首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 515 毫秒
1.
GRAPES模式不同云物理方案对短期气候模拟的影响   总被引:10,自引:3,他引:10  
章建成  刘奇俊 《气象》2006,32(7):3-12
在胡志晋、刘奇俊云物理方案的基础上,研制了GRAPES模式的云降水显式方案。用不同云物理方案开展了短期气候(月尺度)过程的模拟试验,并与地面观测资料和NECP再分析资料进行了对比分析。模拟的结果表明,耦合了云降水显式方案的GRAPES模式较好地模拟出了中国地区降水、温度、云量、长短波辐射的特点和分布规律。气候模拟中冰相过程和暖云过程模拟的降水、温度、云量和辐射差异较大,不同相态的水凝物及其分布对辐射特征有较大的影响,混合相云物理方案的模拟结果与实况更为吻合,应使用混合相云物理方案进行短期气候的模拟。  相似文献   

2.
北京一次积层混合云系结构和水分收支的数值模拟分析   总被引:3,自引:2,他引:1  
陶玥  李军霞  党娟  李宏宇  孙晶 《大气科学》2015,39(3):445-460
本文利用中国气象科学研究院(CAMS)中尺度云分辨模式对2007年10月的一次积层混合云降水过程进行了数值模拟。利用模拟结果结合实测资料, 研究了积层混合云系的宏微观结构和降水特征, 并分析了云系的水分收支及降水效率。结果表明:积层混合云是导致此次北京降水的主要云型;积层混合云降水分布不均匀, 云系中微物理量的水平和垂直分布都不均匀, 具有混合相云的云物理结构。冷云降水过程占主导地位, 雪的融化对雨水的形成贡献最大。北京区域降水过程的主要水汽源地为黄海海面及蒙古国, 两支气流在陕西北部汇合后的西南气流将水汽输送到华北地区, 北京区域以外, 水汽和水凝物主要从西边界和南边界输送到域内。北京区域降水主要时段内, 水物质通量在水平方向上为净流入。对北京区域水汽、水凝物和总水物质的水分收支各项的估算表明, 水物质基本达到平衡。北京区域从2007年10月5日20时至6日14时, 总水成物降水效率、凝结率、凝华率及总水凝物降水效率分别为5.6%、4.77%、4.19%、44.9%。  相似文献   

3.
将三套显式云降水方案移植、耦合到国家气象中心业务有限区数值预报模式HLAFS中, 显式云降水方案包括双参数暖云方案、简化混合相云方案和双参数混合相云方案,明显地改进了原模式预报系统的湿物理过程,特别是对云降水过程的模拟能力.详细介绍了这三套云降水方案的物理过程,以及与动力框架的耦合.  相似文献   

4.
利用FNL再分析资料和中尺度数值模式输出的高分辨率资料,分析了2016年6月30日~7月1日发生在重庆的一次低涡暴雨过程的环流背景、水汽输送特征和收支状况、云物理降水机制。结果表明:受500hPa短波槽和700hPa低涡共同影响,以及孟加拉湾和南海的暖湿气流持续输送,为此次低涡暴雨的发生、发展提供了有利的条件;南边界的水汽输入通量对整个暴雨过程中水汽的贡献最大,东边界次之。另外,降水发展不同区域不同时段,云物理降水机制都存在显著差异。渝西降水前期和后期,均为混合相降水;渝东北降水前期云系以冷云为主,后期以暖云降水为主。   相似文献   

5.
GRAPES_GFS不同湿物理过程对云降水预报性能的诊断与评估   总被引:1,自引:0,他引:1  
积云对流和云微物理是数值天气预报模式中最为重要的两类湿物理过程,它们共同影响云和降水的预报性能。通过采用CMAP降水资料和MODIS、MLS及Cloud Sat卫星云观测资料对全球中期数值预报模式GRAPES_GFS中这两类湿物理过程参数化方案的不同组合所预报的降水场和云宏微观场进行诊断和评估,以揭示其对云和降水的预报性能。结果表明:(1)云微物理方案是中高纬度地区总降水预报差异的主因,三种云微物理方案预报的降水强度为SINCEP3NCEP5。赤道及低纬地区降水差异主要是由积云对流方案引起的,KF_SI组合与CMAP降水最为一致。(2)SI方案和NCEP3方案在中纬度地区格点降水要显著多于混合相云NCEP5方案;与SAS方案和KF方案相比,BM方案使与其组合的云方案产生的格点降水明显偏少。(3)BM方案产生的对流降水要明显多于SAS方案和KF方案,中高纬地区SAS方案和KF方案预报的对流降水基本一致,在低纬地区SAS方案对流降水最少。(4)NCEP5方案预报的云顶温度与MODIS观测吻合较好,NCEP3方案和SI方案预报的云顶温度要较实况偏暖。三种对流方案预报的云顶温度冷暖关系为SASBMKF,BM和KF预报的云顶温度与实况较为接近。(5)NCEP5方案预报的积分云水与卫星观测最为接近,两种简冰方案显著偏少,尤以SI方案偏少最多。SAS和KF方案能较好的预报积分云水的空间分布,但其量值较观测偏大,BM方案预报的积分云水在低纬度地区偏少明显。(6)所有方案组合预报的卷云较MLS卫星观测显著偏少,混合相云方案对卷云预报较简冰方案具有一定优势,BM方案偏少最显著。(7)全球平均而言,KF对流方案和NCEP5云微物理方案对GRAPES_GFS的云和降水预报性能较其他降水物理方案具有一定优势。  相似文献   

6.
一个简化的混合相云降水显式方案   总被引:30,自引:5,他引:25       下载免费PDF全文
该文提出一个新的混合相云降水显式方案,它预报2个云物理量,即云水(冷区为过冷云水)和降水(冷区为冰雪,暖区为雨),考虑了7种云物理过程。文中给出了详细的方程组,可以作为一个子程序供大、中尺度天气模式使用。该方案还与详细微物理显式方案和暖云方案作了实例模拟比较。  相似文献   

7.
上海地区几类强降水雨滴谱特征分析   总被引:3,自引:3,他引:0  
谢媛  陈钟荣  戴建华  胡平 《气象科学》2015,35(3):353-361
用Parsivel激光降水粒子谱仪资料对2013年上海地区4—10月份期间4种类型 (层状云、对流暖云主导型、对流冷云主导型和强台风影响下的混合暖云型) 降水过程的雨滴谱特征进行了分析。通过平均雨滴谱及其拟合特征、雨滴数密度与含水量分布、雨滴尺度与速度二维谱分布等对比分析发现:各类降水中, 雨滴谱的峰值结构与雨强大小有关, 其中直径介于0.187~1.312 mm的小雨滴均出现峰值且总数最多。各尺度雨滴数密度及其比例决定了其降水量贡献比, 在冷云强降水中的雨强贡献最大的雨滴尺度要显著大于其他3种类型。雨滴谱宽按大小排列依次为对流冷云主导型、混合暖云型、对流暖云主导型和层状云。最后综合运用雨滴谱、雷达、雨量站、闪电等观测资料对9月13日对流冷云主导型降水过程进行分析后发现:在雷暴的演变过程中, 雨滴谱特征与雷达反射率因子、垂直液态水含量、自动站雨强、闪电频次等要素均有较好的相关性。冷云产生的冰晶和冰雹融化后的大雨滴进入中低层的广谱小雨滴群, 并通过破碎分裂增加了大雨滴的形成概率, 尤其是捕捉碰并过程更加快了大雨滴的增长速度, 使雨强在短时间内迅速加强。雨滴谱中各档粒子数的演变, 揭示了降水强度的变化, 用雨滴谱资料可有效弥补现有雷达定量估测降水的偏差, 且在冷云中改善明显。  相似文献   

8.
利用2010年8月18日副热带高压后部层状云降水中山区层状云的飞机穿云观测资料,结合雷达、卫星云图及天气图等资料,详细分析了此次高后降水中山区层状云的宏观特征、微物理结构,并对降水形成机制进行初步探讨.结果表明:此个例由两层云构成,上层为冷云,下层主要为暖云;冷层粒子图像显示主要以板状为主,平板柱状、柱状和霰粒为辅,冰粒子的聚合体在整个冷层都有出现;降水形成机制为播种—喂养机制,冷云中观测到丛集和淞附现象,其中淞附现象主要发生在冷云的中下部靠近融化层附近.  相似文献   

9.
青藏高原低涡活动对降水影响的统计分析   总被引:6,自引:0,他引:6  
郁淑华  高文良  彭骏 《高原气象》2012,31(3):592-604
利用1998—2004年逐日08:00(北京时,下同)和20:00 500hPa高空图、日雨量和青藏高原低涡(下称高原低涡)切变线年鉴资料,统计分析了冬、夏半年不同生命史的高原低涡对我国和四川盆地东、西部降水的影响。结果表明,冬、夏半年高原低涡以东部涡占多数,6-10月有三分之一的东部涡能移出高原。冬半年高原低涡出现次数少,约占全年的五分之一,但也可造成高原及其周边地区的雨雪天气,特别是生命史超过36h以上的高原低涡有近半数可移出高原,造成高原区域暴雨雪,四川盆地中雨,半数可造成云南大雨雪或暴雨雪。夏半年,随着低涡生命史的增长,高原低涡影响高原及其周边地区和我国其他地区的降水范围和强度在增大,生命史超过60h以上的高原低涡可造成高原暴雨、甘肃中雨以上、四川盆地暴雨或大暴雨及云南大部分地区大雨以上的降水,每年都有1~5次可影响到华中、华东地区产生大雨以上的降水。100°E以东的高原低涡,不论是否移出,均可造成四川盆地中雨以上的降水。影响四川盆地降水的高原低涡以偏东路径为主,但东南路径影响更强。  相似文献   

10.
利用机载粒子测量系统资料、天气雷达和Ka波段云雷达资料,分析了2017年5月22日河北省一次低槽冷锋降水过程积层混合云的微物理结构。结果表明:降水云系出现在低槽槽前西南气流中,积层混合云为大范围的层状云系中镶嵌大量对流云核结构,0℃层高度位于3577—4004m,随降水过程发展0℃层高度降低,嵌入的对流加强将抬升云顶高度。云内粒子浓度随云内对流的发生和加强而提高,云粒子浓度从1.8×10^5L^-1上升至5.0×10^5L^-1;云内过冷水含量大幅提高,从0.05g·m^-3上升至0.60g·m^-3,冷云中上层过冷水含量可长时间维持在0.20g·m^-3,中上层过冷水占比达60%。对流发生和加强可提高冰晶粒子增长速度,弱对流区冷云低层出现冰晶粒子浓度爆发增长区,强对流区冷云中上层成为冰晶粒子浓度快速增长区;最大降水粒子直径从8000μm增长至10000μm以上,直径在10000μm以上降水粒子谱分布区域从云底向中上层拓展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号