首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
The North Pacific Central Mode Water (CMW) is a water mass that forms in the Kuroshio-Oyashio Extension (KOE) region with characteristic low potential vorticity. Recent studies have suggested that the CMW, as low potential vorticity water, plays an important role in the adjustment of the subtropical gyre and subsurface variability on decadal to interdecadal timescales. We have forced a realistic ocean general circulation model (OGCM) with observed wind stress and sea surface temperature (SST) forcing to investigate the decadal variations of the CMW. Associated with the large atmospheric changes after the mid-1970s climate regime shift, the upper thermocline experiences a cooling as negative SST anomalies in the central North Pacific are subducted and advected southward. In addition to this thermodynamic response, the CMW’s path shifts anomalously eastward in response to anomalous Ekman pumping. This eastward shift of the core of the CMW produces a lowering of the isotherms, and a consequent warming, on the path of the CMW core. This warming partially counteracts the cooling associated with subducted surface anomalies, and it may be responsible for the reduced temperature variations at the climatological position of the CMW when both anomalous wind and heat fluxes are given. Lateral induction across the sloping bottom of the winter mixed layer in the KOE is critical to the formation of the low potential vorticity CMW. Coarse resolution models, which are widely used in climate modeling, underestimate the horizontal gradient of the mixed layer depth and form only a weak CMW or none at all. We have conducted a coarse resolution experiment with the same OGCM, showing that the subsurface response is much reduced. In particular, there is no dynamic warming in the CMW and the thermodynamic response to the SST cooling dominates. The resultant total response differs substantially from that in the finer resolution run where a strong CMW forms. This sensitivity to the model resolution corroborates the important dynamical role that the CMW may play with its distinctive low potential vorticity character and calls for its improved simulation.  相似文献   

2.
The 137°E repeat hydrographic section for 50 winters during 1967–2016 has been analyzed to examine interannual to interdecadal variations and long-term changes of salinity and temperature in the surface and intermediate layers of the western North Pacific, with a particular focus on freshening in the subtropical gyre. Rapid freshening on both isobars and isopycnals began in the mid-1990s and persisted for the last 20 years in the upper main thermocline/halocline in the western subtropical gyre. In addition, significant decadal variability of salinity existed in the subtropical mode water (STMW), as previously reported for the shallower layers. An analysis of the 144°E repeat hydrographic section during 1984–2013 supplemented by Argo profiling float data in 2014 and 2015 revealed that the freshening trend and decadal variability observed at 137°E originated in the winter mixed layer in the Kuroshio Extension (KE) region and was transmitted southwestward to 137°E 1–2 years later in association with the subduction and advection of STMW. The mechanism of these changes and variations in the source region was further investigated. In addition to the surface freshwater flux in the KE region pointed out by previous studies, the decadal KE variability in association with the Pacific Decadal Oscillation likely contributes to the decadal salinity variability through water exchange between the subtropics and the subarctic across the KE. Interdecadal change in both the surface freshwater flux and the KE state, however, failed to explain the rapid freshening for the last 20 years.  相似文献   

3.
The Meteorological Research Institute's ocean general circulation model (MRI-OGCM) has been used to investigate the temperature variability of the North Pacific Subtropical Mode Water (NPSTMW) over a time series longer than 5 years via the spin-up of the subtropical gyre. Besides an interannual variation, the wintertime sea surface temperature in the area where the NPSTMW is formed, and the temperature of the NPSTMW itself, both change remarkably in a >5-year time scale. An analysis of heat budgets showed that the long-term changes in NPSTMW temperature are due mainly to a leading advection of heat by the Kuroshio Extension and compensating surface heat flux. As a result of a dynamical adjustment to the wind stress fields, the transports of the Kuroshio and the Kuroshio Extension increased in the mid 1970s with a lag of 3 years after the wind stress curl in the central North Pacific. The increased heat advection by the Kuroshio Extension induces a warming in the mixed layer in the NPSTMW formation area, followed by a warming of the NPSTMW itself. Both these warming actions increase the heat release to the atmosphere. These results imply that the surface heat flux over the Kuroshio Extension area varies in response to the change in the ocean circulation through the spin-up of the subtropical gyre. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The distribution and characteristics of Subtropical Mode Water (STMW) south of Honshu, the main island of Japan, were investigated using CTD, XBT, and dissolved oxygen data taken by the research vessels in the spring of 1988 and 1989. A comparatively low inventory of STMW was shown in spring 1988 during the large-meander period of the Kuroshio south of Honshu, while in spring 1989 during the non-large-meander period, the observation showed a considerable inventory of STMW which had outcropped east of 140°E in the preceding winter. These observations, together with published temperature maps, surface current charts, time series of vertical temperature profiles along 140°E, and wintertime Monsoon Index consistently support the climatology of the STMW circulation recently presented by the authors. That is, the change of the Kuroshio Countercurrent associated with the large meander of the Kuroshio most likely cuts off the westward/southwestward advection of STMW from its formation area east of 140°E.  相似文献   

5.
A high-resolution numerical model is used to examine the formation and variability of the North Pacific Subtropical Mode Water (STMW) over a 3-year period. The STMW distribution is found to be highly variable in both space and time, a characteristic often unexplored because of sparse observations or the use of coarse resolution simulations. Its distribution is highly dependent on eddies, and where it was renewed during the previous winter. Although the potential vorticity fluxes associated with down-front winds can be of the same order of magnitude or even greater than the diabatic ones due to air–sea temperature differences, the latter dominate the potential vorticity budget on regional and larger scales. Air–sea fluxes, however, are dominated by a few strong wind events, emphasizing the importance of short time scales in the formation of mode waters. In the Kuroshio Extension region, both advection and mixing play important roles to remove the STMW from the formation region.  相似文献   

6.
A new type of pycnostad has been identified in the western subtropical-subarctic transition region of the North Pacific, based on the intensive hydrographic survey carried out in July, 2002. The potential density, temperature and salinity of the pycnostad were found to be 26.5–26.7 σ θ , 5°–7°C and 33.5–33.9 psu respectively. The pycnostad is denser, colder and fresher than those of the North Pacific Central Mode Water and different from those of other known mode waters in the North Pacific. The thickness of the pycnostad is comparable to that of other mode waters, spreading over an area of at least 650 × 500 km around 43°N and 160°E in the western transition region. Hence, we refer to the pycnostad as Transition Region Mode Water (TRMW). Oxygen data, geostrophic current speed and climatology of mixed layer depth in the winter suggest that the TRMW is formed regularly in the deep winter mixed layer near the region where it was observed. Analysis of surface heat flux also supports the idea and suggests that there is significant interannual variability in the property of the TRMW. The TRMW is consistently distributed between the Subarctic Boundary and the Subarctic Front. It is also characterized by a wide T-S range with similar density, which is the characteristic of such a transition region between subtropical and subarctic water masses, which forms a density-compensating temperature and salinity front. The frontal nature also tends to cause isopycnal intrusions within the pycnostad of the TRMW.  相似文献   

7.
To explore the causes of the winter shallow mixed layer and high sea surface temperature (SST) along the strong Kuroshio jet from the East China Sea to the upstream Kuroshio extension (25.5°N–150°E) during 1988–1994 when the Japanese sardine stocks collapsed, high-resolution ocean general circulation model (OGCM) hindcast data are analyzed with a bulk mixed layer model which traces particles at the mixed layer base. The shallow mixed layer and high SST along the Kuroshio jet are mainly caused by the acceleration of the Kuroshio current velocity and the reduction of the surface cooling. Because the acceleration reduces the time during which the mixed layer is exposed to wintertime cooling, deepening and cooling of the winter mixed layer are restricted. The weaker surface cooling due to less severe meteorological forcing also causes the shallow mixed layer and the high SST. The impact of the strong heat transport along the Kuroshio extends to the southern recirculation gyre of the Kuroshio/Kuroshio extension regions; previous indications that the Japanese sardine recruitment is correlated with the winter SST and the mixed layer depth (MLD) in the Kuroshio extension recirculation region could be related to the velocity, SST, and MLD near the Kuroshio axis which also could affect the variability of North Pacific subtropical water.  相似文献   

8.
This study describes the three-dimensional distributions of the Turner angle (Tu) and the potential vorticity (PV) of the main pycnocline water in the subtropical North Pacific (10–50°N, 120°E–120°W) using a large in situ CTD data set taken by the Argo profiling floats during June to October of 2001–2009 to clarify the detailed distribution of the central water and the mode waters as well as the relationship between these water masses. The ventilated part of the main pycnocline water (σ θ < 26.7 kg m−3) in the subtropical gyre generally displays a sharp peak in Tu value of 59° in the histogram. The Tu histograms for 10° × 10° geographical boxes mostly show that the mode for the Tu value is 59° too, but they also show some regional differences, suggesting some types of relations with the North Pacific mode waters. To further investigate this relationship, the appearance probability density function of the central water (defined as the main pycnocline water with Tu = 56°–63°) and those of the mode waters with PVs lower than the critical value on each isopycnal surface were analyzed. The distribution area of the central mode water (CMW) corresponds so well with that of the central water that a direct contribution of the CMW to the formation and maintenance of the central water is suggested. On the other hand, the distribution areas of subtropical mode water (STMW), Eastern STMW, and transition region mode water do not correspond to that of the central water. Nevertheless, indirect contributions of these mode waters to the formation and maintenance of the central water through salt finger type convection or diapycnal mixing are suggested.  相似文献   

9.
Hydrographic data in the Kuroshio Extension (KE) region from 2008 to 2010 show large year-to-year variability in near-surface salinity, including a very large anomalous event in February 2010. During this event, the deep winter mixed layer in the southern KE region had higher salinity than had existed during the previous summer in September 2009. Our analysis shows that advection from the Philippine Sea along the western branch of the North Pacific subtropical gyre, taking approximately 9 months, resulted in this large salinity anomaly in February 2010 and contributes to the interannual salinity variability in the southern KE region.  相似文献   

10.
太平洋海气界面净热通量的季节、年际和年代际变化   总被引:9,自引:0,他引:9  
根据 COADS资料 ,使用经验正交分解 (EOF)等分析方法 ,研究了北太平洋海气热通量的季节、年际和年代际变化特征。分析结果表明 :北太平洋海洋夏季净得热 ,冬季净失热 ,且黑潮及其延伸体区失热最大。净热通量年际变化较明显 ,北太平洋西部模态水形成区冬季净热通量和副热带失热区春季净热通量的年际变化都主要依赖于潜热和感热通量的年际变化。夏季净热通量的低频变化中心在热带 ,冬季低频变化中心在黑潮及其延伸体区。冬季赤道东、西太平洋净热通量异常的年际变化相反 ;在热带北太平洋中部年际变化达到最大。夏季热带太平洋是净热通量异常的年际变化最大的海域 ,沿赤道两侧在 16 5°E处呈偶极子型分布。  相似文献   

11.
Using the outputs of projections under the highest emission scenario of the representative concentration pathways performed by Earth system models (ESMs), we evaluate the ocean acidification rates of subsurface layers of the western North Pacific, where the strongest sink of atmospheric CO2 is found in the mid-latitudes. The low potential vorticity water mass called the North Pacific Subtropical Mode Water (STMW) shows large dissolved inorganic carbon (DIC) concentration increase, and is advected southwestward, so that, in the sea to the south of Japan, DIC concentration increases and ocean acidification occurs faster than in adjacent regions. In the STMW of the Izu-Ogasawara region, the ocean acidification occurs with a pH decrease of ~0.004 year?1 , a much higher rate than the previously estimated global average (0.0023 year?1), so that the pH decreases by 0.3–0.4 during the twenty-first century and the saturation state of calcite (ΩCa) decreases from ~4.8 down to ~2.4. We find that the ESMs with a deeper mixed layer in the Kuroshio Extension region show a larger increase in DIC concentration within the Izu-Ogasawara region and within the Ryukyu Islands region. Comparing model results with the mixed layer depth obtained from the Argo dataset, we estimate that DIC concentration at a depth of ~200 m increases by 1.4–1.6 μmol kg?1 year?1 in the Izu-Ogasawara region and by 1.1–1.4 μmol kg?1 year?1 in the Ryukyu Islands region toward the end of this century.  相似文献   

12.
A series of numerical experiments were conducted with a high-resolution (eddy-permitting) North Pacific model to simulate the formation and spreading of the salinity minimum associated with the North Pacific Intermediate Water (NPIW). It was found that two factors are required to simulate a realistic configuration of the salinity minimum: a realistic wind stress field and small-scale disturbances. The NCEP reanalyzed wind stress data lead to better results than the Hellerman and Rosenstein wind stress data, due to the closer location of the simulated Oyashio and Kuroshio at the western boundary. Small-scale disturbances formed by relaxing computational diffusivity included in the advection scheme promote the large-scale isopycnal mixing between the Oyashio and Kuroshio waters, simulating a realistic configuration of the salinity minimum. A detailed analysis of the Oyashio water transport was carried out on the final three-year data of the experiment with reduced computational diffusivity. Simulated transport of the Kuroshio Extension in the intermediate layer is generally smaller than the observed value, while those of the Oyashio and the flow at the subarctic front are comparable to the observed levels. In the Oyashio-Kuroshio interfrontal zone the zonally integrated southward transport of the Oyashio water (140-155°E) is borne by the eddy activity, though the time-mean flow reveals the existence of a coastal Oyashio intrusion. In the eastern part (155°E-180°) the zonally integrated transport of the Oyashio water indicates a southward peak at the southern edge of the Kuroshio Extension, which corresponds to the branching of the recirculating flow from the Kuroshio Extension.  相似文献   

13.
Temperature and salinity data from 2003 through 2006 from Argo profiling floats have been analyzed to examine the formation and circulation of the North Pacific Subtropical Mode Water (STMW) and the interannual variation of its properties over the entire distribution region. STMW is formed in late winter in the zonally-elongated recirculation gyre south of the Kuroshio and its extension, which extends north of ∼28°N, from 135°E to near the date line. The recirculation gyre consists of several anticyclonic circulations, in each of which thick STMW with a characteristic temperature is formed. After spring, the thick STMW tends to be continually trapped in the respective circulations, remaining in the formation region. From this stagnant pool of thick STMW, some portion seeps little by little into the southern region, where southwestward subsurface currents advect relatively thin STMW as far as 20°N to the south and just east of Taiwan to the west. The STMW formed in the recirculation gyre becomes colder, less saline, and denser to the east, with an abrupt change of properties across 140°E and a gradual change east of 140°E. The STMW formed east of 140°E exhibits coherent interannual variations, increasing its temperature by ∼1°C from 2003 through 2006 and also increasing its salinity by ∼0.05 from 2003 through 2005. These property changes are clearly detected in the southern region as far downstream as just east of Taiwan, with reasonable time lags.  相似文献   

14.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Southwest Pacific subtropical mode water: A climatology   总被引:1,自引:0,他引:1  
The large-scale distribution and changes in Southwest Pacific subtropical mode water (STMW) are investigated and discussed. The paper presents for the first time geographic maps showing the spatial distribution of STMW thicknesses, with a vertical temperature gradient <2.0 °C/100 m occupying the 14–20 °C range below the mixed layer depth, across the entire Southwest Pacific region. STMW changes in areal thickness extent, vertical cross-sectional area along selected transects, and total volume, are examined on seasonal and interannual time scales between 1973 and 1988.We find that STMW extends across the entire width of the Tasman Sea in a very broad swath between the Tropical Convergence in the north (just to the south of New Caledonia), the southeast Australian coast in the west to as far south as 39°S (likely due to the southward extension of the EAC), and eastwards along the Southern STMW boundary in a meandering pathway that broadly follows the Tasman Front. The total STMW volume across the region (i.e., west of 180°) varies seasonally by a factor of more than three between the estimated maximum of 6.6 (±0.5) × 1014 m3 in October and minimum of 1.9 (±0.4) × 1014 m3 in May. Interannual variations O (±0.5 × 1014 m3) are also observed in the spatial extent of the thick mode water and its total volume. El Niño composite maps show an anomalous thickening of the STMW during the El Niño year with October positive thickness anomalies in excess of +20 m (total volume anomaly of +0.6 × 1014 m3) manifested throughout the subtropical gyre interior as far north as New Caledonia. Total volume anomalies tend to be positive from January of the El Niño year through to the July following (18 months). The maximum correlation coefficient r = −0.3 between 3-monthly STMW volume anomalies and the Southern Oscillation index is statistically significant at the 95% confidence level. We conclude that during the anomalous cooling of the upper Southwest Pacific Ocean in the El Niño year, winter-time convection and STMW formation is enhanced across the region resulting in an El Niño – Southern Oscillation climate signal that is identifiable below the mixed layer by the increased STMW volume which persists through to the following winter. Finally, some evidence for the possible decadal modulation of the STMW variability is also discussed.  相似文献   

16.
In order to examine latitudinal distribution and seasonal change of the surface oceanic fCO2, we analyzed the data obtained in the North Pacific along 175°E during the NOPACCS cruises in spring and summer of 1992–1996. Except for around the equator where the fCO2 was significantly affected by the upwelling of deep water, the latitudinal distribution of fCO2 showed distinctive seasonal variation. In the spring, the fCO2 decreased and then increased going southward with the minimum value of about 300 µatm around 35°N, while in the summer, the fCO2 displayed high variability, showing minimum and maximum values at latitudes of around 44° and 35°N, respectively. It was also found that the fCO2 was well correlated with the SST, but the relationship between the two was different for different hydrographic regions. In the subpolar gyre, the frontal regions between the Water-Mass Front and the Kuroshio bifurcation front, and between the Kuroshio bifurcation front and the Kuroshio Extension current, SST, DIC and TA influenced the seasonal fCO2 change through seasonally-dependent biological activities and vertical mixing and stratification of seawater. In the central subtropical gyre and the North Equatorial current, the seasonal fCO2 change was found to be produced basically by changes in SST and DIC. The summertime oceanic fCO2 generally increased with time over the period covered by this study, but the increased rate was clearly higher than those expected from other measurements in the western North Pacific.  相似文献   

17.
The volume transport of the Kuroshio, the western boundary current of the North Pacific subtropical gyre, varies vigorously due to merging of disturbances propagating from the entire North Pacific. Taking into account the recirculation in the Shikoku Basin by the zonal observation line at 30°N to the west of the Izu–Ogasawara Ridge, we estimated the volume transport in the top 1,000 m layer toward the Kuroshio Extension region. The volume transport of the local recirculation gyre in the Shikoku Basin increases associated with the westward extension of the gyre, particularly in the period of the large meandering path of the Kuroshio south of Japan. Meanwhile, most of the transport variations toward the Kuroshio Extension region correspond to those of the Kuroshio transport on the continental slope south of Japan, which vary independently of those of the recirculation gyre.  相似文献   

18.
19.
采用来自大洋环流模式ECCO2 (the estimating the circulation and climate of the ocean, phase II project)的再分析数据对1992—2019年北太平洋副热带西部模态水(subtropical mode water, STMW)的年代际变化特征及机制进行了分析。结果表明:STMW形成体积具有显著的年代际变化,于1992—1997年、2000—2005年和2011—2017年期间为正异常,而于1998—1999年和2006—2010年期间为负异常,由晚冬生成区混合层体积的年代际变化引起。STMW形成厚度和面积均呈现类似的年代际变化。合成分析表明, STMW形成体积正异常期间,黑潮延伸体上游南侧STMW生成区,海表涡动能相对负异常期间减小,同时预先层结相对负异常期间减弱,并伴随着海表高度异常。通过混合层收支分析发现,混合层形成体积年代际变化与海洋预先层结调控的混合层底卷吸作用变化同步且大小相当,而与海气形成率变化无关。增强(减弱)的海洋预先层结通过调控STMW形成区冬季混合层底卷吸过程,阻碍(促进)冬季混合层加深,最终使得STMW形成体积减少(增加)。进一步分析表明, STMW形成体积年代际变化受与太平洋年代际涛动相关的风应力旋度异常的远场调控。  相似文献   

20.
We observed unusually high levels (> 440 μatm) of carbon dioxide fugacity (fCO2) in surface seawater in the western subtropical North Pacific, the area where Subtropical Mode Water is formed, during summer 2015. The NOAA Kuroshio Extension Observatory moored buoy located in this region also measured high CO2 values, up to 500 μatm during this period. These high sea surface fCO2 (fCO2SW) values are explained by much higher normalized total dissolved inorganic carbon and slightly higher normalized total alkalinity concentrations in this region compared to the equatorial Pacific. Moreover, these values are much higher than the climatological CO2 values, even considering increasing atmospheric CO2, indicating a recent large increase in sea surface CO2 concentrations. A large seasonal change in sea surface temperature contributed to higher surface fCO2SW in the summer of 2015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号