首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
李勇  ALDENSMORE  周荣军  MA  ELLIS 《地质学报》2005,79(5):608-615
龙门山是青藏高原东缘边界山脉,具有青藏高原地貌、龙门山高山地貌和山前冲积平原三个一级地貌单元。利用数字高程模式图像和裂变径迹年代测定方法研究和计算龙门山晚新生代剥蚀厚度与剥蚀速率,结果表明:3.6 Ma以来龙门山的剥蚀厚度介于1.91-2.16 km之间,剥蚀速率介于0.53-0.60 mm/a之间。在此基础上,开展了该地区岩石圈的弹性挠曲模拟,结果表明龙门山的隆升机制具有以构造缩短隆升和剥蚀卸载隆升相叠合的特点。3.6 Ma之前,龙门山的隆升与逆冲推覆构造负载有关,以构造缩短驱动的构造隆升为特色;3.6 Ma之后,龙门山的隆升与剥蚀卸载驱动的抬升有关,并以剥蚀卸载隆升为特色,进而提出了龙门山晚新生代以来的隆升机制以剥蚀成山作用为主的认识。  相似文献   

2.
青藏高原东缘新生代构造层序与构造事件   总被引:28,自引:7,他引:28       下载免费PDF全文
新生代龙门山前盆地和盐源盆地是青藏高原东缘龙门山-锦屏山冲断带内及前缘地区发育和保存最好的新生代沉积盆地,本次以地层不整合面和ESR测年资料为主要依据,将该区新生代构造地层序列划分为5个构造层序,即TS1(65-55Ma)、TS2(40-50Ma)、TS3(23-16Ma)、TS4(4.7-1.6Ma)和TS5(0.74-0Ma),据此将青藏高原东缘新生代构造变形和隆升事件划分为5期,其中TS1与喜马拉雅地体和拉萨地体拼合事件相关,TS2与印亚碰撞事件相关,TS3与青藏高原第一次隆升事件相关,TS4与青藏高原第二次隆升事件相关,TS5与青藏高原第三次隆升事件相关。  相似文献   

3.
青藏高原具有复杂的构造演化特征,该地区自中、新生代以来的构造隆升和构造演化机制一直是地质研究的热点。为精细刻画青藏高原板块、华北板块和华南板块之间的拼合关系及差异性隆升特征,对位于青藏高原东北端的碧口地块进行了磷灰石和锆石裂变径迹测试,以及热史模拟和岩石冷却速率计算。结果锆石和磷灰石裂变径迹年龄分别在(118±5~265±29)Ma和(29.0±2.7~54.0±7.0)Ma之间;碧口地块东北缘及北缘冷却速率接近,在3.125~3.448 ℃/Ma之间,东缘冷却速率相对较低,为2.041~2.273 ℃/Ma。结果表明,中、新生代以来,碧口地块及其周缘总体上经历了持续隆升过程,但不同地区隆升特征具有差异性:碧口地块北侧在早、中侏罗世(151±7)Ma经历了构造挤压和隆升过程;东部相对较晚,在晚侏罗世(143±11)Ma经历了构造隆升阶段;东北端在早白垩世才与华北板块拼接并进入持续构造隆升阶段。进入古近纪(54.0±7.0)Ma隆升阶段,即始新世早期后,碧口地块东缘在始新世中后期(44 Ma)开始发生构造隆升,北缘自渐新世中晚期(29~32 Ma)开始发生显著的构造隆升。上述区域在10 Ma(中新世晚期)共同进入快速隆升阶段。  相似文献   

4.
青藏高原东缘具有青藏高原地貌、龙门山高山地貌和山前冲积平原三个一级地貌单元 ,本文以岷江作为切入点 ,研究了该地区河流下蚀速率与山脉的隆升作用之间的相互关系。在建立岷江阶地序列的基础上 ,利用阶地高程和热释光年代学测年资料分别定量计算了岷江在川西高原、龙门山和成都盆地的下蚀速率 ,结果表明岷江各河段的下蚀速率明显不同 ,分别为 1.0 7~ 1.6 1mm / a、1.81m m/ a和 0 .5 9mm / a;在龙门山地区岷江的下蚀速率最高 ,约为川西高原地区的 1.5倍 ,约为成都平原地区的 3倍 ;而同一河段不同时期岷江的下蚀速率基本是连续的 ,具有很好的线性关系 ,可作为该河段整个河谷的下蚀速率。基于龙门山的表面隆升速率 (0 .3~ 0 .4 mm / a) ,在约束局部侵蚀基准面和气候变化对阶地形成的控制作用的基础上 ,本文建立了青藏高原东缘岷江下蚀速率与龙门山表面隆升速率之间的线性关系 ,结果表明河流下蚀速率约为山脉表面隆升速率的 5倍。根据龙门山表面在隆升速率和下切速率等方面均大于川西高原 ,并结合龙门山活动构造以走滑作用为主 ,笔者认为青藏高原东缘的边缘山脉以剥蚀隆升为主 ,兼有构造隆升作用。最后 ,根据岷江最大切割深度所需的时间 (3.4 8Ma)和成都盆地最古老的岷江冲积扇大邑砾岩的时间 (3.6 Ma  相似文献   

5.
为定量分析青藏高原东北部中新生代以来构造隆升时序及特征,笔者开展了磷灰石和锆石裂变径迹年龄测试。结果表明:研究区磷灰石裂变径迹年龄为(66±9)~(4.3±1) Ma,锆石裂变径迹年龄为(187±11)~(69±4) Ma,东北部及东部裂变径迹年龄值较大;研究区西北缘构造隆升较早(200~160 Ma),东南部隆升相对较晚(140~30 Ma),西(南)部构造隆升最晚(90~10 Ma),新近纪之后则整体进入构造隆升;岩石冷却速率和剥蚀速率广元—江油一带西侧较高,红原—文县一带南侧更高,理县附近最大,分别为23.26℃/Ma和0.78 mm/a,这种分区差异性主要受多条区域性大型断裂带制约。  相似文献   

6.
基于SRTM DEM数据,以青藏高原东缘龙门山地区为研究区域,本文通过条带状剖面分析、古地形面(残余面)恢复以及弹性挠曲模拟等研究手段,计算了青藏高原东缘龙门山地区晚新生代地壳均衡隆升与地表剥蚀之间的定量关系,探讨了龙门山地区表面剥蚀作用与均衡隆升作用之间的地表响应过程,从而为研究青藏高原东缘龙门山地区晚新生代以来的剥蚀—成山作用的隆升机制提供定量依据。研究表明:(1)晚新生代以来龙门山的地表剥蚀量为(0.74~1.14)×105km3;(2)大量的地表剥蚀作用驱动了青藏高原东缘龙门山的地壳均衡反弹,使龙门山隆升了近2 km;(3)龙门山地区地表剥蚀量和均衡隆升量具有空间匹配性,岷山断块及龙门山中、南段的均衡隆升量高于青藏高原东缘其它区域,反映了晚新生代以来龙门山地区在不同分段内差异化的构造地貌形态及与剥蚀—隆升相关的地表过程。(4)龙门山的隆升是多期、多种隆升机制叠加的产物,其隆升过程具有历史性和复合性。均衡隆升和剥蚀作用在相似的时间尺度上和空间尺度上控制着龙门山地貌的形成,约束了青藏高原东缘龙门山的隆升机制。  相似文献   

7.
黑龙江省东部佳木斯隆起是佳木斯地块重要组成部分,经历了多期板块碰撞闭合事件的影响,对其隆升剥露历史的热年代学研究有助于加深对东北各地块的碰撞拼贴历史以及古亚洲洋东端构造演化的认识。本文通过对黑龙江省东部佳木斯隆起老平岗花岗岩岩体中的锆石LA-ICP-MS、独居石Th-U-Pb化学法(CHIME)以及(钾长石、黑云母)~(40)Ar-~(39)Ar法同位素年龄的测定,恢复了佳木斯隆起多期隆升剥露的构造热演化历史。研究结果显示佳木斯隆起晚三叠世之前主要存在三个隆升阶段,分别为早古生代早期(511~494Ma)和晚二叠世-中三叠世早期(260~240Ma)的快速隆升阶段以及期间的相对慢速隆升阶段。511~494Ma快速隆升阶段,冷却速率为11.76℃/Myr,隆升速率为0.294mm/a,17Myr隆升总幅度达5.00km,代表了佳木斯地块与松嫩地块的碰撞拼贴事件;494~260Ma相对慢速隆升阶段,冷却速率为1.51℃/Myr,隆升速率为0.038mm/a,234Myr隆升总幅度仅有8.80km;260~240Ma快速隆升阶段,冷却速率平均为8.44℃/Myr,隆升速度平均为0.211mm/a,20Myr隆升幅度平均达4.22km,该事件应与佳木斯地块与华北板块在晚二叠世-中三叠世的碰撞拼接事件有关。  相似文献   

8.
本文以青藏高原东缘的三级地貌(川西高原、龙门山和四川盆地)单元为基础,利用裂变径迹定年数据分区块研究了该地区的晚新生代以来的剥蚀速率。研究结果表明,晚白垩世以来青藏高原东缘经历了一个由平缓到突然加速的剥蚀过程,其转折点为中新世。在整个时间段内的平均剥蚀速率,川西高原为0.26mm/yr,龙门山为0.72mm/yr,四川盆地为0.20mm/yr。龙门山的剥蚀速率大约是川西高原的2.8倍,间接反映边缘山脉的隆升并不等同于高原内部的隆升,边缘山脉的隆升可能是构造隆升和剥蚀隆升相叠加的结果。  相似文献   

9.
对合肥盆地中部肥西县打子塘地区圆筒山组砂岩(J2y)的磷灰石裂变径迹(AFT)分析表明,其FT年龄为(32.5±2.4)Ma(22个颗粒的平均),明显小于其地层的年龄(176~168 Ma);围限径迹长度为(12.43±0.18)μm(126个径迹长度的平均值),为单峰式分布。模拟热史主要为5段:距今176~152 Ma,冷却速率为-21.4℃/Ma;距今152~85 Ma,冷却速率为-0.1℃/Ma;距今85~32 Ma,冷却速率为1.4℃/Ma;距今32~10 Ma,冷却速率为1.6℃/Ma;10 Ma至今,冷却速率为5.0℃/Ma,这5个阶段分别对应了沉积物快速沉降加热、盆地趋于构造热稳定、盆地较快速抬升冷却和快速抬升冷却等演化阶段。沉积物快速加热阶段(176~152 Ma)反映了大别造山晚期山根拆沉阶段与盆地挤压、快速沉降和加热作用,构造热稳定阶段(152~85 Ma)反映了大别造山带热隆伸展和岩浆作用,冷却阶段(85~25 Ma)代表了郯庐断裂的走滑拉张作用与区域性断陷伸展(K2—E)取代热隆伸展体制与早白垩世的岩浆活动。最后一阶段(25 Ma以来)则为合肥盆地的挤压抬升、快速剥露阶段。  相似文献   

10.
祁连山作为青藏高原的东北边界,是研究青藏高原隆升和扩展的重要区域,利用磷灰石裂变径迹分析反映的祁连山地区白垩纪以来阶段性隆升和扩展新认识对理解青藏高原的隆升过程有重要的意义。分别采自南祁连陆块、疏勒南山—拉脊山缝合带、中祁连陆块和北祁连缝合带22个样品的磷灰石裂变径迹年龄介于(124±11)Ma与(13±2)Ma之间,平均径迹长度介于(13.6±2.3)μm和(10.3±1.8)μm之间。时间-温度反演模拟结果表明祁连山地区至少经历了3个重要构造活动阶段:1)白垩纪早期((129±14)~(115±17)Ma)祁连山隆升,南祁连陆块和疏勒南山—拉脊山缝合带的冷却速率及剥蚀速率均较大,并且祁连山南部可能率先抬升而初步构成高原的东北边界;2)白垩纪中晚期—中新世((115±17)~(25±7)Ma)祁连山构造平静,南祁连陆块和疏勒南山—拉脊山缝合带冷却速率及剥蚀速率均较低;3)中新世以来祁连山由南向北逐渐扩展,构造活动强烈而最终形成盆-山构造地貌格局。祁连山白垩纪早期的快速冷却过程可能是受拉萨地块和羌塘地块碰撞的影响;中新世以来向北扩展则主要是受印度—欧亚板块碰撞的影响。  相似文献   

11.
藏南拆离系和亚东裂谷是藏南地区重要的伸展构造,与青藏高原的隆升和生长密切相关,其新生代以来的构造热-年代学研究,对探讨高原的生长过程和大陆变形动力学具有重要意义。本文对西藏南部亚东地区的冲巴雍错花岗岩进行了U-Pb定年和低温热年代学分析,结果表明,岩体自22Ma侵位后经历了5个不同的冷却阶段:18~15.6Ma期间岩体的冷却速率为125℃/Myr;15.6~11Ma期间,平均冷却速率约94℃/Myr;11~7Ma期间,平均冷却速率约24℃/Myr;7~3Ma平均冷却速率约5℃/Myr;3Ma以后平均冷却速率约为14℃/Myr。因岩体位于藏南拆离系内,又被亚东断层切过,认为藏南拆离系的活动时限为22~11Ma,亚东正断层的起始活动时间为11Ma,且热历史模拟结果显示岩体在~3Ma发生了快速冷却,可能指示了亚东裂谷的一次强烈活动。  相似文献   

12.
文章利用数字高程剖面将青藏高原东缘分为4个大尺度地貌单元,即青藏高原地貌区、龙门山高山地貌区、山前冲积平原区(成都盆地)和四川盆地东部隆起区。根据数字高程剖面中的最高海拔高程点剖面与最低海拔高程点剖面之间的高差,定量计算了该地区河流下切深度;结合成都盆地岷江最古老冲积扇沉积物提供的青藏高原东缘河流形成的时间(3.6MaB.P.),定量计算了河流下切速率为1.29mm/a;在约束局部侵蚀基准面和气候变化对河流下切速率控制作用的基础上,建立了青藏高原东缘河流下切速率与表面隆升速率之间的定量关系,结果表明河流下切速率约为表面隆升速率的4倍。基于龙门山在表面隆升速率和下切速率等方面均大于青藏高原内部,认为青藏高原东缘的边缘山脉是剥蚀隆升和构造隆升两者叠加的产物。  相似文献   

13.
青藏高原东缘龙门山山系构造隆起的地貌表现   总被引:5,自引:0,他引:5       下载免费PDF全文
龙门山山系是青藏高原东缘新生代造山作用的体现,是理解青藏高原向东扩展动力学过程的窗口.龙门山隆升机制研究因而成为青藏高原地学领域的热点问题之一,并形成了地壳缩短与下地壳管道流两种截然不同的观点,进一步的讨论期待着对龙门山隆升特征作出更深入地认识.夷平面与河流地貌忠实地记录了山地隆升的过程,其形态能够客观地反映山地隆升的几何特征.文章通过数字高程资料分析了龙门山地区的第三纪夷平面,并沿横穿龙门山的大渡河流域测量了河流阶地、山麓剥蚀面及其同期宽谷地貌.夷平面、宽谷地貌与河流阶地的变形特征显示,晚新生代以来,龙门山山系一方面相对东侧四川盆地发生显著的冲断式隆升,隆起幅度达4500m左右;同时相对青藏高原腹地发生了一定的挠曲式隆升,挠曲的枢纽大致沿龙日坝断裂带展布,隆起幅度为500m至1000m,即龙门山山系的构造隆升由东翼的冲断作用与西翼的挠曲作用联合完成,龙门山山系因而构成了青藏高原与四川盆地之间的一道地形屏障.文章最后讨论了导致龙门山山系拱曲冲断作用的可能因素,包括上地壳的断弯褶皱作用、下地壳物质上涌作用和地表侵蚀导致的重力均衡效应.鉴于沿龙门山隆升带东西两翼发现了纵向逆冲断裂或逆走滑断裂,而没有发现纵向张性构造,推断断弯褶皱可能为主导因素.  相似文献   

14.
通过对青藏高原东南部及三江地区8个样品磷灰石和锆石裂变径迹分析、热史反演,对这一地区构造运动及隆升作用进行定量分析.表明青藏高原东南部新生代以来经历两次构造抬升期,在50 Ma和6~5 Ma,其特点是早期为缓慢隆升;晚期为快速抬升期,抬升速率为0.5 mm/a.位于三江地区杨子地块的楚雄盆地构造隆升受青藏高原隆升的影响...  相似文献   

15.
青藏高原三江地区高程缓降、河流及深切峡谷发育,重建其构造-热年代时空演化为把握该地区地形地貌发育演化的内在驱动力提供科学依据。本研究以云南德钦白马雪山岩体为研究对象,开展磷灰石(U-Th)/He及裂变径迹年代学分析,结合已发表的U-Pb和Ar-Ar年代学结果来重塑该地区的构造-热演化历史和地形演化。研究表明,该地区经历了多期快速冷却事件:三叠世的岩浆侵位活动,早白垩世和中-晚始新世的快速冷却,以及中新世和上新世以来的快速剥蚀。青藏高原隆升致使全球气候变化的同时也导致其周缘地区经受强烈侵蚀:中新世以来(21~11Ma)快速冷却速率为10℃/Myr,而上新世以来(ca.5Ma)冷却速率从10℃/Myr增至15℃/Myr。假定区域现今地温梯度为25~35℃/km,河谷剖面不同位置的侵蚀速率及剥蚀量的空间分布特征进一步表明(靠近澜沧江主干道处侵蚀速率远高于其支流,且对应的年龄相对年轻),河流下切及溯源侵蚀的多重效应导致该地区快速剥蚀、剥露,地形起伏加大的瞬态地貌演化规律。  相似文献   

16.
通过青藏高原东缘甘孜地区7件砂岩磷灰石样品裂变径迹分析,取得了测试样品的表观年龄,运用模拟退火法对所有样品进行了热史模拟,获得了样品的热演化史;分析出甘孜地区在新生代古近纪以来经历了相似的构造演化过程,强构造隆升阶段分别发生在古近纪46~30 Ma间和新近记9 Ma以来,平均抬升速率和平均抬升量分别为1261 m/Ma、2634 m和388 m/Ma、1043 m;甘孜地区构造隆升具有不平衡性、阶段性、地区性差异,冷却速率、抬升速率和抬升幅度也存在偏差。  相似文献   

17.
冯乾乾  邱楠生  常健  刘念 《地球科学》2018,43(6):1972-1982
房山岩体位于华北克拉通北缘,明确其中-新生代的隆升剥露过程及构造演化史可以为华北克拉通的构造演化提供有力证据.运用锆石裂变径迹、磷灰石(U-Th)/He及锆石(U-Th)/He等构造热年代学研究方法,综合房山岩体高、中、低温热年代学资料,重建了房山岩体的构造-热演化历史,并根据不同矿物的封闭温度差(ΔT)和与之对应冷却年龄差(Δt)的关系,计算侵入岩体在不同构造热演化阶段的抬升冷却速率,分析了岩体隆升速率的变化特征,结合前人研究成果进一步探讨了房山岩体隆升过程的基本特点.研究表明,房山侵入岩体构造热演化分为4个阶段:(1)130.0~123.5 Ma,侵位岩浆结晶-固结阶段,岩体平均冷却速率高达88.46 ℃/Ma;(2)123.5~56.0 Ma,岩体相对缓慢冷却阶段,平均冷却速率为0.74 ℃/Ma,平均隆升速率为29.6 m/Ma;(3)56~35 Ma,岩体相对快速冷却阶段,平均冷却速率为6.90 ℃/Ma,隆升速率为276.0 m/Ma;(4)35 Ma以来,岩体相对缓慢冷却阶段,平均冷却速率为1.0 ℃/Ma,隆升速率为40.0 m/Ma,构造趋于稳定.结合区域构造动力学环境的研究,分析了房山岩体构造热演化可能的动力学成因,认为房山岩体阶段性抬升冷却可能与华北克拉通东部太平洋板块的俯冲作用、南北两侧陆内俯冲造山作用和西南部印度-欧亚大陆碰撞、青藏高原隆升等远程构造挤压有关.房山岩体的形成及相对快速抬升冷却阶段分别对应于华北克拉通两期重要的破坏高峰.   相似文献   

18.
西藏多龙矿集区是西藏最重要的斑岩-浅成低温热液型矿集区。多龙矿集区经历了多期次的构造抬升-剥蚀事件,成矿后的埋藏-剥蚀历史对矿体的保存至关重要。本文运用磷灰石(U-Th)/He数据对多龙矿集区的低温热年代学进行研究。磷灰石(U-Th)/He年龄平均值分布在85. 1±4. 0Ma到37. 9±2. 5Ma,记录了晚白垩世到古新世、始新世、渐新世的热-构造事件。热历史模拟显示,多龙矿集区主要经历4次冷却事件:Ⅰ) 100~75Ma,冷却速率约为4℃/Myr,剥速率约为0. 16km/Myr,与班公湖-怒江洋的闭合以及拉萨-羌塘地块的碰撞事件有关;Ⅱ) 75~45Ma,冷却速率约为0. 3℃/Myr,剥蚀速率约为0. 01km/Myr,与拉萨-羌塘地块的继续碰撞事件以及由碰撞作用引起的逆冲推覆构造事件有关;Ⅲ) 45~30Ma,冷却速率约为2℃/Myr,剥蚀速率约为0. 08km/Myr,与印度-欧亚大陆的碰撞抬升事件有关;Ⅳ) 30Ma至今,冷却速率约为1℃/Myr,剥蚀速率约为0. 04km/Myr,与渐新世以来印度-欧亚大陆的持续碰撞作用以及渐新世以来青藏高原发育的频繁构造事件有关。多龙矿集区斑岩-浅成低温热液型矿床形成后在强烈的隆升-剥蚀的环境下保存下来,得益于早白垩世美日切错组火山岩的覆盖,由拉萨-羌塘地块碰撞作用引起的逆冲推覆构造引起的上部地层加厚,以及印度-欧亚大陆碰撞事件在多龙矿集区产生的相对较弱的破坏效应。拉萨-羌塘地块碰撞作用引起的地层加厚对多龙矿集区矿床起主要的保护作用。  相似文献   

19.
通过对青藏高原东北部循化盆地、临夏盆地和贵德盆地沉积相和沉积充填速率演化的对比分析,提出研究区新生代4个构造隆升阶段。①渐新世晚期—中新世早期(25~20Ma),3个盆地沉积相和沉积速率的变化表明青藏高原新生代向北东的增生作用在渐新世已抵达西秦岭北缘地区,同时,22Ma拉脊山强烈隆升,区域上整体地势差异不显著。②中新世中期(17~13Ma),随着高原东北缘盆山耦合的相互作用,湖盆进一步扩张,14Ma左右积石山的隆起及西秦岭、拉脊山的持续隆升,使得研究区转变为盆地周缘型。③中新世晚期(11~6Ma),8Ma左右沉积相的转变、沉积速率的增大及不整合面的存在,都说明高原在该段时间内存在强烈的构造隆升活动,裂变径迹热年代学证据反映的构造隆升与沉积响应也是一致的。④上新世(5Ma以来),沉积速率继续增大,区域上地势差异增强,湖盆逐步萎缩消亡。  相似文献   

20.
新疆博格达山晚中生代以来的差异剥露史   总被引:5,自引:0,他引:5       下载免费PDF全文
博格达山山前不同构造带内9个砂岩样品的裂变径迹分析与热史模拟表明,博格达山浅部造山过程以前展式(盖层滑脱带内)与后展式(基底卷入带内)同时发育的逆冲构造扩展模式为特征;博格达山晚中生代以来的多期构造抬升作用主要发生在155~135Ma、90~70Ma、约40Ma和约10Ma等4期,其隆升剥蚀史主要经历了燕山早期的初始整体隆升(剥蚀量为0.83~1.2km)、燕山晚期的缓慢抬升(剥蚀量为0.68~0.83km)和喜马拉雅晚期的急剧差异隆升-剥露(逆冲推覆带的剥蚀量约为5.0km、基底卷入带的剥蚀量为1.82~3.18km、盖层滑脱带的剥蚀量为~2.73km)等3个阶段,其中盖层滑脱带因剥露作用启动的时间较晚而表现为冷却速率快、剥蚀速率高。博格达山晚中生代以来的变形作用与亚洲南缘多期地体的碰撞增生有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号