首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
ABSTRACT

Chilika, a lagoon along the east coast of India, is undergoing transformation due to frequent shoreline change near inlet(s). Shoreline change near inlet includes change in position and shape of inlet, inlet channel length, and spit growth/erosion. These variable features of lagoon inlet(s) critically depend on alongshore sediment transport (LST) and discharge (water and sediment) from the lagoon to the sea. The LST and the processes responsible for sand spit growth/erosion, considered as important attributes of inlet stability, are the subject matter of the present investigation and hence the study assumes importance. The study includes integration of observational and modeling framework. Observations include nearshore wave, bathymetry, beach profile, shoreline and sediment grain size of spits while numerical modeling includes simulation of the wave using MIKE 21 Spectral Wave model and LST simulation using LITtoral DRIFT. The results indicate that the predominant wave directions as S and SSE, which induces round the year south to north alongshore transport with significant seasonal variation in magnitude. The estimated LST closely matches with previous studies near Chilika inlet and for other locations along the Odisha coast. Besides temporal variability, the study reveals spatial variability in alongshore transport near Chilika inlet and considers it as one of the important attributes along with northward spit growth for inlet migration/closure/opening.  相似文献   

2.
《Coastal Engineering》2001,42(2):115-142
The Arcachon Lagoon on the French Atlantic coast is a triangular shaped lagoon of 20 km on a side connected to the ocean by a 3-km wide inlet between the mainland and an elongated sand spit. This tidal inlet exhibits a particularly active morphology due to locally strong tidal currents and rough wave conditions. During the past 300 years, minimum and maximum spatial extents of the Cap Ferret sand spit have varied by 8 km while one or two channels have alternately allowed circulation between the lagoon and the ocean. These impressive morphological changes have never prevented regular flushing of the lagoon, eventhough the spit came as close as 300 m from the coast during the 18th century. According to Bruun's concept of tidal inlet stability [Theory and Engineering (1978), 510 pp.], the balance between longshore littoral transport and the tidal prism ensures the perpetuity of the inlet.Process modeling was believed to give better insight into the respective roles of tides and waves in driving the long-term morphological changes of the inlet. A two-dimensional horizontal morphodynamic model was therefore developed, combining modules for hydrodynamics, waves, sediment transport and bathymetry updates. The use of process models at a scale of decades requires a schematization of the input conditions. We defined representative mean annual wave and tide conditions with respect to sediment transport, i.e. conditions that induce the same annual transport as measured in the field. Driven by these representative conditions, simulations run from the 1993 bathymetry show that the tide is responsible for the opening of a new channel at the extremity of the sand spit (where tidal currents are the strongest), while waves induce a littoral transport responsible for the longshore drift of sand bodies across the inlet. One particular simulation consisted in running the model from a hypothetical initial topography where the channels are filled with sand and the entire inlet is set to a constant depth (3 m). The results show the reproduction of a channel and bar system comparable to historical observations, which supports the idea that the lagoon is unlikely to be disconnected from the ocean, provided tide and wave conditions remain fairly constant in the following decades.  相似文献   

3.
4.
《Marine Geology》2001,172(3-4):225-241
The Piedras Estuary is one of the most significative estuarine systems on the mesotidal Huelva Coast, in the Northwestern portion of the Cadix Gulf. The river mouth is presently an estuarine lagoon partially closed by a large spit constructed from an old barrier island system. This estuary is in an advanced state of infilling and its tidal prism has decreased during the Holocene causing instability and clogging of old inlets and transforming the barrier island chain into a spit. Sedimentation is controlled by the interaction of ebb tide currents and the prevailing SW waves. The main sediment supply is provided by an intensive West-to-East longshore current, transporting sand material from Portuguese cliffs and the Guadiana River. Tidal range is mesotidal (2.0 m) and the mean significant wave height is 0.6 m with an average period of 3.6 s.A boxcore study allowed five depositional facies to be distinguished in the Piedras Estuary mouth: (1) main ebb channels; (2) marginal flood channels; (3) ebb-tidal delta lobes; (4) marginal levees; and (5) curved spits. The recent evolution studied in this area suggests a cyclic evolutionary model for the ebb-tidal delta system. The architectural facies relations shown by the vibracore/boxcore study confirm that the apical growth of the spit occurred over the innermost of these ebb-tidal deltas. Consequently the preserved sequence shows the ebb-tidal delta facies under the spit facies.  相似文献   

5.
The economical and ecological importance of tidal inlets has fostered the development of empirical tools for inlet management during the last century. This study aims at confronting these empirical theories with results obtained with a process-based numerical model, MORSYS2D. This 2DH morphodynamic modeling system is applied to an idealized tidal inlet/lagoon system with different combinations of significant wave height, tidal range and tidal prism. The numerical model predictions are compared to the empirical models of Hayes, Bruun, O'Brien and FitzGerald and to morphologies observed at natural tidal inlets. The results present good accordance with observations as well as with some key behaviors predicted with the empirical theories. The predicted morphologies satisfy the relation of O'Brien between the tidal prism and the cross-sectional area, the model reproduces the conceptual model of sand by-passing by ebb-tidal delta breaching of FitzGerald and the classifications of Hayes and Bruun are generally respected. However, some inconsistencies between model results and Hayes classification highlight the limitations of applying this classification, which only considers the yearly-averaged significant wave height and tidal range, to a single tidal inlet case.  相似文献   

6.
Vast bay-type tidal inlets can be found along the coastal zones of China. They are generally suitable for deep water channels and large harbors because of the presence of large water depth and good mooring conditions. The deep channel, in front of the head of Caofeidian Island in Bohai Bay, China, is a typical bay-type tidal inlet system. The tidal current, a type of reverse flow, makes the key contribution to maintain the deep water depth. The co-action of waves and tidal currents is the main dynamic force for sediment motion. Waves have significant influence on the sediment concentration. Based on the characteristics of waves, tidal currents, sediment and seabed evolution in Caofeidian sea area, a 2D mathematical model for sediment transport under influence of waves and tidal currents is developed to study the development schemes of the Caofeidian Harbor. The model has been verified for spring and neap tides, in winter as well as in summer of 2006. The calculated tidal stages, flow velocities, flow directions and sediment concentrations at 15 stations are in good agreement with the observations. Furthermore, the calculated data on pattern and magnitude of sedimentation and erosion in the related area agree well with the observations. This model has been used to study the effects of the reclamation scheme for Caofeidian Harbor on the hydrodynamic environment, sediment transport and morphological changes. Attentions are paid to the project inducing changes of flow velocities and morphology in the deep channel at the south side of Caofeidian foreland, in the Laolonggou channel and in various harbor basins. The conclusions can provide the important foundation for the protection and use of bay-type tidal inlets and the development of harbor industry.  相似文献   

7.
Anomalous morphological features within large estuaries may be: (1) recorders of external forces that periodically overwhelm the normal morphodynamic responses to estuarine energy fluxes, and (2) possible predictors of cycles of future coastal change. At the entrance to Willapa Bay, Washington, chronic beach erosion and frequent coastal flooding are related to the historical northward channel migration that destroyed the protective sand spits of Cape Shoalwater. Northward channel migration since the late 1800s conforms to the long-term net sediment transport direction. What requires explanation is periodic southward relocation of the trunk channel by as much as 5 km, and attendant construction of moderately large sand spits on the north side of the bay such as Kindred Island, Tokeland Peninsula, and Cape Shoalwater.Both autocyclic and allocyclic processes may have been responsible for trunk channel realignment and associated spit deposition. Channel recycling may occur when the main channel becomes overextended to the north and the tidal flow is inefficient because of its decreased gradient and increased susceptibility to shoaling by the growth and migration of tidal sand ridges. Under those conditions trunk channel relocation would be facilitated by increased wave heights and water levels of El Niño winter storms. However, co-seismic subsidence is the most likely mechanism for abruptly increasing sand supply and longshore transport that would favor discrete periods of channel relocation and spit deposition. Unless external forcing changes sand supply and predominant sediment transport directions in the future, the relative rise in sea level, frequent winter storms, and local deficit in the sand budget assure that beach erosion will continue at the mouth of this large estuary.  相似文献   

8.
Many tidal inlets are scoured in loose granular material, and the morphological changes in these inlets are discussed. The changes are the result of the predominantly fortnightly variations in the tide, the seasonal variations in storm activity and the occurrence of extreme meteorological events. The adjustment of an inlet to changes in the hydraulic environment and sudden changes in its morphology associated with extreme meteorological events is primarily via a change in the cross-sectional area. For a single-inlet bay system, the response of the inlet cross-sectional area can be determined using the stability analysis presented by Escoffier (1940). Rather than one inlet, many bays are connected to the ocean by several inlets. In this study, Escoffier's analysis is expanded to include the interaction of these inlets. In the analysis, the sediment carrying capacity of the inlet currents is characterized by the bottom shear stress. The stability analysis is applied to Pass Cavallo, Texas. Assuming the absence of future influences of tropical storms and hurricanes, the analysis shows that as a result of the opening of a companion inlet, Pass Cavallo ultimately will close.  相似文献   

9.
《Coastal Engineering》1999,37(1):37-56
The seasonal closure of tidal inlets is a common and important coastal phenomena. However, studies which have been specifically geared to identify processes governing seasonal inlet closure are almost non-existent. Hence, this study was undertaken to gain insight into processes governing seasonal inlet closure. To determine the processes governing this phenomenon, Wilson Inlet, Western Australia, a typical seasonally open tidal inlet is taken as a case study. The study comprised of a field experiment over the summer of 1995, and a numerical modeling exercise employing a morphodynamic model. Results of the field study imply that longshore processes may not be the cause of inlet closure, but that onshore sediment transport due to persistent swell wave conditions in summer may govern seasonal closure of the inlet. Application of a morphodynamic model, which includes both cross-shore and longshore processes, to Wilson Inlet conclusively shows that seasonal closure of the inlet is due to onshore sediment transport under typical summer conditions. The effects of summer streamflow and storm events, which are not uncommon, are also examined using the morphodynamic model. The effect of both streamflow and storm events on the `open duration' of the inlet is shown to be dependent on the intensity and timing of the event.  相似文献   

10.
A mathematical model of spit growth and barrier elongation adjacent to an inlet (of arbitrary width), supplied by sediment coming from longshore sediment transport, was developed based on the spit growth model proposed by Kraus (1999). The fundamental governing equation is the conservation equation for sand, where the width of the spit is assumed constant during growth. The portion of the longshore sediment transport feeding the spit has been estimated based on the ratio between the depth of the inlet channel and the depth of active longshore transport. Sediment transport from the channel due to the inlet flow, as well as other sinks of sand (e.g., dredging), are taken into account. Measured data on spit elongation at Fire Island Inlet, United States, and at Badreveln Spit, Sweden, were used to validate the model. The simulated results agree well with the measured data at both study sites, where spit growth at Fire Island was restricted by the inlet flow and the growth at Badreveln Spit was unrestricted. The model calculation for Fire Island Inlet indicates that the dredging to maintain channel navigation is the major reason for the stable period observed from 1954 to 1994 at the Fire Island barrier. The average annual net longshore transport rate at the eastern side of the Fire Island inlet obtained in this study was about 220,000 m3/yr, of which approximately 165,000 m3/yr (75% of the net longshore transport) is deposited in the inlet feeding the spit growth, whereas the remaining portion (25%) is bypassed downdrift through the ebb shoal complex.  相似文献   

11.
Tidal inlets along the mesotidal coast of Maine contrast with those from other parts of the world by being dominated by flood-tidal currents. Analysis of the factors responsible for flood or ebb dominance indicates factors external to the backbarrier environment. We suggest that the flood dominance is caused by both a steepening of the tidal wave in the Gulf of Maine and the shallow depth of the ebb-tidal delta and spit platform. Flood currents are typically 10–20 cm/sec stronger than the ebb at the inlet throat. The flood dominance results in a significant net landward transport of sediment into the backbarrier.  相似文献   

12.
This paper presents a new numerical model for shoreline change which can be used to model the evolution of shorelines with large curvature. The model is based on a one-line formulation in terms of coordinates which follow the shape of the shoreline, instead of the more common approach where the two orthogonal horizontal directions are used. The volume error in the sediment continuity equation which is thereby introduced is removed through an iterative procedure. The model treats the shoreline changes by computing the sediment transport in a 2D coastal area model, and then integrating the sediment transport field across the coastal profile to obtain the longshore sediment transport variation along the shoreline. The model is used to compute the evolution of a shoreline with a 90° change in shoreline orientation; due to this drastic change in orientation a migrating shoreline spit develops in the model. The dimensions of the spits evolving in the model compare favorably to previous model results and to field observation of the Skaw Spit in the north of Denmark.  相似文献   

13.
Tidal inlets along the mesotidal coast of Maine contrast with those from other parts of the world by being dominated by flood-tidal currents. Analysis of the factors responsible for flood or ebb dominance indicates factors external to the backbarrier environment. We suggest that the flood dominance is caused by both a steepening of the tidal wave in the Gulf of Maine and the shallow depth of the ebb-tidal delta and spit platform. Flood currents are typically 10–20 cm/sec stronger than the ebb at the inlet throat. The flood dominance results in a significant net landward transport of sediment into the backbarrier.  相似文献   

14.
Estuarine processes in the arctic lagoons are among the least studied but important subjects, especially considering the rapid warming of arctic water which may change the length of ice-free period in the summer. In this paper, wind-driven exchange flows in the micro-tidal Elson Lagoon of northern Alaska with multiple inlets of contrasting widths and depths are studied with in situ observations, statistical analysis, numerical experiments, a regression model on the basis of dynamics, and remote sensing data. Water velocity profiles were obtained from a bottom deployed acoustic Doppler current profiler(ADCP) in the northwestern Eluitkak Pass connecting the Beaufort Sea to the Elson Lagoon during a 4.9 day ice-free period in the summer of 2013. The subtidal flow is found correlated with wind(R~2 value ~96%). Frequently occurring east, northeast and north winds from the arctic atmospheric high-and low-pressure systems push water from the Beaufort Sea into the lagoon through the wide inlets on the eastern side of the lagoon, resulting in an outward flow against the wind at the narrow northwestern inlet. The counter-wind flow is a result of an uneven wind forcing acting through the asymmetric inlets and depth,an effect of "torque" or vorticity. Under northwest wind, the exchange flow at the northwestern inlet reverses its direction, with inward flows through the upwind northwestern inlet and outward flows through the downwind eastern inlets. A regression model is established based on the momentum equations and Taylor series expansions. The model is used to predict flows in July and August of 2015 and July of 2017, supported by available Landsat satellite images. About 73%–80% of the time the flows at Eluitkak Pass are out of Elson Lagoon for the summer of 2015 and 2017. Numerical experiments are conducted to corroborate the findings and illustrate the effects under various wind conditions. A quasi-steady state balance between wind force and surface pressure gradient is confirmed.  相似文献   

15.
A new numerical model was developed to simulate regional sediment transport and shoreline response in the vicinity of tidal inlets based on the one-line theory combined with the reservoir analogy approach for volumetric evolution of inlet shoals. Sand bypassing onshore and sheltering effects on wave action from the inlet bar and shoals were taken into account. The model was applied to unique field data from the south coast of Long Island, United States, including inlet opening and closure. The simulation area extended from Montauk Point to Fire Island Inlet, including Shinnecock and Moriches Inlets. A 20-year long time series of hindcast wave data at three stations along the coast were used as input data to the model. The capacity of the inlet shoals and bars to store sand was estimated based on measured cross-sectional areas of the inlets as well as on comprehensive bathymetric surveys of the areas around the inlet. Several types of sediment sources and sinks were represented, including beach fills, groin systems, jetty blocking, inlet bypassing, and flood shoal and ebb shoal feeding. The model simulations were validated against annual net longshore transport rates reported in the literature, measured shorelines, and recorded sediment volumes in the flood and ebb shoal complexes. Overall, the model simulations were in good agreement with the measured data.  相似文献   

16.
The cross-sectional stability of two tidal inlets connecting the same back-barrier lagoon to the ocean is investigated. The condition for equilibrium is the cross-sectional area tidal prism relationship. In an earlier study [Van de Kreeke, J., 1990. Can multiple inlets be stable? Estuarine, Coastal and Shelf Science 30: 261–273.], using the same equilibrium condition, it was concluded that where two inlets connect the same basin to the ocean ultimately one inlet will close. One of the major assumptions in that study was that the water level in the basin fluctuated uniformly. In hindsight this assumption might be too restrictive. For example, in the Wadden Sea the back barrier lagoon consists of a series of basins, rather than one single basin, separated by topographic highs. These topographic highs limit but do not exclude the exchange of water between the sub-basins. For this reason in the present study, a topographic high in the form of a weir was added, separating the back-barrier lagoon in two sub-basins. The water level in the sub-basins, rather than in the back-barrier as a whole, is assumed to fluctuate uniformly. For this schematization the hydrodynamic equations are solved using a finite difference method. The results, together with the equilibrium condition, yield the equilibrium flow curve for each of the inlets. The intersections of the two equilibrium flow curves represent combinations of cross-sectional areas for which both inlets are in equilibrium. The stability of the equilibriums was investigated using a non-linear stability analysis resulting in a flow diagram. Calculations were carried out for different inlet and weir characteristics. Sinussoidal tides were the same for both inlets. The results show that for relatively large wetted cross-sectional areas over the topographic high, approaching the situation of a single basin, there are no combinations of inlet cross-sectional areas for which both inlets are in a stable equilibrium. This supports the conclusion in the earlier study. For relatively small wetted cross-sectional areas over the topographic high there is one set of stable equilibriums. In that case the two-inlet bay system approaches that of two single-inlet bay systems.  相似文献   

17.
A comparative study of the geological structure and evolution of the Curonian and Vistula spits representing large barrier-lagoon systems in the southeastern Baltic Sea reveals some geological and geomorphologic differences against the background of their general similarity. It is shown that morphological structures in the Vistula Spit are smaller. The grain-size analysis of the spit sediments demonstrates that eolian sands constitute all the structures of the spits down to the water level and below it (down to depths of 2 m), except for beaches and low lagoonal terraces. This means that the eolian relief on the maritime plain started forming when the sea level was approximately 4 m below its present-day position. Subsequently, they were growing beyond the wave influence. The sea-level rise resulted in the erosion of the coasts of the spits on both the sea and the lagoon sides and provided an intense landward transport of eolian material.  相似文献   

18.
南海上层环流对季风转变的响应   总被引:6,自引:0,他引:6  
通过利用一个分区性的正压、斜压衔接模式,重点考察了南海环流对于以不同方式变化的季风转变时的响应。结果表明:(1)个别数值试验结果基本上反映了实测得到的南海流态;(2)对于不同方式变化的季风转变,在季风过渡时期的南海流场的调整有较大的差别,但在过渡之后最终的流场基本结构则是一致的;(3)当冬季风向夏季风转变时,在南海南部经常会产生一些涡旋群,向夏季流场转化尚需较长的一段时间来调节;而当夏季风向冬季风转变时,在南海南部的流场迅速向冬季流场转变。  相似文献   

19.
Research into the response of coastlines to the opening and stabilisation of inlets has been limited by the availability of suitable data, the shortcomings of existing formulae when applied to different inlets, and the difficulties particular to multi-inlet situations. Our appraisal of methodologies for studying inlet dynamics leads us to formulate a new approach for investigating inlet evolution and stability based on combining sediment budget computations (using best estimates and uncertainty analysis) and inlet hydraulic parameter analysis.The approach developed is applied to a stabilised inlet, located within a multi-inlet system (Faro-Olhão Inlet, Ria Formosa, Southern Portugal), which was opened starting 1929 and has since been dredged periodically to maintain navigability. A series of digital maps was produced based on multi-year data acquired from charts, surveys, and aerial photos. The maps were used to compute sediment volumes for six coastal cells delineated on the basis of the morphological features of the inlet. Cell volumes and fluxes were calculated for three periods (1929–1962, 1962–1978, and 1978–2001), and overall sediment budgets were calculated for the latter two periods. Inlet hydraulic parameters measured included tidal prism, inlet channel cross-sectional area and hydraulic radius, and maximum depth of the inlet throat, and were tracked over 9 bathymetric surveys from 1947–2004. The computed budget reveals that the inlet is only at present reaching volumetric equilibrium. However, the analysis of channel cross-sectional area and radius indicates parameter stability around 1978–1985, 20–25 years before the inlet started to reach volumetric equilibrium. It is hypothesised that the observed stability in parameters for the inlet post-1978 is related to the presence of fixed jetties and to a stratigraphic control that prevents further deepening, and not to the achievement of a dynamic equilibrium.The findings indicate that the coupling of sediment budget computation and inlet parameter analysis is useful for understanding historical sediment pathways and magnitudes, and for analysing the evolution of an inlet towards equilibrium. Although the analysis of inlet parameter evolution is valuable for examining the locational/geometrical stability of an inlet, it needs to be used in conjunction with sediment budget computations in order to properly infer inlet equilibrium. Moreover, existing formulae used to infer inlet stability, which relate cross-sectional area to tidal prism, should be reviewed with a view to including other external variables (e.g., stratigraphic controls) and to making their application more flexible to cope with the range of different inlet conditions. For multi-inlet systems, the coupling of morphology and hydrodynamics analysis should be extended to all inlets in order to infer the stability of the overall system based on the distribution of the tidal prism through time and the patterns of inlet circulation and sediment transport.  相似文献   

20.
The behavior of the coastal system represented by Nyiskii Inlet (lagoon) and Plastun Spit is investigated by modeling morphodynamic processes. The observable advance of Plastun Spit and displacement of the Anuchin Strait are explained by changes in the alongshore sediment flux transporting material to the end of the spit from the south. It is shown that severe storms combined with a surge and tide tend to deepen the lagoon bottom. The model of a tidal inlet system is proposed to describe the evolution of tidal flats under conditions of a relative rise in sea level. It is concluded that the volume of tidal flats can be reduced several times in the next 100 years. This trend should accelerate erosion of the inlet coasts due to decreased dissipation of the energy received from the open sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号