首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The oceans are the largest carbon pools on Earth, and play the role of a "buffer" in climate change. Blue carbon, the carbon(mainly organic carbon) captured by marine ecosystems, is one of the important mechanisms of marine carbon storage.Blue carbon was initially recognized only in the form of visible coastal plant carbon sequestration. In fact, microorganisms(phytoplankton, bacteria, archaea, viruses, and protozoa), which did not receive much attention in the past, account for more than 90% of the total marine biomass and are the main contributors to blue carbon. Chinese coastal seas, equivalent to 1/3 of China's total land area, have a huge carbon sink potential needing urgently research and development. In this paper, we focus on the processes and mechanisms of coastal ocean's carbon sequestration and the approaches for increasing that sequestration. We discuss the structures of coastal ecosystems, the processes of carbon cycle, and the mechanisms of carbon sequestration. Using the evolution of coastal ocean's carbon sinks in sedimentary records over geologic times, we also discuss the possible effects of natural processes and anthropogenic activities on marine carbon sinks. Finally, we discuss the prospect of using carbon sequestration engineering for increasing coastal ocean's carbon storage capacity.  相似文献   

2.
The China Seas include the South China Sea, East China Sea, Yellow Sea, and Bohai Sea. Located off the Northwestern Pacific margin, covering 4700000 km~2 from tropical to northern temperate zones, and including a variety of continental margins/basins and depths, the China Seas provide typical cases for carbon budget studies. The South China Sea being a deep basin and part of the Western Pacific Warm Pool is characterized by oceanic features; the East China Sea with a wide continental shelf, enormous terrestrial discharges and open margins to the West Pacific, is featured by strong cross-shelf materials transport; the Yellow Sea is featured by the confluence of cold and warm waters; and the Bohai Sea is a shallow semiclosed gulf with strong impacts of human activities. Three large rivers, the Yangtze River, Yellow River, and Pearl River, flow into the East China Sea, the Bohai Sea, and the South China Sea, respectively. The Kuroshio Current at the outer margin of the Chinese continental shelf is one of the two major western boundary currents of the world oceans and its strength and position directly affect the regional climate of China. These characteristics make the China Seas a typical case of marginal seas to study carbon storage and fluxes. This paper systematically analyzes the literature data on the carbon pools and fluxes of the Bohai Sea,Yellow Sea, East China Sea, and South China Sea, including different interfaces(land-sea, sea-air, sediment-water, and marginal sea-open ocean) and different ecosystems(mangroves, wetland, seagrass beds, macroalgae mariculture, coral reefs, euphotic zones, and water column). Among the four seas, the Bohai Sea and South China Sea are acting as CO_2 sources, releasing about0.22 and 13.86–33.60 Tg C yr~(-1) into the atmosphere, respectively, whereas the Yellow Sea and East China Sea are acting as carbon sinks, absorbing about 1.15 and 6.92–23.30 Tg C yr~(-1) of atmospheric CO_2, respectively. Overall, if only the CO_2 exchange at the sea-air interface is considered, the Chinese marginal seas appear to be a source of atmospheric CO_2, with a net release of 6.01–9.33 Tg C yr~(-1), mainly from the inputs of rivers and adjacent oceans. The riverine dissolved inorganic carbon (DIC) input into the Bohai Sea and Yellow Sea, East China Sea, and South China Sea are 5.04, 14.60, and 40.14 Tg C yr~(-1),respectively. The DIC input from adjacent oceans is as high as 144.81 Tg C yr~(-1), significantly exceeding the carbon released from the seas to the atmosphere. In terms of output, the depositional fluxes of organic carbon in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea are 2.00, 3.60, 7.40, and 5.92 Tg C yr~(-1), respectively. The fluxes of organic carbon from the East China Sea and South China Sea to the adjacent oceans are 15.25–36.70 and 43.93 Tg C yr~(-1), respectively. The annual carbon storage of mangroves, wetlands, and seagrass in Chinese coastal waters is 0.36–1.75 Tg C yr~(-1), with a dissolved organic carbon(DOC) output from seagrass beds of up to 0.59 Tg C yr~(-1). Removable organic carbon flux by Chinese macroalgae mariculture account for 0.68 Tg C yr~(-1) and the associated POC depositional and DOC releasing fluxes are 0.14 and 0.82 Tg C yr~(-1), respectively. Thus, in total, the annual output of organic carbon, which is mainly DOC, in the China Seas is 81.72–104.56 Tg C yr~(-1). The DOC efflux from the East China Sea to the adjacent oceans is 15.00–35.00 Tg C yr~(-1). The DOC efflux from the South China Sea is 31.39 Tg C yr~(-1). Although the marginal China Seas seem to be a source of atmospheric CO_2 based on the CO_2 flux at the sea-air interface, the combined effects of the riverine input in the area, oceanic input, depositional export,and microbial carbon pump(DOC conversion and output) indicate that the China Seas represent an important carbon storage area.  相似文献   

3.
We applied stable carbon isotopes, ultraviolet-visible absorption(UV-Vis), fluorescence excitation-emission matrices spectroscopy(EEMs), and Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS) to investigate the chemical composition and sources of the dissolved organic matter(DOM) in both the water column and pore water in Xiangshan Bay, a representative semi-enclosed and eutrophic bay in Zhejiang Province, China. One protein-like fluorescent component(C1) and two humic-like fluorescent components(C2 and C3) were identified by PARAFAC modeling. The concentration of dissolved organic carbon(DOC), the relative intensities of C2, C3, and black carbon-like compounds are all negatively correlated with salinity, indicating that there is a dilution effect of terrestrial signals by seawater in Xiangshan Bay. The differences in light penetration ability of Xiangshan Bay cause different degrees of photo-degradation, which may play an important role in the transformation of organic matter in Xiangshan Bay. The weak correlation between the C1 fluorescent component and salinity indicates that autochthonous sources cannot dominate the protein-like FDOM in the Xiangshan Bay drainage area. Multiple sources(such as anthropogenic inputs and release of pore water) also affect the distribution of the protein-like fluorescent component under eutrophication conditions. The relative proportion of the protein-like fluorescent component in Xiangshan Bay is on a medium level in China and anthropogenic inputs may be a significant source of DOM in coastal bays.  相似文献   

4.
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea.  相似文献   

5.
Environmental management of marine fish culture in Hong Kong   总被引:4,自引:0,他引:4  
Marine fish farming is an important commercial practice in Hong Kong. Marine fish farms located in eutrophic coastal waters often face the threat of severe dissolved oxygen depletion associated with algal blooms and red tides. On the other hand, mariculture activities also contribute to pollution. The sustainable management of mariculture requires proper siting of the fish farms and stocking density control. Both of these are related to the carrying capacity of the water body concerned, which is mainly governed by its flushing characteristics. A simple method to determine the carrying capacity of a fish farm has been developed by using three-dimensional (3D) hydrodynamic modelling and its effective coupling with a diagenetic water quality model. A systematic methodology using numerical tracer experiments has been developed to compute the tidal flushing in a fish farm. The flushing time is determined from the results of a numerical tracer experiment using robust 3D hydrodynamic and mass transport models. A unit tracer concentration is initially prescribed inside the region of interest and zero elsewhere; the subsequent mass transport and the mass removal process are then tracked. The fish farms are usually situated in well-sheltered shallow embayments and may not connect directly to the open water. It is found that it is necessary to define both "local" and "system-wide" flushing times to represent the effectiveness of the mass exchange with the surrounding water body and the open sea respectively. A diagenetic water quality model simulating the sediment-water-pollutant interaction is employed to address the response of the water column and the benthic layer to pollution discharges. With the flushing rate reliably computed, the carrying capacity of the fish farm can be determined in terms of key water quality parameters: chlorophyll-a, dissolved oxygen, organic nitrogen and potential lowest dissolved oxygen level on a day of negligible photosynthetic production. The predictions are well-supported by field data.  相似文献   

6.
Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration.  相似文献   

7.
The extensive blanket peatlands of the UK uplands account for almost half of total national terrestrial carbon storage. However, much of the blanket peat is severely eroded so that the contemporary role of the peatland system in carbon sequestration is compromised by losses of organic carbon in dissolved (DOC) and particulate (POC) form in the fluvial system. This paper presents the first detailed assessment of dissolved and organic carbon losses from a severely eroded headwater peatland (River Ashop, South Pennines, UK). Total annual fluvial organic carbon losses range from 29–106 Mg C km,‐2 decreasing from the headwaters to the main catchment outlet. In contrast to less eroded systems fluvial organic carbon flux is dominated by POC. POC:DOC ratios decrease from values of 4 in the headwaters to close to unity at the catchment outlet. These results demonstrate the importance of eroding headwater sites as sources of POC to the fluvial system. Comparison with a range of catchment characteristics reveals that drainage density is the best predictor of POC:DOC but there is scatter in the relation in the headwaters. Steep declines in specific POC yield from headwater catchments are consistent with storage of POC within the fluvial system. Key to the significance of fluvial carbon flux in greenhouse gas budgets is understanding the fate of fluvial carbon. Further work on the fate of POC and the role of floodplains in fluvial carbon cycling is urgently required. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Geomorphological controls and catchment sediment characteristics control the formation of floodplains and affect their capacity to sequester carbon. Organic carbon stored in floodplains is typically a product of pedogenic development between periods of mineral sediment deposition. However, in organically-dominated upland catchments with a high sediment load, eroded particulate organics may also be fluvially deposited with potential for storage and/or oxidation. Understanding the redistribution of terrestrial carbon laterally, beyond the bounds of river channels is important, especially in eroding peatland systems where fluvial particulate organic carbon exports are often assumed to be oxidised. Floodplains have the potential to be both carbon cycling hotspots and areas of sequestration. Understanding of the interaction of carbon cycling and the sediment cascade through floodplain systems is limited. This paper examines the formation of highly organic floodplains downstream of heavily eroded peatlands in the Peak District, UK. Reconstruction of the history of the floodplains suggests that they have formed in response to periods of erosion of organic soils upstream. We present a novel approach to calculating a carbon stock within a floodplain, using XRF and radiograph data recorded during Itrax core scanning of sediment cores. This carbon stock is extrapolated to the catchment scale, to assess the importance of these floodplains in the storage and cycling of organic carbon in this area. The carbon stock estimate for the floodplains across the contributing catchments is between 3482-13460 tonnes, equating on an annualised basis to 0.8-4.5% of the modern-day POC flux. Radiocarbon analyses of bulk organic matter in floodplain sediments revealed that a substantial proportion of organic carbon was associated with re-deposited peat and has been used as a tool for organic matter source determination. The average age of these samples (3010 years BP) is substantially older than Infrared Stimulated Luminesence dating which demonstrated that the floodplains formed between 430 and 1060 years ago. Our data suggest that floodplains are an integral part of eroding peatland systems, acting as both significant stores of aged and eroded organic carbon and as hotspots of carbon turnover. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

9.
梯级筑坝对河流水环境演化的影响是国内外关注的热点.小型山区河流高密度梯级开发对水体生源要素的空间格局以及水环境演化的累积影响特征尚不清楚.以重庆市五布河为研究对象,对流域内8个“河流-水库-下泄水”交替系统中表层水体理化因子及碳(C)、氮(N)、磷(P)形态组成进行季节性监测,探讨了梯级筑坝对小型河流生源要素空间格局及水体富营养化风险影响的累积特征及驱动机制.结果表明:梯级水电开发对五布河流域水生生境和生源要素空间分配的影响具有潜在的累积效应,各库区水体碳氮磷浓度均呈逐级增加的空间规律;水库段的有机碳及不同形态的氮、磷浓度均高于入库河流,因此水体养分浓度呈现出河段尺度(即单个河流-水库-下泄水系统)和流域尺度(即上游至下游)耦合的空间变异模式.上游水库中溶解性氮、磷的再释放及下泄输移能够补给下游库区,加之下游水库泥沙对氮、磷的吸附-沉积作用的减弱,导致水体氮、磷总量及溶解性氮、磷的占比沿程增加,呈现梯级筑坝对水环境演化的累积影响.梯级筑坝影响下河流碳氮磷总量的相关性减弱,而溶解性养分间的相关性增强,形成了特殊的养分协同演化;水库群之间水力滞留时间的差异与水体碳氮磷浓度具有较好的线性关系,是影响流域养分分配的关键因素.五布河流域水体均为高富营养化风险,由于梯级筑坝下水体溶解性养分的逐级增加,下游水库水华风险更大;水力滞留时间与水体富营养化指数及叶绿素a浓度呈显著正向关,结合氮磷比特征的分析,本研究认为外源磷输入控制及水力滞留时间的调节是五布河梯级水库富营养化防控的有效途径.  相似文献   

10.
Bog systems tend to have a flashy hydrological regime with low baseflows and rapid and high storm peaks. Water derived from peatlands often contains significant amounts of organic humic and fulvic materials which form the largest fraction of the dissolved organic carbon component of the fluvial carbon flux. However, most estimates of dissolved organic carbon flux from peatlands are based on sampling that is infrequent and which may miss the periods of high flux during storm events. In order to better characterize the behaviour and fluxes of fluvial carbon it is necessary to operate more frequent sampling. This paper presents data from a continuously operating field‐based spectrophotometer simultaneously measuring absorbance across 200–730 nm at 2·5 nm intervals in runoff from an upland peatland stream. It is shown that absorbance at different wavelengths that have previously been used to characterize dissolved organic carbon varies rapidly during storm events. The probe is shown to even detect changes in absorbance characteristics in response to rainfall events before the stream discharge starts to rise. The high‐resolution behaviour of absorbance characteristics during storm events is different depending on the wavelength studied. Thus, the choice of wavelength used as a proxy for dissolved organic carbon needs careful attention and it may be that automated spectrophotometric methods which provide rich time‐series data from across the spectrum can tell us more about fluxes, processes and sources of aquatic carbon in peatland systems in the future than traditional practices have hitherto allowed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The sinks/sources of carbon in the Yellow Sea(YS) and East China Sea(ECS), which are important continental shelf seas in China, could exert a great influence on coastal ecosystem dynamics and the regional climate change process. The CO_2 exchange process across the seawater-air interface, dissolved and particulate carbon in seawater, and carbon burial in sediments were studied to understand the sinks/sources of carbon in the continental shelf seas of China. The YS and the ECS generally have different patterns of seasonal air-sea CO_2 exchange. In the YS, regions west of 124°E can absorb CO_2 from the atmosphere during spring and winter, and release CO_2 to the atmosphere during summer and autumn. The entire YS is considered as a CO_2 source throughout the year with respect to the atmosphere, but there are still uncertainties regarding the exact air-sea CO_2 exchange flux. Surface temperature and phytoplankton production were the key controlling factors of the air-sea CO_2 exchange flux in the offshore region and nearshore region of the YS, respectively. The ECS can absorb CO_2 during spring, summer, and winter and release CO_2 to the atmosphere during autumn. The annual average exchange rate in the ECS was-4.2±3.2 mmol m~(-2) d~(-1) and it served as an obvious sink for atmospheric CO_2 with an air-sea exchange flux of 13.7×10~6 t. The controlling factors of the air-sea CO_2 exchange in the ECS varied significantly seasonally. Storage of dissolved inorganic carbon(DIC) and dissolved organic carbon(DOC) in the YS and the ECS were 425×10~6 t and 1364×10~6 t, and 28.2×10~6 t and 54.1×10~6 t,respectively. Long-term observation showed that the DOC content in the YS had a decreasing trend, indicating that the "practical carbon sink" in the YS was decreasing. The total amount of particulate organic carbon(POC) stored in the YS and ECS was10.6×10~6 t, which was comparable to the air-sea CO_2 flux in these two continental shelf seas. The amounts of carbon sequestered by phytoplankton in the YS and the ECS were 60.42×10~6 t and 153.41×10~6 t, respectively. Artificial breeding of macroalgae could effectively enhance blue carbon sequestration, which could fix 0.36×10~6–0.45×10~6 t of carbon annually. Organic carbon(OC) buried in the sediments of the YS was estimated to be 4.75×10~6 t, and OC of marine origin was 3.03×10~6 t, accounting for5.0% of the TOC fixed by phytoplankton primary production. In the ECS, the corresponding depositional flux of OC in the sediment was estimated to be 7.4×10~6 t yr~(-1), and the marine-origin OC was 5.5×10~6 t, accounting for 5.4% of the phytoplankton primary production. Due to the relatively high average depositional flux of OC in the sediment, the YS and ECS have considerable potential to store a vast amount of "blue carbon."  相似文献   

12.
Tidal flats, which are important reserved land resources, have a vital role in climate change. To evaluate the contribution of coastal saline soils to carbon sequestration, field tests were performed over a 3 year period at the Dafeng Wanggang Experimental Station in Jiangsu Province, China. Six artificial agro‐ecosystems, including wasteland (WL), freshwater fish culture (FC), Sesbania culture (SC), barley culture (BC), mixed culture of fish and Sesbania (MCFS) and mixed culture of fish and barley (MCFB), were established according to developmental processes of coastal saline soils. At the initial stage of tidal flat reclamation, the soil organic carbon (SOC) increased by 59.4 t ha?1 in the FC system during 3 years, which was much higher than that of the WL system (40.7 t ha?1). When the tidal flats evolved into high saline soils, the MCFS system sequestered SOC more effectively than the FC or SC systems with increases of 53.1, 16.9 and 8.3 t ha?1, respectively. Subsequently, in the low saline soils, the maximum soil carbon sequestration was obtained in the MCFB system (35.8 t ha?1) followed by the BC (17.5 t ha?1) and FC (13.5 t ha?1) systems. Therefore, proper development of tidal flats to farmland and the subsequent establishment of optimised artificial agro‐ecosystems make an important contribution to carbon sequestration and climate changes in coastal areas.  相似文献   

13.
The environmental impact of marine fish culture: Towards a sustainable future   总被引:42,自引:0,他引:42  
The environmental impact of marine fish-farming depends very much on species, culture method, stocking density, feed type, hydrography of the site and husbandry practices. In general, some 85% of phosphorus, 80–88% of carbon and 52–95% of nitrogen input into a marine fish culture system as feed may be lost into the environment through feed wastage, fish excretion, faeces production and respiration. Cleaning of fouled cages may also add an organic loading to the water, albeit periodically. Problems caused by high organic and nutrient loadings conflict with other uses of the coastal zone. The use of chemicals (therapeutants, vitamins and antifoulants) and the introduction of pathogens and new genetic strains have also raised environmental concerns.

Despite the high pollution loadings, results from various studies show that some 23% of C, 21% of N and 53% of P of feed input into the culture system is being accumulated in the bottom sediments and the significant impact is normally confined to within 1 km of the farm. The major impact is on the sea bottom, where high sediment oxygen demand, anoxic sediments, production of toxic gases and a decrease in benthic diversity may result. Decreases in dissolved oxygen and increases in nutrient levels in the water are also evident but are normally confined to the vicinity of the farm. Tributyltin (TBT) contamination and the development of antibiotic-resistant bacteria have been reported near fish farms. The stimulating effects of vitamins/fish wastes on growth of red tide species have been demonstrated in a number of laboratory studies. Nevertheless, there is no evidence to support the suggestion that the present use of therapeutants, vitamins and antibiotics and the introduction of pathogens and new genetic strains would pose a significant threat to the environment.

Marine fish culture can be a sustainable development, provided pollution loadings generated by fish farms are kept well below the carrying capacity of the water body. Effects can be significantly reduced by careful site selection, control of stock density, improved feed formulation and integrated culture (with macroalgae, filter-feeders and deposit-feeders). An example of the application of computer modelling in mariculture management is demonstrated. Environmental impact assessment and monitoring should also be carried out to ensure culture activities are environmentally sustainable.  相似文献   


14.
Shapes and variations of reflectance spectra in estuarine water were investigated for the purpose of monitoring chlorophyll in situ by optical means. A survey undertaken in an estuarine environment, using reflectance measurements between 400 and 850 nm with a full-width half maximum (FWHM) of about 2 nm, revealed that the first derivative in the neighbourhood of the chlorophyll absorption band shows a defined spectral region which can be used to estimate chlorophyll concentrations. Correlation between chlorophyll and the first derivative was found to be low, but a good relationship exists between the ratio of the reflectance R680/R670 and chlorophyll concentrations. Based on dissolved organic carbon measurements, it is assumed that chromophoric dissolved organic compounds mask the absorption band of chlorophyll in the blue part of the spectrum, resulting in a low correlation coefficient in that spectral range. Therefore, the use of the red bands is an alternative for measuring photosynthetic pigments in coastal water at longer wavelengths. Results presented here demonstrate that the spectral locations of bands in the visible are not adequate and that hyperspectral data are required for positioning the very narrow bands for measuring chlorophyll at longer wavelengths.  相似文献   

15.
Soil is a huge terrestrial carbon pool, which has higher carbon storage than the sum of atmospheric and terrestrial vegetation carbon. Small fluctuations in soil carbon pool can affect regional carbon flux and global climate change. As soil organic carbon plays key roles in soil carbon storage and sequestration, studying its composition, sources and stability mechanism is a key to deeply understand the functions of terrestrial ecosystem and how it will respond to climate changes. The recently-proposed concept of soil Microbial Carbon Pump(MCP) emphasizes the importance of soil microbial anabolism and its contributions to soil carbon formation and stabilization, which can be applied for elucidating the source, formation and sequestration of soil organic carbon. This article elaborates MCP-mediated soil carbon sequestration mechanism and its influencing factors, as well as representative scientific questions we may explore with the soil MCP conceptual framework.  相似文献   

16.
Spectroscopic techniques and extracellular enzyme activity measurements were combined with assessments of bacterial secondary production (BSP) to elucidate flood-pulse-linked differences in carbon (C) sources and related microbial processes in a river-floodplain system near Vienna (Austria). Surface connection with the main channel significantly influenced the quantity and quality of dissolved organic matter (DOM) in floodplain backwaters. The highest values of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) were observed during the peak of the flood, when DOC increased from 1.36 to 4.37 mg l?1 and CDOM from 2.94 to 14.32 m?1. The flood introduced DOC which consisted of more allochthonously-derived, aromatic compounds. Bacterial enzymatic activity, as a proxy to track the response to changes in DOM, indicated elevated utilization of imported allochthonous material. Based on the enzyme measurements, new parameters were calculated: metabolic effort and enzymatic indices (EEA 1 and EEA 2). During connection, bacterial glucosidase and protease activity were dominant, whereas during disconnected phases a switch to lignin degradation (phenol oxidase) occurred. The enzymatic activity analysis revealed that flooding mobilized reactive DOM, which then supported bacterial metabolism. No significant differences in overall BSP between the two phases were detected, indicating that heterogeneous sources of C sufficiently support BSP. The study demonstrates that floods are important for delivering DOM, which, despite its allochthonous origin, is reactive and can be effectively utilized by aquatic bacteria in this river-floodplain systems. The presence of active floodplains, characterized by hydrological connectivity with the main channel, creates the opportunity to process allochthonous DOC. This has potential consequences for carbon flux, enhancing C sequestration and mineralization processes in this river-floodplain system.  相似文献   

17.
A total of 1008 samples were collected from the eight major riverine runoff outlets in the Pearl River Delta (PRD) during 2005-2006 to estimate the fluxes of total organic carbon (TOC) to the coastal ocean off South China. The average dissolved organic carbon (DOC) concentration was 1.67 mg/L with a range of 1.38-2.13 mg/L. Concentrations of particulate organic carbon (POC) ranged from 2.66-4.12% of total suspended particulate matter (SPM). The fluxes of TOC and SPM from the PRD via the eight outlets were 9.2 x 10(5) and 2.5 x 10(7)tons/yr, respectively. Temporal variations in POC and DOC were observed at all outlets due to the large variability in runoff levels because of the seasonality of rainfall, and the riverine discharge amount was an important factor controlling TOC flux. The net contribution of organic carbon from the PRD to the coastal ocean represented approximately 0.1-0.2% of total organic carbon transported by rivers worldwide.  相似文献   

18.
Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants(including salt marsh,mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor. The carbon sequestration capacity per unit area of coastal blue carbon is far greater than that of the terrestrial carbon pool. The mechanisms and controls of the carbon sink from salt marshes, mangroves, seagrasses, the aquaculture of shellfish and macroalgae, and the microbial carbon pump need to be further studied. The methods to quantify coastal blue carbon include carbon flux measurements, carbon pool measurements, manipulative experiments, and modeling. Restoring, conserving, and enhancing blue carbon will increase carbon sinks and produce carbon credits, which could be traded on the carbon market. The need to tackle climate change and implement China's commitment to cut carbon emissions requires us to improve studies on coastal blue carbon science and policy. The knowledge learned from coastal blue carbon improves the conservation and restoration of salt marshes,mangroves, and seagrasses; enhances the function of the microbial carbon pump; and promotes sustainable aquaculture, such as ocean ranching.  相似文献   

19.
Climate change will affect the regional ability to achieve the poverty reduction and sustainable development (SD) objectives. Thus, any action plans to achieve these objectives should make climate change policies an integral part of the development planning process. The best practices and measures of climate change policies should be implemented to ensure regional or community sustainability. In this paper, a case study that promotes the integration of carbon sequestration into sustainable forest management and rural development plan with multi-stakeholders participation is introduced. To achieve SD goals, appropriate tools and methods are required to address impacts of alternative forest land uses on carbon sequestration and rural sustainability, and to prioritise land use options. A range of forest land use scenarios that address various aspects of the forest carbon sequestration rate and rural sustainability are evaluated against a SD indicator system. Planting vegetation is one of the practical approaches in mitigating global warming by sequestrating carbon from the atmosphere to plant matter and soil. In order to protect environment, reduce excessive soil erosion, and decrease the propensity and frequency of flooding and other natural disasters, China has initiated nationwide pivotal projects such as “Grain for Green” to mitigate exacerbated environmental deterioration and degradation. Such ecological programs may affect the socio-economic livelihoods of peasants and the economic activities of the whole region. The impact and economic uncertainty associated with such projects urge policy makers to include all stakeholders in the decision making process so that an agreeable solution towards sustainable rural development can be identified. This study uses Liping County in Guizhou province as a case study to identify a consensus among peasants regarding planting selected tree-species. Analytic hierarchy process (AHP) is used as a multicriteria decision making tool to rank sustainability criteria and determine the priority of options. The method helps policy makers to understand what the peasants want to achieve by participating in a Grain for Green program and what their priorities are with respect to particular types of vegetation. The case study finds that economic and financial concerns are the most important drivers of the decision of which trees to plant among the peasants who took part in the implementation of the Grain for Green program. As a result of this, Gingko, redpine, and Chinese chestnut were the predominant trees planted under the program. The integrated assessment based on the AHP method provides an effective tool to help understand how economic, social and environmental factors are related to each other in affecting the nature of rural sustainability.  相似文献   

20.
We investigate sources of both dissolved and particulate organic carbon in the St Lawrence River from its source (the Great Lakes outlet) to its estuary, as well as in two of its tributaries. Special attention is given to seasonal interannual patterns by using data collected on a bi‐monthly basis from mid‐1998 to mid‐2003. δ13C measurements in dissolved inorganic carbon, dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as molar C : N in particulate organic matter (POM), are used to bring insight into the dynamic between aquatic versus terrigenous sources. In addition, 14C activities of DOC were measured at the outlet of the St Lawrence River to its estuary to assess a mean age of the DOC exported to the estuary. In the St Lawrence River itself, aquatically produced POC dominates terrestrially derived POC and is depleted in 13C by approximately 12‰ versus dissolved CO2. In the Ottawa River, the St Lawrence River's most important tributary, the present dataset did not allow for convincing deciphering of POC sources. In a small tributary of the St Lawrence River, aquatically produced POC dominates in summer and terrestrially derived POC dominates in winter. DOC seems to be dominated by terrestrially derived organic matter at all sampling sites, with some influence of DOC derived from aquatically produced POC in summer in the St Lawrence River at the outlet of the Great Lakes and in one of its small tributaries. The overall bulk DOC is relatively recent (14C generally exceeding 100% modern carbon) in the St Lawrence River at its outlet to the estuary, suggesting that it derives mainly from recent organic matter from topsoils in the watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号