首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The NE-trended Mesozoic granodioritic intrusions are spatially and temporally associated with the copper multi-metal mineralization in southeastern Hunan Province, South China. U-Pb dating result of single-grained zircons of four samples respectively from Shuikoushan, Baoshan, western Tongshanling and eastern Tongshanling intrusions reveals that their crystallization age spans a range from 172 Ma to 181 Ma, which also represents the oldest age of the regional copper multi-metal mineralization. Some of the zircon grains give an upper intercept age of about 1753 Ma and 207Pb/206Pb apparent age of (1752 ± 4) Ma, implying the involvement of the pre-Cambrian metamorphic (possible Middle Proterozoic) basement in their genesis. The presence of such a kind of zircon grains in these granodiorites indicates either that the parental magmas were assimilated by basement rocks during magma ascent or that lower/middle crustal rocks were one of the important components during the melting process.  相似文献   

2.
The zircon Sensitive High Resolution Ion Microprobe (SHRIMP) results show that granitoid intrusions in Zhaoye Gold Belt were emplaced at two periods of Mesozoic: Linglong and Luanjiahe types of granitic intrusions were emplaced between 160 Ma and 150 Ma (late Jurassic); Guojialing type of granodioritic intrusions, 130 Ma and 126 Ma (early Cretaceous). All the three types contain at least two major generations of inherited zircons with Precambrian (>650 Ma) and early Mesozoic ages (200–250 Ma), respectively. The former suggests that these plutonic rocks are of crustal origin and that Precambrian basement with component of sialic crust up to 3.4 Ga old (Middle Archean) exists in the region. The presence of abundant inherited zircons with early Mesozoic age indicates that the Precambrian basement was affected by a major tectono-thermal event, that is the collision of the North and South China blocks, at 250 Ma to 200 Ma. SHRIMP results also indicate that the gold mineralization in the region took place between 126 Ma and 120 Ma. Project supported by the Sino-Australian Economic and Technical Fund.  相似文献   

3.
Widespread Mesozoic magmatism occurs in the Korean Peninsula (KP). The status quo is poles apart between the northern and southern parts in characterizing its distribution and nature, with the nearly absence of any related information in North Korea. We have the opportunity to have conducted geological investigations in North Korea and South Korea during the past ten years through international cooperation programs. This led to the revelation of a number of granitoids and related volcanic rocks and thus facilitates the comparison with those in East China and Japan. Mesozoic granitoids in the KP can be divisible into three age groups: the Triassic group with a peak age of ~220 Ma, the Jurassic one of ~190–170 Ma and the late Early Cretaceous one of ~110 Ma. The Triassic intrusions include syenite, calc-alkaline to alkaline granite and minor kimberlite in the Pyeongnam Basin of North Korea. They have been considered to form in post-orogenic settings related to the Central Asian Orogenic Belt (CAOB) or the Dabie-Sulu Orogenic Belt (DSOB). The Jurassic granitoids constitute extensive occurrence in the KP and are termed as the Daebo-period magmatism. They correlate well with coeval counterparts in NE China encompassing the northeastern part of the North China Craton (NCC) and the eastern segment of the CAOB. They commonly consist of biotite or two-mica granites and granodiorites, with some containing small dark diorite enclaves. On one hand, Early Jurassic to early Middle Jurassic magmatic rocks are rare in most areas of the NCC, whilst Middle-Late Jurassic ones are not developed in the KP. On the other hand, both NCC and KP host abundant Cretaceous granites. However, the present data revealed contrasting age peaks, with ~130–125 Ma in the NCC and ~110–105 Ma in the KP. Cretaceous granites in the KP comprise the dominant biotite granites and a few amphibole granites. The former exhibit mildly fractionated REE patterns and zircon ε Hf(t) values from -15 to -25, whereas the latter feature strongly fractionated REE patterns and zircon ε Hf(t) values from -10 to -1. Both granites contain inherited zircons of ~1.8–1.9 or ~2.5 Ga. These geochemical characters testify to their derivation from re-melting distinct protoliths in ancient basement. Another Cretaceous magmatic sub-event has been entitled as the Gyeongsang volcanism, which is composed of bimodal calc-alkaline volcanic rocks of 94–55 Ma and granitic-hypabyssal granitic bodies of 72–70 Ma. Synthesizing the Mesozoic magmatic rocks across the KP, NCC and Japan can lead to the following highlights: (1) All Triassic granites in the NCC, KP and Japan have similar characteristics in petrology, chronology and geochemistry. Therefore, the NCC, KP and Japan tend to share the same tectonic setting during the Triassic, seemingly within the context of Indosinian orogensis. (2) Jurassic to earliest Cretaceous magmatic rocks in the NCC seem to define two episodes: episode A from 175 to 157 Ma and episode B from 157 to 135 Ma. Jurassic magmatic rocks in the KP span in age mainly from 190 to 170 Ma, whereas 160–135 Ma ones are rare. With the exception of ~197 Ma Funatsu granite, Jurassic magmatic rocks are absent in Japan. (3) Cretaceous granites in the KP have a peak age of ~110, ~20 Ma younger than those in the NCC, while Japan is exempt from ~130–100 Ma granites. (4) The spatial-temporal distribution and migratory characteristics of the Jurassic-Cretaceous magmatic rocks in Japan, KP, and NE China-North China indicate that the subduction of the Paleo-Pacific plate might not be operative before Late Cretaceous (~130–120 Ma). (5) Late Cretaceous magmatic rocks (~90–60 Ma) occur in the southwestern corner of the KP and also in Japan, coinciding with the metamorphic age of ~90–70 Ma in the Sanbagawa metamorphic belt of Japan. The magmatic-metamorphic rock associations and their spatial distribution demonstrate the affinities of sequentially subduction zone, island arc and back-arc basin from Japan to Korea, arguing for the Pacific plate subduction during Late Cretaceous. (6) This study raises another possibility that the Mesozoic cratonic destruction in the NCC, which mainly occurred during ~150–120 Ma, might not only be due to the subduction of the Paleo-Pacific Plate, but also owe much to the intraplate geodynamic forces triggered by other adjacent continental plates like the Eurasian and Indian plates.  相似文献   

4.
Geochronological and geochemical studies reveal the possible origin of the restricted body of mylonite rocks occurring at the eastern edge of Kyushu Island, Japan, just in contact with the Sashu Fault, a part of the Paleo‐Median Tectonic Line (Paleo‐MTL). The LA‐ICP‐MS zircon U–Pb dating of the quartz diorite mylonite in this mylonitic body indicates a crystallization age of 114.0 ±1.7 Ma. Moreover, the two tonalite samples appear as thin layers within the Permian fine‐grained mafic mylonite; a part of the same body yields the age of 113.7 ±2.3 Ma and 116.9 ±1.3 Ma, with extremely low Th/U ratio. These quartz diorite mylonite and tonalite are consistent with the late Early Cretaceous magmatism and coeval metamorphism similar to those in the Higo Plutono‐metamorphic Complex in western Kyushu, Japan. This newly characterized complex occurs just south of the Cretaceous Sambagawa metamorphic rocks. The newly characterized mylonitic rocks are lying structurally above the Sambagawa Metamorphic Complex and are distributed along the Paleo‐MTL. The extension of the Higo Plutonometamorphic Complex, as well as the structural relationship between this complex and the Sambagawa Metamorphic Complex, is still controversial but holds a key to reconstruct the tectonic evolution of Southwest Japan during the Late Mesozoic to Early Cenozoic period. Hence, this article provides new insight into the reconstruction of the evolution history of East Asia as an active convergent margin.  相似文献   

5.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

6.
The intrusive bodies studied include Mafan diorites ((462.7±1.5) Ma,40Ar/39Ar amphibole plateau age), Duhudian granites ((293±12) Ma, U-Ph zircon age) and Suxianshi granites ((146.2±0.9) Ma) in Beihuaiyang area at the northern foot of Dabie Mountains, central China. Petrological studies indicate that all of them belong to I-type granitoid rocks. Among them, the Mafan and Duhudian stocks were formed by arc magmatism, while the Suxianshi pluton is a post-collisional granitic body. Three intrusive bodies have distinctive characteristics of structural deformation. The Mafan stock has a rather complicated structure pattern resulting from polyphase deformation during the Caledonian and Mesozoic, the Duhudian stock has been pronouncedly deformed during the Hercynian-Yanshanian events, while regional foliation is not pronounced within the Yanshanian Suxianshi stock. Combination of regional stratigraphic, regional structural and geochronological data shows that the Yangtze plate has experienced two episodes of subduction northward beneath the North China plate during the Paleozoic and following collisional events. The first phase of collision at about 400 Ma resulted in the formation of the Beihuaiyang crystalline basement and the Caledonian high-pressure metamorphism in Dabie orogenic zone, and a late phase of continent-continent collision (~230 Ma) is responsible for the Triassic ultrahigh- and high-pressure metamorphism in Dabie Mountains and for orogenic uplift of the Dabie Mountains. It is suggested that the Beihuaiyang tectonic belt at the northern foot of the Dabie Mountains is a multicyclic suture.  相似文献   

7.
Abstract The chronological characteristics of Alpine metamorphic rocks are described and Alpine metamorphic events are reinterpreted on the basis of chronological data for the western and central Alps from 1960 to 1992. Metamorphic rocks of the Lepontine, Gran San Bernardo, Piemonte, Internal Crystalline Massifs and Sesia-Lanzo mostly date Alpine metamorphic events, but some (along with granitoids and gneisses from the Helvetic and Southern Alps) result from the Variscan, Caledonian or older events and thus predate the Alpine events. Radiometric age data from the Lepontine area show systematic age relations: U-Pb monazite (23-29 Ma), Rb-Sr muscovite (15–40 Ma) and biotite (15–30 Ma), K-Ar biotite (10-30 Ma), muscovite (15–25 Ma) and hornblende (25-35 Ma), and FT zircon (10-20 Ma) and apatite (5-15 Ma), which can be explained by the different closure temperatures of the isotopic systems. A 121 Ma U-Pb zircon age for a coesite-bearing whiteschist (metaquartzite) from the Dora-Maira represents the peak of ultra-high pressure metamorphism. Coesite-free eclogites and blueschists related to ultra-high pressure rocks in the Penninic crystalline massifs yield an 40Ar-39Ar plateau age of about 100 Ma for phengites, interpreted as the cooling age. From about 50 Ma, eclogites and glaucophane schists have also been reported from the Piemonte ophiolites and calcschists, suggesting the existence of a second high P/T metamorphic event. Alpine rocks therefore record three major metamorphic events: (i) ultra-high and related high P/T metamorphism in the early Cretaceous, which is well preserved in continental material such as the Sesia-Lanzo and the Penninic Internal Crystalline Massifs; (ii) a second high P/T metamorphic event in the Eocene, which is recognized in the ophiolites and calcschists of the Mesozoic Tethys; and (iii) medium P/T metamorphism, in which both types of high P/T metamorphic rocks were variably reset by Oligocene thermal events. Due to the mixture of minerals formed in the three metamorphic events, there is a possibility that almost all geochronological data reported from the Alpine metamorphic belt show mixed ages. Early Cretaceous subduction of a Tethyan mid-ocean ridge and Eocene continental collision triggered off the exhumation of the high pressure rocks.  相似文献   

8.
Precambrian basement rocks have been affected by Caledonian thermal metamorphism. Caledonian‐aged zircon grains from Precambrian basement rocks may have resulted from thermal metamorphism. However, Hercynian ages are rarely recorded. Zircon U–Pb Sensitive High Resolution Ion Microprobe (SHRIMP) dating reveals that zircon ages from the Huyan, Lingdou, and Pengkou granitic plutons can be divided into two groups: one group with ages of 398.9 ±5.3 Ma, 399 ±5 Ma, and 410.2 ±5.4 Ma; and a second group with ages of 354 ±11 Ma, 364.6 ±6.7 Ma, and 368 ±14 Ma. The group of zircon U–Pb ages dated at 410–400 Ma represent Caledonian magmatism, whereas the 368–354 Ma ages represent the age of deformation, which produced gneissosity. The three plutons share geochemical characteristics with S‐type granites and belong to the high‐K calc‐alkaline series of peraluminous rocks. They have (87Sr/86Sr)i ratios of 0.710 45–0.724 68 and εNd(t) values of ?7.33 to ?10.74, with two‐stage Nd model ages (TDM2) ranging from 1.84 Ga to 2.10 Ga. Magmatic zircon εHf(t) values range from ?3.79 to ?8.44, and have TDMC ages of 1.65–1.93 Ga. The data suggest that these granites formed by partial melting of Paleoproterozoic to Mesoproterozoic continental crust. A collision occurred between the Wuyi and Minyue microcontinents within the Cathaysia Block and formed S‐type granite in the southwest Fujian province. The ca 360 Ma zircon U–Pb ages can represent a newly recognized period of deformation which coincided with the formation of the unified Cathaysia Block.  相似文献   

9.
The Nanling Mountains lying in the southern part of South China are an economically important gran-ite-related multi-metallogenic province. The Nanling Mountains granites can be described as: temporally spanning from Caledonian to Yanshanian and spatially distributed as three EW trending zones: the north one in Zhuguangshan-Qingzhangshan, the middle one in Dadongshan-Guidong, and the south one in Fogang-Xinfengjiang with two neighboring zones’ midline having an interval of ca. latitude …  相似文献   

10.
Yanbin  Zhang  Fuyuan  Wu  Simon A.  Wilde  Mingguo  Zhai  Xiaoping  Lu  Deyou  Sun 《Island Arc》2004,13(4):484-505
Abstract   The Yanbian area is located in the eastern part of the Central Asian Orogenic Belt (CAOB) of China and is characterized by widespread Phanerozoic granitic intrusions. It was previously thought that the Yanbian granitoids were mainly emplaced in the Early Paleozoic (so-called 'Caledonian' granitoids), extending east–west along the northern margin of the North China craton. However, few of them have been precisely dated; therefore, five typical 'Caledonian' granitic intrusions (the Huangniling, Dakai, Mengshan, Gaoling and Bailiping batholiths) were selected for U–Pb zircon isotopic study. New-age data show that emplacement of these granitoids extended from the Late Paleozoic to Late Mesozoic (285–116 Ma). This indicates that no 'Caledonian' granitic belt exists along the northern margin of the North China craton. The granitoids can be subdivided into four episodes based on our new data: Early Permian (285 ± 9 Ma), Early Triassic (249–245 Ma), Jurassic (192–168 Ma) and Cretaceous (119–116 Ma). The 285 ± 9 Ma tonalite was most likely related to subduction of the Paleo-Asian Oceanic Plate beneath the North China craton, followed by Triassic (249–245 Ma) syn-collisional monzogranites, representing the collision of the CAOB orogenic collage with the North China craton and final closure of the Paleo-Asian Ocean. The Jurassic granitoids resulted from subduction of the Paleo-Pacific plate and subsequent collision of the Jiamusi–Khanka Massif with the existing continent, assembled in the Triassic. The Early Cretaceous granitoids formed in an extensional setting along the eastern Asian continental margin.  相似文献   

11.
The Ryoke Metamorphic complex has undergone low‐P/T metamorphism and was intruded by granitic magmas around 100 Ma. Subsequently, the belt was uplifted and exposed by the time deposition of the Izumi Group began. The tectonic history of uplift, such as the timing and processes, are poorly known despite being important for understanding the spatiotemporal evolution of the Ryoke Metamorphic Belt. U–Pb zircon ages from sedimentary rocks in the forearc and backarc basins are useful for constraining uplift and magmatism in the provenance. U–Pb dating of detrital zircons from 12 samples (four sandstones and eight granitic clasts) in the Yuasa–Aridagawa basin, a Cretaceous forearc basin in the Chichibu Belt of Southwest Japan, gave mostly ages of 60–110 Ma. Granitic clasts contained in conglomerate suggest that granitic intrusions predate the formation of Coniacian and Maastrichtian conglomerate. Emplacement ages of granitic bodies originated from granitic clasts in Coniacian conglomerate are (110.2 ±1.3) Ma, (106.1 ±1.8) Ma, (101.8+5.8–3.8) Ma, and (95.3 ±1.4) Ma; for granitic clasts in Maastrichtian conglomerate, (89.6 ±1.8) Ma, (87.3+2.4–1.8) Ma, (85.7 ±1.2) Ma, and (82.7 ±1.2) Ma. The results suggest that detrital zircons in the sandstones were mainly derived from volcanic eruptions contemporaneous with depositional age, and plutonic rocks of the Ryoke Metamorphic Belt. Zircon ages of the granitic clast samples also indicate that uplift in the provenance began after Albian and occurred at least during the Coniacian to Maastrichtian. Our results, together with the difference of provenance between backarc and forearc basins suggest that the southern marginal zone of the Ryoke Metamorphic Belt was uplifted and supplied a large amount of clastic materials to the forearc basins during the Late Cretaceous.  相似文献   

12.
Recently, some scholars have proposed that the South China Block (SCB) was controlled by a compressive tectonic regime in the middle–late Early Cretaceous, challenging the belief that the SCB was under an extensional setting during the Cretaceous. The Early Cretaceous tectonic setting constraint in the SCB can offer vital insight to clarify the Mesozoic subduction history of the Paleo-Pacific. Therefore, to determine the SCB tectonic regime during the Early Cretaceous, this study investigated sedimentary rocks from the Lower Cretaceous Heshui Formation in the Xingning Basin, a foreland basin located in the southeastern SCB. Provenance analysis was performed using sandstone modal analysis, sandstone geochemical characteristics, and detrital zircon geochronology. Based on the results, we discussed basin sediment sources and the SCB tectonic regime during the Early Cretaceous. The results showed that the maximum Heshui Formation depositional age was 103 Ma ± 1.6 Ma in the Early Cretaceous Albian. Detrital framework modes and geochemical characteristics of sandstone indicated that Heshui Formation's source rocks were granites and sedimentary rocks. The detrital zircon U–Pb ages could be classified into two major and four subordinate age populations. The Wuyi Terrane to the north and southeast coastal regions to the east were the primary potential Heshui Formation source areas. However, the lower and upper sandstones are different in the peak ages, ~437 and ~146 to 104 Ma, respectively, indicating that the major source area shifted from the Wuyi Terrane to the southeastern coastal regions during the late Early Cretaceous. The sandstone modal analysis results indicated that the source area comprised mainly collisional–orogenic material. The SCB was under a compressive tectonic regime during the late Early Cretaceous and this compression action continued until at least 103 Ma ± 1.6 Ma.  相似文献   

13.
This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compositions, with the aim of constraining the accretion and reworking processes of continental crust within the Erguna Massif, and shedding light on the crustal evolution of the eastern segment of the Central Asian Orogenic Belt. Based on the zircon U-Pb dating results, the Mesozoic granitic magmatisms within the Erguna Massif can be subdivided into five stages: Early-Middle Triassic(249–237 Ma), Late Triassic(229–201 Ma), Early-Middle Jurassic(199–171 Ma), Late Jurassic(155–149 Ma), and Early Cretaceous(145–125 Ma).The Triassic to Early-Middle Jurassic granitoids are mainly I-type granites and minor adakitic rocks, whereas the Late Jurassic to Early Cretaceous granitoids are mainly A-type granites. This change in magmatism is consistent with the southward subduction of the Mongol-Okhotsk oceanic plate and subsequent collision and crustal thickening, followed by post-collision extension. Zircon Hf isotopic data indicate that crustal accretion of the Erguna Massif occurred in the Mesoproterozoic and Neoproterozoic. ZirconεHf(t) values increase gradually over time, whereas two-stage model(TDM2) ages decrease throughout the Mesozoic. The latter result indicates a change in the source of granitic magmas from the melting of ancient crust to more juvenile crust. Zircon εHf(t)values also exhibit spatial variations, with values decreasing northwards, whereas TDM2 ages increase. This pattern suggests that,moving from south to north, there is an increasing component of ancient crustal material within the lower continental crust of the Erguna Massif. Even if at the same latitude, the zircon Hf isotopic compositions are also inconsistent. These results reveal lateral and vertical heterogeneities in the lower continental crust of the Erguna Massif during the Mesozoic, which we use as the basis of a structural and tectonic model for this region.  相似文献   

14.
It is well known that the destruction of the North China Carton(NCC) is closely related to subduction of the PaleoPacific slab, but materials recording such subduction has not been identified at the peak time of decratonization. This paper presents data of whole-rock major and trace elements and Sr-Nd-Hf isotopes and zircon U-Pb ages and Hf-O isotopes for Mesozoic volcanic rocks from the Liaodong-Jinan region in the northeastern NCC, in order to trace the subduction-related materials in their source and origin. The Mesozoic volcanic rocks in the Liaodong-Jinan region are mainly composed of two series of rocks, including alkaline basaltic trachyandesite, trachyandesite and trachyte, and subalkaline trachyandesite and andesite. Zircon U-Pb dating yields eruption ages of 129–124 Ma for these rocks. The Early Cretaceous volcanic rocks are all enriched in LILEs(such as Rb, Sr, Ba and Th) and LREEs, depleted in HFSEs(such as Nb, Ta and Ti), indicating that they were originated from mantle sources that had been modified by subducted crustal materials. However, they have relatively heterogeneous and variable isotopic compositions. The alkaline basaltic trachyandesite, trachyandesite and trachyte have enriched whole-rock Sr-Nd-Hf and zircon Hf isotopic compositions and mantle-like δ~(18)O values, suggesting that they were derived from low-degree partial melting of an isotopically enriched lithospheric mantle source. In contrast, the subalkaline trachyandesite and andesite have relatively depleted isotopic compositions with zircon ε_(Hf)(t) values up to +5.2 and heavy zircon O isotopic compositions with δ~(18)O values of +8.1‰ to +9.0‰, indicating that they were originated from a lithospheric mantle source that had been metasomatized by melts/fluids derived from the recycled low-T altered oceanic basalt. All of these geochemical features suggest that the Early Cretaceous volcanic rocks in the Liaodong-Jinan region would result from mixing of mafic magmas with different compositions. Such magmas were originated from the enriched lithospheric mantle and the young metasomatized mantle, respectively, with variable extents of enrichment and depletion in trace elements, radiogenic isotopes and O isotopes. Importantly, the identification of the low-T altered oceanic crust component in the origin of Early Cretaceous volcanic rocks by the zircon Hf-O isotopes provides affirmative isotopic evidence and direct material records for Mesozoic subduction of the Paleo-Pacific slab that induced decratonization of the North China Craton.  相似文献   

15.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   

16.
In order to provide references of the subduction process of the Paleo‐Pacific Plate beneath the Jiamusi Block, this paper studied the clastic rocks of the Nanshuangyashan Formation using modal analysis of sandstones, mudstone elements geochemistry, and detrital zircon U–Pb dating. These results suggest the maximum depositional age of the Nanshuangyashan Formation was between the Norian and Rhaetian (206.8 ±4.6 Ma, mean standard weighted deviation (MSWD) = 0.17). Whole‐rock geochemistry of mudstone indicates that source rocks of the Nanshuangyashan Formation were primarily felsic igneous rocks and quartzose sedimentary rocks, which were mainly derived from the stable continental block and a magmatic arc. Detrital zircon analysis showed the Nanshuangyashan Formation samples recorded four main age groups: 229–204 Ma, 284–254 Ma, 524–489 Ma and 930–885 Ma, and the provenances were attributed to the Jiamusi Block and a Late Triassic magmatic arc near the study area. Furthermore, the eastern Jiamusi Block was a backarc basin, affected by the subduction of the Paleo‐Pacific Plate in the Late Triassic, but the magmatic arc related to the subduction near the study area finally died out due to tectonic changes and stratigraphic erosion.  相似文献   

17.
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc–Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1–39.7 Ma 40Ar/39Ar mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane.  相似文献   

18.
This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb dating for the five plutons, which produced an age range of 151.8±2.6- 142.8±1.8 Ma. This work put an accurate constraint on the formation age of the intrusives in the Tongling metallogenic cluster. These age data indicate that magmatic activity reached a peak during Late Jurassic. The intrusive sequence of magma is generally from quartz monzonite (porphyry) through monzonite to granodiorite to quartz monzodiorite to pyroxene monzodiorite to gabbro-diabase. The intrusives of different lithology differed in crystallization age, probably implying the intrusives in the Tongling area underwent an evolutional process of magma, which was closely related to geodynamical setting in the depths of the area. A dynamic model was presented for the origin of the igneous rocks in the study area as follows. The assembly between the Yangtze craton and the North China craton fini- shed at the end of T3, and then the stage of another compressional orogeny began in the Tongling area, i.e., Pacific dynamic system. Along with the subduction of the Izanagi plate underneath the Eurasian plate at J2-J3, NW-trending compression toward the East China continent was produced, and compres- sional deformation also took place, forming NE-trending fold and resulting in thickening of the crust in the Tongling area. High-density eclogite-facies rocks were produced in the low part of the crust, re- sulting in the delamination of mantle lithosphere and lower crust, and upwelling of materials in as- thenosphere. Decompression melting produced basaltic magma, and the materials in lower crust were heated by the underplating of the basaltic magma. Thus, melting of lower crust yielded granitic magma, which intruded along deep and large faults through various geological processes (J3-K1). The SHRIMP U-Pb zircon age of 151.8±2.6-142.8±1.8 Ma for intrusives in the Tongling area suggests that the de- lamination of lithosphere mantle and lower crust at least began at middle-late stage of Late Jurassic, resulting in sharp thinning of lithosphere and intense extension of middle-upper crust. Thus, a lot of decollements were produced between cover and cover, basement and cover, and middle and lower crust. This was structural layering or detachment of lithosphere in the Tongling area. Three concordant ages for old inherited cores of magmatic origin (747-823 Ma) indicated that there were obvious mag- matism in the Tongling area during Neoproterozoic, and a little more of the Neoproterozoic igneous source rocks participated in the formation of Mesozoic intrusives.  相似文献   

19.
The protoliths of mafic-ultramafic plutons in the northern Dabie Mts. (NDM) (Hubei) include pyroxenite and gabbro. The zircon U-Pb dating for a gabbro suggests that emplacement of mafic magma took place in the post-collisional setting at the age of 122.9±0.6 Ma. It is difficult to obtain a reliable Sm-Nd isochron age, due to disequilibrium of the Sm-Nd isotopic system. Two hornblende40Ar/39Ar ages of 116.1±1.1 Ma and 106.6±0.8 Ma may record cooling of metamorphism in the mafic-ultramafic plutons in Hubei below 500°C. The hornblende40Ar/39Ar ages for the mafic-ultramafic rocks in Hubei are evidently 15–25 Ma younger than those for the same rocks in Anhui, indicating that there is a diversity of the cooling rates for the mafic-ultramafic rocks in Hubei and Anhui. The difference in their cooling rates may be controlled by the north-dipping normal faults in the NDM. The intense metamorphism occurring in the mafic-ultramafic rocks in Hubei may result from the Yanshanian magmatic reheating and thermal fluid action induced by the Cretaceous migmatization. The geochemical similarity of these mafic-ultramafic rocks wherever in Hubei and Anhui may be attributed to the same tectonic setting via an identical genetic mechanism.  相似文献   

20.
本文综合运用磷灰石-锆石裂变径迹和(U-Th)/He、镜质体反射率及盆地模拟等手段,深入细致地探讨了中扬子江汉平原簰洲湾地区中、新生代构造-热史演化过程.研究结果表明,研究区中-新生代大规模构造抬升剥蚀、地层冷却事件始于早白垩世(140-130 Ma);大规模抬升冷却过程主要发生在早白垩世中后期至晚白垩世.研究区虽然可能存在一定厚度的晚白垩世-古近纪地层沉积,总体沉积规模相对较小.综合分析认为,区内应该存在较大厚度的中侏罗统或/和上侏罗统乃至早白垩世地层的沉积;而现今残存中生代中、上侏罗统地层相对较薄,主要是由于后期持续构造抬升剥蚀造成的,估计总剥蚀厚度约4300 m左右.区内中生代地层在早白垩世达到最大古地温,而不是在古近纪沉积末期;上三叠统地层最大古地温在170~190℃之间.热史分析结果表明,区内古生代古热流相对稳定,平均热流在53.64 mW·m-2;早侏罗世末期古热流开始降低,在早白垩世初期古热流约为48.38 mW·m-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号