首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary Laboratory model test results are presented that determine the effectiveness of using layers of geogrids as reinforcement in sand to reduce the settlement of square surface foundations subjected to transient loading. The model tests were conducted with only one type of geogrid at one relative density of compaction of sand. The maximum intensity of the transient load applied always exceeded the static ultimate bearing capacity of the foundation when supported by unreinforced sand. The settlement reduction factors for various depths of reinforcement have been determined.  相似文献   

2.
Summary Laboratory model test results for the ultimate bearing capacity of surface strip foundations on geogrid-reinforced sand and unreinforced sand are presented. A fine uniform sand and one type of geogrid (Tensar BX1000(SSO)) were used for the tests. The width of the foundation and the relative density of sand were varied to determine their effects on the bearing capacity ratio. It was found that the bearing capacity ratio of the sand-geogrid system decreased with an increase in foundation width. However, above a certain foundation width (130–140 mm) a practically constant value of bearing capacity ratio was observed.  相似文献   

3.
提供了土工格栅加筋砂土上的偏心受压条形基础极限承载力的室内模型试验结果。试验中只使用了一种相对压实密度的砂土和一种土工格栅,基础深度由0变化至B(基础宽度)。基于室内试验结果,提出了一个称为折减系数的经验关系,将偏心受压基础的极限承载力与中心受压基础的极限承载力联系起来。  相似文献   

4.
The pull-out resistance of reinforcing elements is one of the most significant factors in increasing the bearing capacity of geosynthetic reinforced soils. In this research a new reinforcing element that includes elements (anchors) attached to ordinary geogrid for increasing the pull-out resistance of reinforcements is introduced. Reinforcement therefore consists of geogrid and anchors with cubic elements that attached to the geogrid, named (by the authors) Grid-Anchor. A total of 45 load tests were performed to investigate the bearing capacity of square footing on sand reinforced with this system. The effect of depth of the first reinforcement layer, the vertical spacing, the number and width of reinforcement layers, the distance that anchors are effective, effect of relative density, low strain stiffness and stiffness after local shear were investigated. Laboratory tests showed that when a single layer of reinforcement is used there is an optimum reinforcement embedment depth for which the bearing capacity is the greatest. There also appeared to be an optimum vertical spacing of reinforcing layers for multi-layer reinforced sand. The bearing capacity was also found to increase with increasing number of reinforcement layer, if the reinforcement were placed within a range of effective depth. The effect of soil density also is investigated. Finally the results were compared with the bearing capacity of footings on non-reinforced sand and sand reinforced with ordinary geogrid and the advantages of the Grid-Anchor were highlighted. Test results indicated that the use of Grid-Anchor to reinforce the sand increased the ultimate bearing capacity of shallow square footing by a factor of 3.0 and 1.8 times compared to that for un-reinforced soil and soil reinforced with ordinary geogrid, respectively.  相似文献   

5.
风积沙地基斜柱基础上拔水平力组合荷载试验   总被引:1,自引:1,他引:0  
对不同埋深、不同底板宽度和不同露头高度的风积沙地基斜柱式扩展基础,在上拔与水平力组合荷载作用下的承载变形特性、基础底板与风积沙地基之间的接触压力变化规律开展现场试验研究。结果表明,由于风积沙地基的散体结构特性,上拔与水平力组合荷载作用下斜柱式扩展基础的强度机理可概括为:风积沙地基被压缩挤密-塑性区出现和发展-整体上拔破坏的渐进破坏过程,地基破裂面具有不对称性。水平荷载大小、深宽比及嵌固程度是决定斜柱式扩展基础抗拔承载力的重要因素,增加基础深宽比及嵌固程度可有效提高基础稳定性。  相似文献   

6.
土工格栅加筋土地基平板载荷试验研究   总被引:2,自引:0,他引:2  
徐超  胡荣  贾斌 《岩土力学》2013,34(9):2515-2520
在近年来的岩土工程实践中,土工合成材料加筋土技术得到越来越广泛的应用。采用平板载荷板试验方法,进行了多组加筋砂土地基模型试验,监测和分析了不同加筋材料(双向格栅与四向格栅)和加筋层数对土工格栅加筋土地基承载特性的影响。研究结果表明:土工格栅加筋土地基与无筋地基相比,承载性能得到改善,双层加筋明显优于单层加筋;土工格栅加筋限制了浅层地基的侧向变形,相同荷载下地基沉降减小,可恢复变形增大;模型试验中测得加筋材料应变和拉力很小,与土工格栅强度相比,拉伸模量对加筋土地基承载力的贡献更大。  相似文献   

7.
Summary Laboratory model test results for permanent settlement of a shallow square foundation supported by geogrid-reinforced sand and subjected to cyclic loading are presented. During the application of the cyclic load, the foundation was subjected to a sustained static load. Tests were conducted with only one type of geogrid and at one relative density of compaction of sand. Based on the model test results, the nature of variation of the permanent settlement of the foundation with the intensity of the static loading and the amplitude of the cyclic load intensity are presented in a non-dimensional form.  相似文献   

8.
Bearing capacity tests of strip footings on reinforced layered soil   总被引:1,自引:0,他引:1  
The ultimate bearing capacity of strip footings resting on subsoil consisting of a strong sand layer (reinforced/unreinforced) overlying a low bearing capacity sand deposit has been investigated. Three principal problems were analysed based on results obtained from the model tests as follows: (1) the effect of stratified subsoil on the foundations bearing capacity; (2) the effect of reinforcing the top layer with horizontal layers of geogrid reinforcement on the bearing capacity; (3) effect of reinforcing stratified subsoil (reinforced and unreinforced) on the settlement of the foundation. It has been observed that reinforcing the subsoil after replacing the top layer of soil with a well-graded soil is beneficial as the mobilization of soil-reinforcement frictional resistance will increase.  相似文献   

9.
王家全  张亮亮  刘政权  周圆兀 《岩土力学》2018,39(10):3539-3547
为了研究土工格栅加筋砂土地基在动力荷载作用下的受力变形特性,利用自行设计的300 cm×160 cm×200 cm(长×宽×高)大比例地基模型试验装置,分别针对纯砂地基、土工格栅加筋地基进行了静动荷载破坏试验。分析地基承载力及基础沉降、地基土压力、动力加速度响应、土工格栅应变等参数变化规律,揭示了动力荷载作用下加筋砂土地基的承载力和变形特征,并对比分析静、动荷载对加筋地基承载性能的影响。试验结果表明,与纯砂地基相比,格栅单层加筋地基的承载力提高1.12倍,地基基础中轴线处沉降量减少24%,加筋土体的抗变形能力得到很大提高;加筋作用改变了地基的破坏模式,动载作用下纯砂地基为冲剪破坏而加筋地基为整体剪切破坏;筋材的存在对地基土压力及加速度峰值分别有明显的扩散作用和衰减作用,可有效降低在动力载荷下筋土的瞬态变形。  相似文献   

10.
Summary Laboratory model test results for the ultimate bearing capacity of a strip foundation supported by geogrid-reinforced sand and saturated clay are presented. One type of geogrid only was used for all the tests. On the basis of the model test results, the optimum depth and width of reinforcing layers and the optimum depth of the location of the first layer of the geogrid in sand and saturated clay were determined and compared.  相似文献   

11.
The paper presents the performance of a square footing with a structural skirt resting on sand and subjected to a vertical load through an experimental study. A series of tests were conducted in a model test tank to evaluate the performance in terms of improvement in bearing capacity and reduction in settlement of a square footing with and without a structural skirt. The results of the study reveal that this type of reinforcement increases the bearing capacity, reduces the settlement and modifies the load settlement behaviour of the footing. The various factors influencing the bearing capacity improvements and settlement reduction using a structural skirt are identified. Skirt factors are proposed which can be introduced into the general ultimate bearing capacity equation for a square footing resting on sand. The predictions made through the modified equation are in reasonable agreement with the experimental results. The bearing capacity of square footing is increased in the range of 11.2 to 70%. The improvement in bearing capacity decreases with the increase in base roughness of the footing. Further, an equation for a settlement reduction factor is proposed which can be used to calculate the settlement of the square footing with structural skirt resting on sand. The settlement reduction factor (SRF, defined as the ratio of settlement of footing with structural skirt to the settlement of footing without structural skirt at a given load) was in the range 0.11 to 1.0 depending on applied load and skirt depth ratio with the use of a structural skirt. The results further reveal that for a given depth of the skirt, the settlement reduction factor decreases with the increase in applied load. The improvement in the bearing capacity and reduction in settlement of a square footing with a structural skirt resting on sand are dependent on the geometrical and structural properties of the skirt, footing, sand characteristics and interface conditions of the sand–skirt–footing system.  相似文献   

12.
The effect of a base geogrid layer below the geocell mattress in sand, sand overlying soft clay, and soft clay foundation beds has been studied using a series of laboratory scale load tests. A rigid circular model footing was used to apply static monotonic loading on the foundation beds with and without geocell reinforcement. The model test results show that the provision of an additional layer of planar geogrid at the base of the geocell mattress further increases the performance of the footing in terms of bearing capacity and reduction in surface heave of the foundation bed. It is also observed that the beneficial effect of the base geogrid layer becomes negligible with increasing height of the geocell mattress beyond the influence of the depth of the footing. Strain measurements in the base geogrid layer indicate that it is more effective with the limited heights of the geocell mattress. The earth pressure cells embedded in the subgrade soil provide evidence that when the base geogrid is provided below the geocell mattress, the footing pressure is distributed more uniformly over an extended area.  相似文献   

13.
崔强  孟宪乔  杨少春 《岩土力学》2016,37(Z2):195-202
扩径率和入岩深度是影响岩基挖孔基础抗拔承载特性的两个重要因素。通过开展8个不同扩径率、不同入岩深度挖孔基础的现场真型上拔静载试验,从荷载位移变化规律、抗拔承载力和地基岩体破坏模式三方面分析了扩径率与入岩深度对基础抗拔承载特性的影响,结果表明扩径率对荷载位移曲线初始线性阶段影响显著。采用图解法分别获得代表基础低、中、高3种承载能力的抗拔承载力QL1、QDLI、QL2,分析表明,随着扩径率与入岩深度的增加,基础抗拔承载力均有不同程度提高,但两种因素对基础承载力影响机制不同,扩径率可明显提高初始弹性阶段的承载力QL1,而入岩深度可明显提高塑性阶段的承载力QDLI和QL2。通过分析地基破坏时地表岩体裂缝的分布特征,得出岩基中上拔岩体的破坏模式与基础结构型式无关,均是从基底开始出现裂缝,沿着一定角度的开口延伸至地面,直至地基发生破坏,并且破坏范围随着入岩深度的增加而减小。综合考虑基础施工安全性、经济性和机械化程度,建议优先选择加深入岩深度的措施来提高基础抗拔承载力。  相似文献   

14.
砂卵石层上大直径扩底短墩竖向承载性状   总被引:12,自引:2,他引:10  
根据同一场地砂卵石层中一组土的深层静载荷试验、一组纯摩擦桩和两组原型扩底墩的竖向承载力静载试验,分析了埋深在6.20~6.75 m处的扩底短墩的荷载传递性状。结果表明,可用直接试验法和间接试验法确定扩底墩的竖向承载力。以卵石层为持力层的S3试验墩的极限承载力为7 250 kN,其中端阻力达6 890 kN,占95 %;以砂层为持力层的S2墩的极限承载力为2 330 kN,端阻力占85 %。当墩顶仅沉降1.46 mm左右时,S3、S2墩侧摩阻力已充分发挥;在端阻力充分发挥时,S3、S2墩顶沉降则分别达92.64 mm和21.07 mm。直径相同时,扩底桩的竖向承载力远大于纯摩擦桩和直身墩。  相似文献   

15.

A screw pile has higher end bearing capacity than any other straight pipe piles due to its larger helix with respect to central shaft. However, larger helices are not frequently used as it will bend and may reduce the actual bearing capacity of the ground. In the present study, the effect of helix bending deflection on the load settlement behaviour and ultimate bearing capacity is investigated. To achieve the objectives, model scale pile load tests were conducted. The effect of helix bending on the load settlement behaviour at higher stress level was also investigated in this research. The helices with different helix-to-shaft-diameter ratios and thicknesses were used, so that clear difference of deformed and non-deformed screw piles in the load settlement behaviour can be observed. Dry Toyoura sand in dense state was used as a model ground. It is observed from test results that the helix bending deflection starts affecting the load settlement behaviour of the ground if it is more than the critical helix bending deflection. The ratio of critical helix bending deflection to outstand length decreases with increase in helix-to-shaft-diameter ratio, and its relationship is presented in this study. It is also observed that the Roark’s formula for flat circular plate having uniform load over a very small circular area with fixed outer edges showed good agreement with the measured helix bending deflection. In order to estimate the optimum helix thickness, the well-agreed equation is also modified with respect to critical helix bending deflection.

  相似文献   

16.
针对目前国内采用桩与土工格栅联合作用加固高速公路软土地基的新方法,利用平面应变弹塑性有限元方法,建立路基的二维有限元模型进行数值分析计算。对人们普遍关注的土工格栅在提高地基承载力和稳定性方面的有效性进行分析,并研究在置换率相同情况下桩径和桩间距的变化以及在置换率变化条件下不同桩径和桩间距的选取对复合地基承载力的影响规律,为今后桩基的优化设计提供可靠的参考依据。  相似文献   

17.
孟振  陈锦剑  王建华  尹振宇 《岩土力学》2012,33(Z1):141-145
通过室内模型试验,研究砂土中螺纹桩的竖向承载特性,比较分析螺纹桩与普通直桩承载性能的差异以及螺距对螺纹桩承载力的影响。静载荷试验后进行一系列土工试验,研究桩周土的物理力学性质。试验结果表明,在相同条件下螺纹桩的极限承载力约是普通直桩极限承载能力的1~4倍,极限状态下的平均桩侧阻力是普通直桩的3~4倍;在一定范围内,随着螺距的减小,螺纹桩的桩侧阻力可以得到有效的发挥,极限承载能力和控制沉降的能力逐渐增强。  相似文献   

18.
安哥拉罗安达广泛分布的湿陷性砂(Quelo砂),是一种对水十分敏感的特殊砂土,具有浸水后强度降低,并产生湿陷变形的特殊性质,由于缺乏相应的资料和工程经验,其湿陷程度和承载特性是评价的难点。本文通过天然和浸水饱和条件下的载荷试验,实测和研究了罗安达Quelo砂的湿陷变形特点和不同条件下的承载力特征。试验研究结果显示,罗安达Quelo砂是一种湿陷程度为轻微—中等的湿陷性土;Quelo砂的承载力对水分异常敏感,地基土含水率的微小变化即可导致承载力数倍的降低,且饱和后的承载力较小,试验场地浸水饱和后的地基承载力深度修正系数可取1.07。试验表明,在工程实践中考虑地基土含水率变化对地基承载力的影响,不采用消除地基全部湿陷量或部分湿陷量的方法,而将红砂地基当做一般地基进行设计是可行的。  相似文献   

19.
Onshore and offshore oil spills contaminate soil. In addition to environmental concerns for ground water pollution and other possible effects, the geotechnical properties of the contaminated soil such as the shear strength and the hydraulic conductivity are also altered. This note is a report of research in progress to evaluate the variation of the shear strength of a sand contaminated by a crude oil and thus the ultimate bearing capacity of shallow foundations. The limited results of the tests reported here relate to only one type of sand and one crude oil. The oil content was varied from zero to 4.2%. Results of direct shear tests for determining the soil friction angle are given. Along with these, laboratory model test results for the ultimate bearing capacity of a surface strip foundation supported by crude oil-contaminated sand are also presented. Based on these test results, the effect of oil contamination in drastically reducing the bearing capacity is discussed.  相似文献   

20.
桩-网复合地基承载性状现场试验研究   总被引:9,自引:2,他引:7  
连峰  龚晓南  崔诗才  刘吉福 《岩土力学》2009,30(4):1057-1062
桩-网复合地基是一种软弱地基处理方法,它能通过变形协调,充分发挥桩、网、土的各自作用,有效地控制工后沉降或差异沉降。为了解路堤荷载下桩-网复合地基工作机制,深入分析其沉降变形、荷载传递、桩土应力比和网的受力等性状,接桩体种类设计了两个试验区进行对比分析,研究成果表明,桩网复合地基可以有效减少沉降量;土工格栅的荷载传递能力强于土拱;土工格栅的最大应变出现在桩帽边缘,仅为1 %,最小应变则出现在桩间。试验结果为桩网复合地基理论研究和优化设计提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号