the onset of the North Alpine Foreland Basin of the Alps. Based on the palaeogeographic maps and a precise dating of the Nummulitic deposits, we established maps of the facies distribution including the estimated positions of the ancient coastlines and their evolution through time. The North Alpine Foreland Basin started as a narrow flysch basin in Palaeocene–Eocene times. Emplacement of the Penninic nappes led to the formation of a mélange on the active margin of this basin. This early foreland basin and its active margin migrated to the NW in Early Eocene times at a rate of about 10 mm yr?1. The maps also reveal a general progressive north‐ and westward propagation of the Eocene coastline between 50–34 Ma and during the Oligocene until approximately 32 Ma. Coastline propagation reveals strongly varying rates both spatially and temporally, and is ca. 1–2 mm yr?1 between 50 and 37 Ma and approximately 20 mm yr?1 between 37 and 32 Ma. Evolution and orientation of the Tertiary coastlines infers that the early development of the North Alpine Foreland Basin was mainly controlled initially by eustatic sea‐level fluctuations superimposed on flexural subsidence. After 37 Ma, we suggest a tectonically controlled coastline evolution in response to the collision of the European and Adriatic margins.  相似文献   

18.
The intricate problem of major Fennoscandian landforms has been studied along the following lines: Structural control, erosion surfaces, climatic geomorphological forms, glacial erosion, and river valley anomalies. The last-mentioned method of approach was tried several decades ago and is almost forgotten. It will be discussed here.

Of special interest are the river captures at the main water divide. Clear cases are few compared with the great difference in river length on both sides. River gaps form the main group of discussed cases; the most striking ones are in the Swedish Caledonides. Less well known are the water gaps in pre-Cambrian Sweden. Local tectonic movements cannot be excluded as an explanation in most cases, but are not necessarily the explanation. More probable as a general explanation are lost sedimentary rocks, notably Cambro-Silurian. This means a stable shield area, slowly being stripped of a sedimentary cover in relation to varying rock resistance and undulations of the crystalline basement.  相似文献   

19.
A thorough geomorphological survey of a small (2km2) drainage area has been conducted using digital magnification of aerial photographs in conjunction with field visits. The result presented is a geomorphological map where individual geomorphological features down to metre size can be identified. The study was done in connection with a project focusing on the relationship between geomorphological processes and lacustrine sedimentation. Good knowledge of the geomorphological setting and the related process activity in the catchment is important in studies using lacustrine sediments as environmental archives.
The survey reveals a small–scale geomorphology dominated by a number of different periglacial upfreezing forms together with bedrock–controlled slope processes. Three different geographically separated geomorphological assemblages were recognised with few sediment transportation pathways connecting them. Composition of substrate, soil water content and vegetation cover combined with different slope angles are probably the most important factors controlling the distribution of the geomorphological features.  相似文献   

20.
A thorough geomorphological survey of a small (2km2) drainage area has been conducted using digital magnification of aerial photographs in conjunction with field visits. The result presented is a geomorphological map where individual geomorphological features down to metre size can be identified. The study was done in connection with a project focusing on the relationship between geomorphological processes and lacustrine sedimentation. Good knowledge of the geomorphological setting and the related process activity in the catchment is important in studies using lacustrine sediments as environmental archives.
The survey reveals a small–scale geomorphology dominated by a number of different periglacial upfreezing forms together with bedrock–controlled slope processes. Three different geographically separated geomorphological assemblages were recognised with few sediment transportation pathways connecting them. Composition of substrate, soil water content and vegetation cover combined with different slope angles are probably the most important factors controlling the distribution of the geomorphological features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号