首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
In the highly productive region off central Chile, the structure and temporal and spatial variability of planktonic assemblages, and the factors that determine changes in this structure are poorly understood. In the region, wind-driven upwelling, heating by solar radiation and freshwater inputs are highly seasonal processes, which, together with higher frequency events, can promote changes in the planktonic communities, especially in the upper layer. This study focuses on the structure of nano- through to micro-planktonic assemblages (2-200 μm) of unicellular organisms (protists) in surface waters (0-30 m) during different hydrographic conditions. Samples were taken from a fixed shelf station off Concepción (COPAS time series Station 18) on eight occasions between September 2003 and August 2004. The nano-plankton flagellate-dominated fraction was numerically important during the whole period. Maxima in flagellate abundance and biomass occurred during the upwelling period (November-April samplings) but these maxima appear to be unrelated to the degree of water column stratification. The micro-plankton diatom-dominated fraction was usually the largest component in terms of biomass during the study period and the diatoms made important numerical contributions during the upwelling period, with maxima in abundance and biomass when water column stability was lowest. The dominant genera and morphotypes in each functional group were found throughout the study period, with maxima in abundance and biomass co-occurring under similar environmental upwelling conditions. The mean macro-nutrient concentrations (nitrate and silicate) were relatively high in the top 30 m during both upwelling and non-upwelling periods, and did not explain the maxima in plankton or functional group replacements. The persistence of the dominant taxa in the planktonic assemblages suggests a high degree of flexibility, though probably not at the specific level, to withstand the highly variable environmental conditions in this upwelling area.  相似文献   

2.
A review is presented of the ocean circulation along Australia’s southern shelves and slope. Uniquely, the long, zonal shelf is subject to an equatorward Sverdrup transport that gives rise to the Flinders Current - a small sister to the world’s major Western Boundary Currents. The Flinders Current is strongest near the 600 m isobath where the current speeds can reach 20 cm/s and the bottom boundary layer is upwelling favourable. It is larger in the west but likely intermittent in both space and time due to possibly opposing winds, thermohaline circulation and mesoscale eddies. The Flinders Current may be important to deep upwelling within the ubiquitous canyons of the region.During winter, the Leeuwin Current and local winds act to drive eastward currents that average up to 20-30 cm/s. The currents associated with the intense coastal-trapped wave-field (6-12 day band) are of order 25-30 cm/s and can peak at 80-90 cm/s. Wintertime winds and cooling also lead to downwelling to depths of 200 m or more and the formation of dense coastal water within the Great Australian Bight and the South Australian Sea. Within the Great Australian Bight, the thermohaline circulation associated with this dense water is unknown, but may enhance the eastward shelf-edge, South Australian Current. The dense salty water formed within Spencer Gulf is known to cascade as a gravity current to depths of 200 m off Kangaroo Island. This dense water outflow and meanders in the shelf circulation also fix the locations of a sequence of quasi-permanent mesoscale eddies between the Eyre Peninsula and Portland.During summer, the average coastal winds reverse and surface heating leads to the formation of warm water in the western Great Australian Bight and the South Australian Sea. No significant exchange of shelf water and gulf water appears to occur due to the presence of a dense, nutrient-rich (sub-surface) pool that is upwelled off Kangaroo Island. The winds lead to weak average coastal currents (<10 cm/s) that flow to the north-west. In the Great Australian Bight, the wind stress curl can lead to an anticyclonic circulation gyre that can result in shelf-break downwelling in the western Great Australian Bight and the formation of the eastward, South Australian Current. In the east, upwelling favourable winds and coastal-trapped waves can lead to deep upwelling events off Kangaroo Island and the Bonney Coast that occur over 3-10 days and some 2-4 times a season. The alongshore currents here can be large (∼40 cm/s) and the vertical scales of upwelling are of order 150 m (off Kangaroo Island) and 250 m (off the Bonney Coast).Increasing evidence suggests that El Nino events (4-7 year period) can have a major impact on the winter and summer circulation. These events propagate from the Pacific Ocean and around the shelf-slope wave-guide of West Australia and into the Great Australian Bight. During winter El Nino events, the average shelf currents may be largely shut-down. During summer, the thermocline may be raised by up to 150 m. The nature and role of tides and surface waves is also discussed along with uncertainties in the general circulation and future research.  相似文献   

3.
Seasonal variations in diversity and biomass of diatoms, tintinnids, and dinoflagellates and the contribution of microplankton and faecal material to the vertical flux of particulates were investigated at one time series station T (station 18) between 2002 and 2005 and at a grid of stations during November 2004 in the coastal and oceanic area off Concepción (36°S), Chile. The variations were analysed in relation to water column temperature, dissolved oxygen, nutrient concentration, offshore Ekman transport, and chlorophyll-a concentration. Abundance was estimated as cell numbers per litre and biomass in terms of biovolume and carbon units.A sharp decrease with depth was observed in the abundance of both phytoplankton and microzooplankton during the whole annual cycle; over 70% of their abundance was concentrated in the upper 10 m of the water column. Also, a clear seasonality in microplankton distribution was observed at station T, with maxima for diatoms, tintinnids, and dinoflagellates every summer (centred on January) from 2002 to 2005.On the grid of stations, the maximum integrated (0-50 m) micro-phytoplankton abundances (>1 × 109 cells m−2) occurred at the coastal stations, an area directly influenced by upwelling. A similar spatial distribution was observed for the integrated (0-200 m) faecal carbon (with values up to 632 mg C m−2). Tintinnids were distributed in all the first 300 miles from the coast and dinoflagellates were more abundant in oceanic waters.At station T, the average POC export production (below 50 m depth) was 16.6% (SD = 17%; range 2-67%; n = 16). The biological-mediated fluxes of carbon between the upper productive layer and the sediments of the continental shelf off Concepción depend upon key groups of phytoplankton (Thalassiosira spp., Chaetoceros spp.) and zooplankton (euphausiids) through the export of either cells or faecal material, respectively.  相似文献   

4.
The distribution of pH and alkalinity has been used to calculate the distribution of total inorganic carbon (TC) and fugacity of carbon dioxide (fCO2) in the upper 200 m of the water column in coastal upwelling areas off northern Chile (23–24°S, near Antofagasta) and central Chile (30–31°S, near Coquimbo) during austral summer 1997. In these upwelling areas, colder surface waters were oxygen poor and strongly CO2 supersaturated (100% near Antofagasta and 200% near Coquimbo), although below the pycnocline the CO2 supersaturation invariably exceeded 200% in both areas. The larger surface CO2 supersaturation and outgassing at 30°S were associated with stronger winds that promoted the upwelling of denser water (richer in CO2) as well as a higher air–sea CO2 transfer velocity. The consistent decrease in intensity of the southerly winds (as derived from NSCAT scatterometer data) from 30–31°S to 23–24°S suggests a corresponding decline in the intensity of the CO2 outgassing due to upwelling. Additionally, we suggest here that the intensity of the local upwelling forcing (i.e. alongshore–equatorward winds) plays a role in determining the water mass composition and phytoplankton biomass of the coastal waters. Thus, while deep upwelling of salty and cold water resulted in high fCO2 (up to 1000 μatm) and very low phytoplankton biomass (chlorophyll a concentration lower than 0.5 mg m−3), the shallow upwelling of less salty (e.g. salinity <34.5) and less CO2-supersaturated water resulted in a higher phytoplankton biomass, which further reduced surface water fCO2 by photosynthesis.  相似文献   

5.
Seasonal coastal upwelling was analyzed along the NW African coastline (11–35°N) from 1981 to 2012. Upwelling magnitudes are calculated by wind speed indices, sea-surface temperature indices and inferred from meteorological station, sea-surface height and vertical water column transport data. A permanent annual upwelling regime is documented across 21–35°N and a seasonal regime across 12–19°N, in accordance with the climatology of previous studies. Upwelling regions were split into three zones: (1) the Mauritania–Senegalese upwelling zone (12–19°N), (2) the strong permanent annual upwelling zone (21–26°N) and (3) the weak permanent upwelling zone (26–35°N). We find compelling evidence in our various indices for the Bakun upwelling intensification hypothesis due to a significant coastal summer wind speed increase, resulting in an increase in upwelling-favorable wind speeds north of 20°N and an increase in downwelling-favorable winds south of 20°N. The North Atlantic Oscillation plays a leading role in modifying interannual variability during the other seasons (autumn–spring), with its influence dominating in winter. The East Atlantic pattern shows a strong correlation with upwelling during spring, while El Niño Southern Oscillation and Atlantic Multi-decadal Oscillation teleconnections were not found. A disagreement between observationally-based wind speed products and reanalysis-derived data is explored. A modification to the Bakun upwelling intensification hypothesis for NW Africa is presented, which accounts for the latitudinal divide in summer wind regimes.  相似文献   

6.
The structure and functioning of nanoplanktonic assemblages in coastal upwelling areas have usually been overlooked in explorations of the productivity of these areas. As part of a multidisciplinary, time-series station in the coastal area off Concepción, seasonal variations (upwelling and non-upwelling) in the abundance and biomass of these assemblages were investigated. Hydrographic measurements and biological samples were taken monthly over a 2-year period (18 August 2004-28 July 2006). Nanoflagellates dominated the total integrated abundance (3-317 × 109 cells m−2; 0-80 m). Diatoms and dinoflagellates usually contributed to a lesser degree (<20%) but sporadically made important contributions to the total integrated nanoplankton biomass (0.02-10.6 g C m−2). Most of the nanoplankton was concentrated in surface waters (<30 m) during all the samplings and no seasonal differences in abundance or biomass were found in this layer, although the mean values and dispersions around them were highest during the upwelling period along with maximum integrated (0-80 m) chlorophyll-a values, as total or in the <20 μm fraction. Changes in nanoplankton abundance were significantly but weakly (r < 0.4) correlated with changes in the hydrographic variables; the highest correlation values were positive for temperature and oxygen, factors that varied with depth and date. The potential grazing rates of heterotrophic nano-predators (flagellates and dinoflagellates) on prokaryotic prey, estimated with a generic model, ranged from 3 to 242 bacterioplankton predator−1 h−1 and from 0.1 to 14 cyanobacteria predator−1 h−1. Our results imply a small impact of seasonal hydrographic variability on the abundance and biomass of nanoplanktonic assemblages and suggest that grazing by nanoheterotrophs might control the prokaryotic picoplankton populations in the upwelling area off Concepción.  相似文献   

7.
The Newport Hydrographic (NH) Line along 44.65°N off central Oregon was sampled seasonally during two epochs: 1961-1971 through the TENOC program and 1997-2003 through the GLOBEC Northeast Pacific Long Term Observations Program (LTOP); some observations are available for 2004 and 2005. During TENOC, the line extended 305 km offshore to 128°W, with stations 18 km apart over the continental shelf and 36 km offshore. During LTOP, the line was shorter (to 126°W) with closer station spacing over the continental shelf (9 km apart) and slope (18 km apart). LTOP cruises included biochemical sampling and underway current measurements. During both TENOC and LTOP, the seasonal cycle is very strong (accounting for >50% of the variance in surface layer properties), with rapid transitions in spring and fall. The summer regime is subject to coastal upwelling driven by southward winds, equatorward surface currents, and advection of low-salinity waters from the Columbia River. The winter regime off Newport is subject to coastal downwelling and poleward surface currents driven by northeastward winds. Comparison between TENOC and LTOP summer regimes shows the near-surface layer (0-100 m) at most locations is significantly warmer and fresher during LTOP than TENOC, and steric heights over the continental margin are significantly higher. Comparison of LTOP and TENOC winters shows that average differences at most locations were not statistically significant, but that the variance of steric height and shelf-break temperatures was significantly higher during LTOP than TENOC. Interannual variability of climate indices is also stronger during LTOP, which included a rare Subarctic invasion in 2002 as well as the strong 1997-1998 El Niño. During both TENOC and LTOP, interannual variability of steric height is closely related to the El Niño/La Niña cycle. Nutrient concentrations and nitrate-to-phosphate ratios of upwelling-source waters vary inversely with halocline temperature. Both reflect alongshore advection by coastal currents: southward currents bring cool, nitrate-rich waters in summer (especially during the Subarctic invasion), and northward currents bring relatively warm, nitrate-poor waters to the NH line in winter (especially during El Niño). Seasonal and interannual variations in the nutrient level of upwelling-source water are reflected in time series of vertically-integrated chlorophyll over the LTOP survey region (about 150 km by 300 km). Seasonal variations in chlorophyll and currents are congruent with seasonal variations in copepod biomass and diversity. We were not successful in establishing a clear connection between chlorophyll levels and interannual variations in copepod biomass or diversity, nor in explaining the large decrease in the survival rate of coho salmon between TENOC (6%) and LTOP (3%).  相似文献   

8.
A 3D eco-hydrodynamical model of high resolution (0.25° × 0.25°, 27 σ-levels) is used to simulate the seasonal variability of the ocean circulation and marine ecosystem in the Central-Eastern Basin of the North Atlantic including the Canary upwelling system. According to the model results, in the winter period, the “patches” of maximal phytoplankton and zooplankton biomass are often located in upwelling zones in the open ocean on the periphery of cyclonic eddies rather than in the coastal upwelling zones. In the summer period, when the phytoplankton biomass reaches maximal (in the annual cycle) values, the maxima of the phytoplankton are located in the coastal upwelling zones. As shown, there is no simple relationship between the nitrate distributions, on the one hand, and the phytoplankton and zooplankton ones, on the other hand.  相似文献   

9.
The oceanographic setting and the planktonic distribution in the coastal transition zone off Concepción (∼35-38°S, ∼73-77°W), an area characterized by its high biological production, were assessed during two different seasons: austral spring with equatorward upwelling favorable winds and austral winter with predominately northerly winds. Oceanographic and biological data (total chlorophyll-a, particulate organic carbon, microplankton, large mesozooplankton >500 μm as potential consumers of microplankton) were obtained during two cruises (October 1998, July 1999) together with satellite imagery for wind stress, geostrophic flow, surface temperature, and chlorophyll-a data. The physical environment during the spring sampling was typical of the upwelling period in this region, with a well-defined density front in the shelf-break area and high concentrations of surface chlorophyll-a (>5 mg m−3) on the shelf over the Itata terrace. During the winter sampling, highly variable though weakly upwelling-favorable winds were observed along with lower surface chlorophyll-a values (<2 mg m−3) on the shelf. In the oceanic area (>100 km from the coast), cyclonic and anti-cyclonic eddies were evident in the flow field during both periods, the former coinciding with higher chlorophyll-a contents (∼1 mg m−3) than in the surrounding waters. Also, a cold, chlorophyll-a rich filament was well defined during the spring sampling, extending from the shelf out to 350-400 km offshore. Along a cross-shelf transect, the micro- and meso-planktonic assemblages displayed higher coastal abundances during the spring cruise but secondary peaks appeared in the oceanic area during the winter cruise, coinciding with the distribution of the eddies. These results suggest that the mesoscale features in this region, in combination with upwelling, play a role in potentially increasing the biological productivity of the coastal transition zone off Concepción.  相似文献   

10.
In the coastal waters off northern California, seasonal wind-driven upwelling supplies abundant nutrients to be processed by phytoplankton productivity. As part of the Coastal Ocean Processes: Wind Events and Shelf Transport (CoOP WEST) study, nutrients, CO2, size-fractionated chlorophyll, and phytoplankton community structure were measured in the upwelling region off Bodega Bay, CA, during May–June 2000, 2001 and 2002. The ability of this ecosystem to assimilate nitrate (NO3) and silicic acid/silicate (Si(OH)4) and accumulate particulate material (i.e. phytoplankton) was realized in all 3 years, following short events of upwelling-favorable winds, followed by periods of relaxed winds. This was observed as phytoplankton blooms, dominated by chlorophyll in cells greater than 5 μm in diameter, that reduced the ambient nutrients to zero. These communities were located over the near-shore shelf (<100 m depth) and were dominated by diatoms. An optimal window of 3–7 days of relaxed winds, following an upwelling pulse, was required for chlorophyll accumulation. The large-celled phytoplankton that result are likely important players in coastal new production and carbon cycling.  相似文献   

11.
The mixed layer of the ocean and the processes therein affect the ocean’s biological production, the exchanges with the atmosphere, and the water modification processes important in a climate change perspective. To provide a better understanding of the variability in this system, this paper presents time series of the mixed layer properties depth, temperature, salinity, and oxygen from Ocean Weather Station M (OWSM; 66° N,2° E) as well as spatial climatologies for the Norwegian Sea. The importance of underlying mechanisms such as atmospheric fluxes, advective signals, and dynamic control of isopycnal surfaces are addressed. In the region around OWSM in the Norwegian Atlantic Current (NwAC) the mixed layer depth varies between ∼20 m in summer and ∼300 m in winter. The depth of the wintertime mixing here is ultimately restrained by the interface between the Atlantic Water (AW) and the underlying water mass, and in general, the whole column of AW is found to be mixed during winter. In the Lofoten Basin the mean wintertime mixed layer reaches a depth of ∼600 m, while the AW fills the basin to a mean depth of ∼800 m. The temperature of the mixed layer at OWSM in general varies between 12 °C in summer and 6 °C in winter. Atmospheric heating controls the summer temperatures while the winter temperatures are governed by the advection of heat in the NwAC. Episodic lateral Ekman transports of coastal water facilitated by the shallow summer mixed layer is found important for the seasonal salinity cycle and freshening of the northward flowing AW. Atmospheric freshwater fluxes have no significant influence on the salinity of the AW in the area. Oxygen shows a clear annual cycle with highest values in May-June and lowest in August-September. Interannual variability of mixed layer oxygen does not appear to be linked to variations in any of the physical properties of the mixed layer.  相似文献   

12.
The continental shelf off central Chile is subject to strong seasonal coastal upwelling and has been recognized as an important outgassing area for, amongst others, N2O, an important greenhouse gas. Several physical and biogeochemical variables, including N2O, were measured in the water column from August 2002 to January 2007 at a time series station in order to characterize its temporal variability and elucidate the physical and biogeochemical mechanisms affecting N2O levels. This 4-year time series of N2O levels reveals seasonal variability associated basically with hydrographic and oceanographic regimes (i.e., upwelling and non-upwelling). However, a noteworthy temporal evolution of both the vertical distribution and N2O levels was observed repeatedly throughout the entire study period, allowing us to distinguish three stages: winter/early spring (Stage I), mid-spring/mid-summer (Stage II), and late summer/early autumn (Stage III).Stage I presents low N2O, the lowest surface saturation ever registered (from 64% saturation) in a period of high O2, and a homogeneous column driven by strong wind; this distribution is explained by physical and thermodynamic mechanisms. Stage II, with increasing N2O concentrations, agrees with the appearance of upwelling-favourable wind stress and a strong influence of oxygen-poor, nutrient-rich equatorial subsurface waters (ESSW). The N2O build-up creates a “hotspot” (up to 2426% N2O saturation) and enhanced concentrations of (up to 3.97 μM) and (up to 4.6 μM) at the oxycline (4-28 μM) (∼20-40 m depth). Although the dominant N2O sources could not be determined, denitrification (mainly below the oxycline) appears to be the dominant process in N2O accumulation. Stage III, with diminishing N2O concentrations from mid-summer to early autumn, was accompanied by low N/P ratios. During this stage, strong bottom N2O consumption (from 40% saturation) was suggested to be mainly driven by benthic denitrification.Consistent with the evolution of N2O in the water column over time, the estimated air-sea N2O fluxes were low or negative in winter (−9.8 to 20 μmol m−2 d−1, Stage I) and higher in spring and summer (up to 195 μmol m−2 d−1, Stage II), after which they declined (Stage III). In spite of the occurrence of ESSW and upwelling events throughout stages II and III, N2O behaviour should be a response of the biogeochemical evolution associated with biological productivity and concomitant O2 levels in the water and even in the sediments. The results presented herein confirm that the study area is an important source of N2O to the atmosphere, with a mean annual N2O flux of 30.2 μmol m−2 d−1; however, interannual variability could not yet be properly characterized.  相似文献   

13.
A time series of zooplankton sampling carried out at Station 18 off Concepción (36°S, 73°W) from August 2002 to December 2003 allowed the study of annual life cycles of the copepods Calanus chilensis and Centropages brachiatus in association with environmental variability in the coastal upwelling zone. Changes in the abundance of eggs, nauplii, and copepodids were assessed from samples taken at a mean time interval of ca. 20 days. Upwelling variability in near-surface waters was reflected in seasonal changes in salinity, water column stratification, and oxycline depth, as well as a weak seasonal signal in sea surface temperature (1-2 °C). Both copepods exhibited similar life cycles, characterized by continuous reproduction throughout the year. Estimates of generation times, as a function of temperature, were 25-30 days for C. chilensis and 27-35 days for C. brachiatus, predicting about 12 and 10 generations a year, respectively. These estimates were consistent with reproduction pulses observed in the field. It was thus suggested that copepods may grow under non-limiting food conditions in this upwelling area. However, despite continuous reproduction, there were abrupt changes in population sizes along with the disappearance of early naupliar and copepodid stages taking place even during the upwelling season (spring/summer). These changes were attributed to sudden increases in mortality taking place in spring or early summer, after which the populations remained at low levels through the fall and winter. It is thus suggested that, in addition to variability in the physical environment, biological interactions modulating changes in copepod mortality should be considered for understanding copepod life cycles in highly productive upwelling systems.  相似文献   

14.
An integrated mass balance and modelling approach for analysis of estuarine nutrient fluxes is demonstrated in the Swan River Estuary, a microtidal system with strong hydrological dependence on seasonal river inflows. Mass balance components included estimation of gauged and ungauged inputs to the estuary and losses to the ocean (outflow and tidal exchange). Modelling components included estimation of atmospheric (N fixation, denitrification) and sediment–water column nutrient exchanges. Gross and net denitrification derived using two independent methods were significantly correlated (r2 = 0.49, p < 0.01) with net rates averaging 40% of gross. Annual nitrogen (N) and phosphorus (P) loads from major tributaries were linearly correlated with annual freshwater discharge and were 3-fold higher in wet years than in dry years. Urban drains and groundwater contributed, on average, 26% of N inputs and 19% of P inputs, with higher relative contributions in years of low river discharge. Overall, ungauged inputs accounted for almost 35% of total nitrogen loads. For N, elevated loading in wet years was accompanied by large increases in outflow (7x) and tidal flushing (2x) losses and resulted in overall lower retention efficiency (31%) relative to dry years (70%). For P, tidal flushing losses were similar in wet and dry years, while outflow losses (4-fold higher) were comparable in magnitude to increases in loading. As a result, P retention within the estuary was not substantially affected by inter-annual variation in water and P loading (ca. 50% in all years). Sediment nutrient stores increased in most years (remineralisation efficiency ca. 50%), but sediment nutrient releases were significant and in some circumstances were a net source of nutrients to the water column.  相似文献   

15.
Flux of siliceous plankton and taxonomic composition of diatom and silicoflagellate assemblages were determined from sediment trap samples collected in coastal upwelling-influenced waters off northern Chile (30°S, CH site) under “normal” or non-El Niño (1993–94) and El Niño conditions (1997–98). In addition, concentration of biogenic opal and siliceous plankton, and diatom and silicoflagellate assemblages preserved in surface sediments are provided for a wide area between 27° and 43°S off Chile. Regardless of the year, winter upwelling determines the maximum production pattern of siliceous microorganisms, with diatoms numerically dominating the biogenic opal flux. During the El Niño year the export is markedly lower: on an annual basis, total mass flux diminished by 60%, and diatom and silicoflagellate export by 75%. Major components of the diatom flora maintain much of their regular seasonal cycle of flux maxima and minima during both sampling periods. Neritic resting spores (RS) of Chaetoceros dominate the diatom flux, mirroring the influence of coastal-upwelled waters at the CH trap site. Occurrence of pelagic diatoms species Fragilariopsis doliolus, members of the Rhizosoleniaceae, Azpeitia spp. and Nitzschia interruptestriata, secondary components of the assemblage, reflects the intermingling of warmer waters of the Subtropical Gyre. Dictyocha messanensis dominates the silicoflagellate association almost year-around, but Distephanus pulchra delivers ca. 60% of its annual production in less than three weeks during the winter peak. The siliceous thanatocoenosis is largely dominated by diatoms, whose assemblage shows significant qualitative and quantitative variations from north to south. Between 27° and 35°S, the dominance of RS Chaetoceros, Thalassionema nitzschioides var. nitzschioides and Skeletonema costatum reflects strong export production associated with occurrence of coastal upwelling. Both highest biogenic opal content and diatom concentration at 35° and 41°–43°S coincide with highest pigment concentrations along the Chilean coast. Predominance of the diatom species Thalassiosira pacifica and T. poro-irregulata, and higher relative contribution of the silicoflagellate Distephanus speculum at 41°–43°S suggest the influence of more nutrient-rich waters and low sea surface temperatures, probably associated with the Antarctic Circumpolar Water.  相似文献   

16.
Air-sea interaction, coastal circulation and primary production exhibit an annual cycle in the eastern Arabian Sea (AS). During June to September, strong southwesterly winds (4∼9 m s−1) promote sea surface cooling through surface heat loss and vertical mixing in the central AS and force the West India Coastal Current equatorward. Positive wind stress curl induced by the Findlater jet facilitates Ekman pumping in the northern AS, and equatorward-directed alongshore wind stress induces upwelling which lowers sea surface temperature by about 2.5°C (compared to the offshore value) along the southwestern shelf of India and enhances phytoplankton concentration by more than 70% as compared to that in the central AS. During winter monsoon, from November to March, dry and weak northeasterly winds (2–6 m s−1) from the Indo-China continent enhance convective cooling of the upper ocean and deepen the mixed layer by more than 80 m, thereby increasing the vertical flux of nutrients in the photic layer which promotes wintertime phytoplankton blooms in the northern AS. The primary production rate integrated for photic layer and surface chlorophyll-a estimated from the Coastal Zone Color Scanner, both averaged for the entire western India shelf, increases from winter to summer monsoon from 24 to 70 g C m−2month and from 9 to 24 mg m−2, respectively. Remotely-forced coastal Kelvin waves from the Bay of Bengal propagate into the coastal AS, which modulate circulation pattern along the western India shelf; these Kelvin waves in turn radiate Rossby waves which reverse the circulation in the Lakshadweep Sea semiannually. This review leads us to the conclusion that seasonal monsoon forcing and remotely forced waves modulate the circulation and primary production in the eastern AS. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Dissolved and particulate lead were measured over an annual cycle (12 surveys between February 1998 and January 1999) in the Morlaix River estuary (Brittany, France). The concentrations were investigated in both the water column and the sediment of the river bottom in relation to hydrological conditions. In the water column, dissolved and particulate lead concentrations ranged from 0.1 to 4.4 nM and from 0.04 to 1.9 μmol g− 1, respectively. Lead concentrations in surface sediment varied from 0.04 to 0.19 μmol g− 1 and concentrations in the sediment pore water of the estuary were below the detection limit. Compared with the ranges known for pristine estuaries, concentrations of Pb in the water column of the Morlaix River estuary were found to be much higher. Concentrations of Pb also exceeded the lower range of those known for industrialized estuaries. Extensive agricultural activities in the drainage basin may be responsible for Pb levels above pristine conditions. Furthermore, the sediment appeared not to be contaminated. A mass balance was constructed quantifying all known sources and sinks for the Pb in the estuary. Riverine input accounts for most of the total annual metal flux. Burial in sediments was the major sink within the estuary, which acts as a trap especially for the particulate lead. The mass balance shows that the metal accumulation ranged between 414.6 and 446.0 kg year− 1.  相似文献   

18.
An attempt is made to examine some observational and theoretical aspects of upper ocean dynamics in regions of strong coastal upwelling. “Upper ocean” is roughly defined as about the upper 10–30 m of the water column for most systems. First, the basic surface Ekman and mixed layers are discussed, including some of the modifications due to upwelling. Next, coastal upwelling fronts and their associated circulation are treated. Finally, areas of strongly three-dimensional upwelling are classified and discussed. Horizontal advection of heat and momentum appear to be generally important for the near-surface dynamics of coastal upwelling, and these phenomena make realistic theoretical treatments especially difficult.  相似文献   

19.
ENSO related modulation of coastal upwelling in the eastern Atlantic   总被引:1,自引:0,他引:1  
An index of ENSO in the Pacific during early boreal winter is shown to account for a significant part of the variability of coastal SST anomalies measured a few months later within the wind driven West African coastal upwelling region from 10°N to 26°N. This teleconnection is thought to result from an atmospheric bridge between the Pacific and Atlantic oceans, leading to warm (cold) ENSO events being associated with a relaxation (intensification) of the Atlantic trade winds and of the wind-induced coastal upwelling. This ENSO related modulation of the wind-driven coastal upwelling appears to contribute to the connection observed at the basin-scale between ENSO and SST in the north Atlantic. The ability to use this teleconnection to give warnings of large changes in the West African upwelling several months in advance is successfully tested using data from the 1998 and 1999 ENSO events.  相似文献   

20.
The Changjiang River diluted water(CDW) spreads into the East China Sea(ECS) primarily in a plume pattern,although in some years, low-salinity water lenses(LSWLs) detach from the main body of the CDW. In-situ observations indicate that in August 2006, a LSWL detached from the main body of the CDW near the river mouth.In this paper, the effects of winds, tides, baroclinity and upwelling on LSWLs are explored with a threedimensional model. The results show that:(1) winds play a crucial role in these detachment events because windinduced northerly Eulerian residual currents impose an uneven force on the CDW and cut it off, thus forming a LSWL;(2) upwelling carries high-salinity water from the lower layer to the upper layer, truncating the low-salinity water tongue vertically, which is conducive to the detachment and maintenance of LSWLs; and(3) upwelling during the evolution of a LSWL is caused by the combined effects of winds and tides. The influences of windinduced upwelling are mainly near the shore, whereas the upwelling along the 30 m isobath is predominantly affected by tides, with the effect increasing from neap tide to spring tide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号