首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The rocks comprising the Kari Kari massif southeast of the city of Potosi, Bolivia, consist entirely of welded ignimbrites. It is argued that the massif constitutes the resurgent centre of a 20-m.y.-old resurgent caldera. Plutonic rocks are exposed in the south, but volcanic rocks of the caldera rim are exposed in the north, and indicate a shallower erosion level there. The volcanic rocks consist of a coarse moat deposit, consisting of angular fragments of basement material and juvenile clasts, overlain by an extensive garnet-bearing ignimbrite. A plant-fossil-bearing lacustrine deposit was laid down in a lake within the caldera. The Cerro Rico stock, noted for its silver-tin mineralisation, may be a late intrusion along the caldera ring fractures.  相似文献   

2.
The late-seventeenth century BC Minoan eruption of Santorini discharged 30–60 km3 of magma, and caldera collapse deepened and widened the existing 22 ka caldera. A study of juvenile, cognate, and accidental components in the eruption products provides new constraints on vent development during the five eruptive phases, and on the processes that initiated the eruption. The eruption began with subplinian (phase 0) and plinian (phase 1) phases from a vent on a NE–SW fault line that bisects the volcanic field. During phase 1, the magma fragmentation level dropped from the surface to the level of subvolcanic basement and magmatic intrusions. The fragmentation level shallowed again, and the vent migrated northwards (during phase 2) into the flooded 22 ka caldera. The eruption then became strongly phreatomagmatic and discharged low-temperature ignimbrite containing abundant fragments of post-22 ka, pre-Minoan intracaldera lavas (phase 3). Phase 4 discharged hot, fluidized pyroclastic flows from subaerial vents and constructed three main ignimbrite fans (northwestern, eastern, and southern) around the volcano. The first phase-4 flows were discharged from a vent, or vents, in the northern half of the volcanic field, and laid down lithic-block-rich ignimbrite and lag breccias across much of the NW fan. About a tenth of the lithic debris in these flows was subvolcanic basement. New subaerial vents then opened up, probably across much of the volcanic field, and finer-grained ignimbrite was discharged to form the E and S fans. If major caldera collapse took place during the eruption, it probably occurred during phase 4. Three juvenile components were discharged during the eruption—a volumetrically dominant rhyodacitic pumice and two andesitic components: microphenocryst-rich andesitic pumices and quenched andesitic enclaves. The microphenocryst-rich pumices form a textural, mineralogical, chemical, and thermal continuum with co-erupted hornblende diorite nodules, and together they are interpreted as the contents of a small, variably crystallized intrusion that was fragmented and discharged during the eruption, mostly during phases 0 and 1. The microphenocryst-rich pumices, hornblende diorite, andesitic enclaves, and fragments of pre-Minoan intracaldera andesitic lava together form a chemically distinct suite of Ba-rich, Zr-poor andesites that is unique in the products of Santorini since 530 ka. Once the Minoan magma reservoir was primed for eruption by recharge-generated pressurization, the rhyodacite moved upwards by exploiting the plane of weakness offered by the pre-existing andesite–diorite intrusion, dragging some of the crystal-rich contents of the intrusion with it.  相似文献   

3.
The 35 × 20 km Cerro Galán resurgent caldera is the largest post-Miocene caldera so far identified in the Andes. The Cerro Galán complex developed on a late pre-Cambrian to late Palaeozoic basement of gneisses, amphibolites, mica schists and deformed phyllites and quartzites. The basement was uplifted in the early Miocene along large north-south reverse faults, producing a horst-and-graben topography. Volcanism began in the area prior to 15 Ma with the formation of several andesite to dacite composite volcanoes. The Cerro Galán complex developed along two prominent north-south regional faults about 20 km apart. Dacitic to rhyodacitic magma ascended along these faults and caused at least nine ignimbrite eruptions in the period 7-4 Ma (K-Ar determinations). These ignimbrites are named the Toconquis Ignimbrite Formation. They are characterised by the presence of basal plinian deposits, many individual flow units and proximal co-ignimbrite lag breccias. The ignimbrites also have moderate to high macroscopic pumice and lithic contents and moderate to low crystal contents. Compositionally banded pumice occurs near the top of some units. Many of the Toconquis eruptions occurred from vents along a north-south line on the western rim of the young caldera. However, two of the ignimbrites erupted from vents on the eastern margin. Lava extrusions occurred contemporaneously along these north-south lines. The total D.R.E. volume of Toconquis ignimbrite exceeds 500 km3.Following a 2-Ma dormant period a single major eruption of rhyodacitic magma formed the 1000-km3 Cerro Galán ignimbrite and the caldera. The ignimbrite (age 2.1 Ma on Rb-Sr determination) forms a 30–200-m-thick outflow sheet extending up to 100 km in all directions from the caldera rim. At least 1.4 km of welded intracaldera ignimbrite also accumulated. The ignimbrite is a pumice-poor, crystal-rich deposit which contains few lithic clasts. No basal plinian deposit has been identified and proximal lag breccias are absent. The composition of pumice clasts is a very uniform rhyodacite which has a higher SiO2 content but a lower K2O content than the Toconquis ignimbrites. Preliminary data indicate no evidence for compositional zonation in the magma chamber. The eruption is considered to have been caused by the catastrophic foundering of a cauldron block into the magma chamber.Post-caldera extrusions occurred shortly after eruption along both the northern extension of the eastern boundary fault and the western caldera margin. Resurgence also occurred, doming up the intracaldera ignimbrite and sedimentary fill to form the central mountain range. Resurgent doming was centred along the eastern fault and resulted in radial tilting of the ignimbrite and overlying lake sediments.  相似文献   

4.
The Archibarca lineament is one of several NW–SE-trending transverse lineaments that cut across the Central Andes of Argentina and Chile. Central Andean, Late Miocene–Quaternary subduction-related volcanism is mainly restricted to a 50-km-wide arc forming the approximately N–S axis of the Cordillera, but extends along the transverse lineaments for up to 200 km to the SE. Lineaments are interpreted to be deep-seated, long-lived basement structures or anisotropies, which can control the localization of magmatism and, in some cases, magmatic–hydrothermal ore deposits (e.g., the Escondida porphyry Cu deposit, Chile). As a first step towards exploring the regional-scale controls on magmatism and related mineralization exerted by such structures, the styles of volcanism and near-surface hydrothermal activity along a segment of the Archibarca lineament in the Puna of northwest Argentina are described here. Volcanic structures have been mapped and sampled along a 50-km transect from Cerro Llullaillaco, a large medium-K dacitic Quaternary stratovolcano, to Corrida de Cori, a range of Pliocene–Pleistocene high-K andesitic vents. Apart from a southeastward increase in K content and the predominance of dacitic lavas at Cerro Llullaillaco, the geochemical affinity of late Cenozoic volcanic rocks varies little in time or space. This uniformity extends further SE to Cerro Galán, where published data closely match the results from the study area. In detail, trace element compositions reveal the localized (in both time and space) effects of crustal contamination (recognized as Th>10 ppm), and depth of fractionation (1/Yb>0.7 ppm−1, reflecting garnet residue). Explosive volcanic rocks such as ignimbrites show the strongest indications of crustal contamination, whereas the Cerro Llullaillaco dacite lavas mostly record significant garnet fractionation. Other lavas from the Llullaillaco area, including one flow from Cerro Llullaillaco, do not show garnet control, suggesting that different batches of magma stalled and fractionated at different levels in a thick (60-km) crust prior to eruption. The youngest volcanism in the Corrida de Cori area is represented by olivine–phyric basaltic andesite cinder cones and flows. The ascent of these relatively primitive magmas appears to have been controlled by late Quaternary normal faults, which directly tapped deeply derived melts. The Corrida de Cori volcanic range has experienced intense fumarolic alteration with deposition of abundant sulfate and native sulfur (previously mined at Mina Julia). Deeper levels of hydrothermal alteration have been sampled by an ignimbrite erupted from Cerro Escorial, which, among other lithic clasts, contains numerous fragments of vein quartz. Fluid inclusions in this quartz record evidence for a boiling, high-salinity fluid, which may represent a link between a high temperature magmatic–hydrothermal system at depth (i.e., a porphyry-type system) and shallow-level fumarolic activity. An ignimbrite erupted from Cerro Escorial preserves textures such as internal wave forms between flow units and surface wave morphologies at its distal limits that indicate flow as a series of dense turbulent pulses, which interdigitated and interfered with one another. Lithic lag breccias occur near the base of the flow proximal to the vent, but no air-fall deposits are preserved, probably due to transport of ash far from the vent by strong, high-altitude winds.  相似文献   

5.
This petrologic analysis of the Negra Muerta Volcanic Complex (NMVC) contributes to understanding the magmatic evolution of eruptive centres associated with prominent NW-striking fault zones in the southern Central Andes. Specifically, the geochemical characteristics and magmatic evolution of the two eruptive episodes of this Complex are analysed. The first one occurred as an explosive eruption at 9 Ma and is represented by a strongly welded, fiamme-rich, andesitic to dacitic ignimbrite deposit. The second commenced with an eruption of a rhyolitic ignimbrite at 7.6 Ma followed by effusive discharge of hybrid lavas at 7.3 Ma and by emplacement of andesitic to rhyodacitic dykes and domes. Both explosive and effusive eruptions of the second episode occurred within a short time span, but geochemical interpretations permit consideration of the existence of different magmas interacting in the same magma chamber. Our model involves an andesitic recharge into a partially cooled rhyolitic magma chamber, pressurising the magmatic system and triggering explosive eruption of rhyolitic magma. Chemical or mechanical evidence for interaction between the rhyolitic and andesitic magma in the initial stages are not obvious because of their difference in composition, which could have been strong enough to inhibit the interaction between the two magmas. After the initial explosive stages of the eruption at 7.6 Ma, the magma chamber become more depressurised and the most mafic magma settled in compositional layers by fractional crystallisation. Restricted hybridisation occurred and was effective between adjacent and thermally equivalent layers close to the top of the magma chamber. At 7.3 Ma, increments of caldera formation were accompanied by effusive discharge of hybrid lavas through radially disposed dykes whereby andesitic magma gained in importance toward the end of this effusive episode in the central portion of the caldera. Assimilation during turbulent ascent (ATA) is invoked to explain a conspicuous reversed isotopic signature (87Sr/86Sr and 143Nd/144Nd) in the entire volcanic series. Therefore, the 7.6 to 7.3 Ma volcanic rocks of the NMVC resulted from synchronous and mutually interacting petrological processes such as recharge, fractional crystallization, hybridisation, and Assimilation during Turbulent Ascent (ATA).Geochemical characteristics of both volcanic episodes show diverse type and/or depth in the sources and variable influence of upper crustal processes, and indicate a recurrence in the magma-forming conditions. Similarly, other minor volcanic centres in the transversal volcanic belts of the Central Andes repeated their geochemical signatures throughout the Miocene.  相似文献   

6.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

7.
Sources of large-volume ignimbrites in the Central Andes are difficult to identify by conventional means. MSS band 7 LANDSAT imagery of the region was obtained with the specific objective of using the synoptic view to identify large ignimbrites and their sources. Two are described. The Guataquina ignimbrite covers some 2300 km2 and probably has a volume of some 70 km3. It appears to have a source in Cerro Guacha, a complex caldera-graben structure 25 km across. The Cerro Galan ignimbrite covers an area of some 2000 km' on the flanks of a major resurgent caldera some 30 km by 20 km across. Younger volcanic rocks have been erupted from two points on the caldera wall, and the structure appears to have had a geological history broadly similar to that of the Valles caldera.  相似文献   

8.
9.
Pyroclastic deposits exposed in the caldera walls of Santorini Volcano (Greece), contain several prominent horizons of coarse-grained andesitic spatter and cauliform volcanic bombs. These deposits can be traced around most of the caldera wall. They thicken in depressions and are intimately associated with ignimbrite and co-ignimbrite lithic lag breccias. They are interpreted as a proximal facies of pyroclastic flow deposits. Evidence for a flow origin includes the presence of a fine-grained pumiceous matrix, flow deformation of ductile spatter clasts, exceedingly coarse grain sizes several kilometres from any plausible vent, imbrication of flattened spatter clasts, intimate interbedding with normal pyroclastic flow deposits and the presence of inversely graded basal layers. The deposits contain hydrothermally altered, rounded lithic ejecta including gabbro nodules. The andesitic ejecta and the fine matrix are typically moderately to poorly vesicular indicating that magmatic gas had a subordinate role in the eruptive process. The andesitic clasts contain abundant angular lithic inclusions and some clasts are themselves formed of pre-existing agglutinate. We propose that these eruptions occurred when external water gained access to the vents, causing large-scale explosions which formed pyroclastic flows rich in coarse, semifluid but poorly vesicular ejecta. We postulate that large volumes of coarse pyroclastic ejecta and degassed lava accumulated in a deep crater prior to being disrupted by these large explosions to form pyroclastic flows.  相似文献   

10.
The region encompassing Santa María, Cerro Quemado, and Zunil volcanoes, close to Quetzaltenango, the second largest city of Guatemala, is volcanically and tectonically complex. In addition, the huge Xela caldera, about 20 km in diameter, crosses this area and links up to the important Zunil fault zone located between the three volcanoes. Two highly active geothermal sites, named Zunil-I and Zunil-II, are also located between these three volcanic edifices at the southeastern boundary of Xela caldera. In order to determine the permeability variations and the main structural discontinuities within this complex volcano-tectonic setting, self-potential and soil CO2 flux measurements have been coupled, with a step of 20 m, along a 16.880 km-long profile crossing the entire area. Two shallow hydrothermal systems, with maximum lateral extensions of 1.5 km in diameter, are indicated by positive self-potential/elevation gradients below Santa María and Cerro Quemado volcanoes. Such small hydrothermal systems cannot explain the intense geothermal manifestations at Zunil-I and Zunil-II. Another minor hydrothermal system is indicated by self-potential measurements on the flank of Santa María along the edge of the Xela caldera. CO2 flux measurements display slight variations inside the caldera and decreasing values crossing outside the caldera boundary. We hypothesize the presence of a magmatic body, inside the southeastern border of Xela caldera, to explain the deeper and more intense hydrothermal system manifested by the Zunil-I and the Zunil-II geothermal fields. This magmatic system may be independent from Santa María and Cerro Quemado volcanoes. Alternatively, the hypothesized Xela magmatic system could have a common magmatic origin with the Cerro Quemado dome complex, consistent with previous findings on regional gas emissions. Sectors bordering the Cerro Quemado dome complex also have high amplitude minima-short wavelength anomalies in self-potential, interpreted as preferential rain water infiltration along faults of major permeability, probably related with the most recent stages of Cerro Quemado dome growth.  相似文献   

11.
Mamaku Ignimbrite was deposited during the formation of Rotorua Caldera, Taupo Volcanic Zone, New Zealand, 220–230 ka. Its outflow sheet forms a fan north, northwest and southwest of Rotorua, capping the Mamaku–Kaimai Plateau. Mamaku Ignimbrite can be divided into a partly phreatomagmatic basal sequence, and a main sequence which comprises lower, middle, and upper ignimbrite. The internal stratigraphy indicates that it was emplaced progressively from a pyroclastic density current of varying energy that became less particulate away from source. Gradational contacts between lower, middle, and upper ignimbrite are consistent with it being deposited during one eruptive event from the same source. Variations in lithic clast content and coexistence of different pumice types through the ignimbrite sequence indicate that caldera collapse occurred throughout the eruption, but particularly when middle Mamaku Ignimbrite was deposited and in the final stages of deposition of upper Mamaku Ignimbrite. Maximum lithic data and the location of lithic lag breccias in upper Mamaku Ignimbrite confirm Rotorua Caldera as the source. At least 120 m of geothermally altered intra-caldera Mamaku Ignimbrite occurs inside Rotorua Caldera. Pumice clasts in the Mamaku Ignimbrite are dacite to high-silica rhyolite and can be chemically divided into three types: high–silica rhyolite (type 1), rhyolite (type 2), and dacite (type 3). All are petrogenetically related and types 1 and 2 may be derived by up to 20% crystal fractionation from the type 3 dacite. All three types probably resided in a single, gradationally zoned magma chamber. Andesitic juvenile fragments are found only in upper Mamaku Ignimbrite and inferred to represent a discrete magma that was injected into the silicic chamber and is considered to have accumulated as a sill at the base of the magma chamber. The contrast in density between the andesitic and silicic magmas did not allow eruption of the andesitic fragments during the deposition of lower and middle Mamaku Ignimbrite. The advanced stage of caldera collapse, late in the main eruptive phase, created withdrawal dynamics that allowed andesitic magma to reach the surface as fragments within upper Mamaku Ignimbrite.  相似文献   

12.
Single crystal 40Ar/39Ar dating of K-feldspars from silicic volcanic rocks containing xenocrysts often yields a spectrum of ages slightly older than those of juvenile sanidine phenocrysts. In contrast, feldspars from thin, low-volume units of the Tertiary (14 Ma) McCullough Pass Tuff define discrete age populations at 14 Ma, 15 Ma, and 1.3 Ga, reflecting the time of eruption, xenocrysts from an older ignimbrite exposed in the caldera wall, and Proterozoic basement K-feldspars, respectively. Conductive cooling and diffusion modelling suggests preservation of such discrete populations is likely only when xenocrystic material is incorporated into the magma very near or at the surface, or is engulfed in thin, rapidly cooled pyroclastic flows during emplacement. Incorporation of xenocrysts into the subvolcanic magma chamber, into thick rhyolite domes or lava flows, or into large, welded ignimbrite sheets will result in partial or total resetting of the K/Ar isotopic system. Similarly, petrographic evidence such as exsolution lamellae may be homogenized under these conditions but not in thin ignimbrites. Extremely low diffusion rates for disordering of the Al–Si tetrahedral siting of basement feldspars suggests that they will retain their ordered structural state given rhyolitic magma temperatures. Thus, even when petrographic and K/Ar isotopic evidence for xenocrystic contamination is obscured, it may be preserved in the form of Al–Si ordering.  相似文献   

13.
Calderas worldwide have been classified according to their dominant collapse styles, although there is a good deal of speculation about the processes involved. Recent laboratory experiments have tried to constrain these processes by modelling magma withdrawal and observing the effects on overlying materials. However, many other factors also contribute to final caldera morphology. Rotorua Caldera formed during the eruption of the Mamaku Ignimbrite. Collapse structure and evolution of Rotorua Caldera is interpreted based its geophysical response, geology and geomorphology, and the stratigraphy of the Mamaku Ignimbrite. Rotorua Caldera is situated at the edge of the extensional Taupo Volcanic Zone, in which major faults strike NE-SW. A second, less dominant fault set strikes NW-SE. These two fault sets have a strong influence on the morphology of Rotorua Caldera. No one style of collapse can be applied to Rotorua Caldera; it was formed during a single eruption, but subsided as many blocks and shows features of trapdoor, piecemeal and downsag types of collapse. Here Rotorua Caldera is described, according to its composition, activity and geometry, as a rhyolitic, single event, asymmetric, multiple-block, single locus collapse structure. The Mamaku Ignimbrite is the only ignimbrite to have erupted from Rotorua Caldera. Extracaldera thickness of the Mamaku Ignimbrite is up to 145 m, whereas inside the caldera it may be greater than 1 km thick. The Mamaku Ignimbrite can be separated into a basal tephra sequence and main ignimbrite sequence. The main ignimbrite sequence contains no observable flow unit boundaries but can be split into lower, middle and upper parts (LMI, mMI, uMI respectively) based on crystal content, welding, jointing, devitrification and vapour phase alteration. Juvenile clasts within the ignimbrite comprise three consanguineous silicic pumice types and andesitic fragments. Only the most evolved pumice type occurs in the basal tephra sequence. All three pumice types occur together throughout the main ignimbrite sequence, whereas the andesitic fragments are only present in uMI. Lithic lag breccias in uMI indicate a late stage of caldera collapse. Concentration of lithic fragments increases towards the middle of the ignimbrite, and may also reflect increased subsidence rate during an earlier stage. Collapse of Rotorua Caldera is thought to have occurred throughout the eruption of the main ignimbrite sequence of the Mamaku Ignimbrite, allowing simultaneous eruption of all the different pumice types and causing the abrupt transition from deposition of the basal tephra sequence to the main ignimbrite sequence.  相似文献   

14.
Batur is an active stratovolcano on the island of Bali, Indonesia, with a large, well-formed caldera whose formation is correlated with the eruption about 23,700 years ago of a thick ignimbrite sheet. Our study of the volcanic stratigraphy and geochemistry of Batur shows the formation of the caldera was signalled by a change in the composition of the erupting material from basaltic and andesitic to dacitic. The dacitic rocks are glassy, possess equilibrium phenocryst assemblages, and display compositional characteristics consistent with an origin by crystal-liquid fractionation from more mafic parent magmas in a shallow chamber, possibly at 1.5 km depth and 1000–1070°C.However, although separated by a gap of 6 wt.% SiO2, the dacitic rocks are clearly related in their minor- and trace-element geochemistry to those basalts and basaltic andesites erupted after the caldera was formed rather than to the andesites erupted immediately before the dacites first appeared. We infer from this and published experimental modelling of the possible crystallization behaviour of basaltic magma chambers that a magmatic cycle involving caldera formation began independently of the previous activity of Batur by formation of a new, closed-system magma chamber beneath the volcano. Fractional crystallization, possibly at the walls of the chamber, led to the early production of derivative siliceous magmas and, consequently, to caldera formation, while most of the magma retained its original composition. The postcaldera Batur basalts represent the largely undifferentiated core liquids of this chamber.This model contrasts with the traditional evolutionary model for stratovolcano calderas but may be applicable to the origins of calderas similar to that of Batur, particularly those in volcanic island arcs.  相似文献   

15.
Tsunami deposits in Kyushu Island, Southwestern Japan, have been attributed to the 7.3 ka Kikai caldera eruption, but their origin has not been confirmed. We analyzed an 83-cm-thick Holocene event deposit in the SKM core, obtained from incised valley fill in the coastal lowlands near Sukumo Bay, Southwestern Shikoku Island. We confirmed that the event deposit contains K-Ah volcanic ash from the 7.3 ka eruption. The base of the event deposit erodes the underlying inner-bay mud, and the deposit contains material from outside the local terrestrial and marine environment, including angular quartz porphyry from a small inland exposure, oyster shell debris, and a coral fragment. Benthic foraminifers and ostracods in the deposit indicate various habitats, some of which are outside Sukumo Bay. The sand matrix contains low-silica volcanic glass from the late stage of the Kikai caldera eruption. We also documented the same glass in an event deposit in the MIK1 core, from the incised Oyodo River valley in the Miyazaki Plain on Southeastern Kyushu. These two 7.3 ka tsunami deposits join other documented examples that are widely distributed in Southwestern Japan including the Bungo Channel and Beppu Bay in Eastern Kyushu, Tachibana Bay in Western Kyushu, and Zasa Pond on the Kii Peninsula as well as around the caldera itself. The tsunami deposits near the caldera have been divided into older and younger 7.3 ka tsunami deposits, the younger ones matching the set of widespread deposits. We attribute the younger 7.3 ka tsunami deposits to a large tsunami generated by a great interplate earthquake in the Northern part of the Ryukyu Trench and (or) the Western Nankai Trough just after the late stage of the Kikai caldera eruption and the older 7.3 ka tsunami deposits to a small tsunami generated by an interplate earthquake or Kikai caldera eruption.  相似文献   

16.
Estimates of pyroclastic flow emplacement temperatures in the Cerro Galán ignimbrite and Toconquis Group ignimbrites were determined using thermal remanent magnetization of lithic clasts embedded within the deposits. These ignimbrites belong to the Cerro Galán volcanic system, one of the largest calderas in the world, in the Puna plateau, NW Argentina. Temperature estimates for the 2.08-Ma Cerro Galán ignimbrite are retrieved from 40 sites in 14 localities (176 measured clasts), distributed at different distances from the caldera and different stratigraphic heights. Additionally, temperature estimates were obtained from 27 sample sites (125 measured clasts) from seven ignimbrite units forming the older Toconquis Group (5.60–4.51 Ma), mainly outcropping along a type section at Rio Las Pitas, Vega Real Grande. The paleomagnetic data obtained by progressive thermal demagnetization show that the clasts of the Cerro Galán ignimbrite have one single magnetic component, oriented close to the expected geomagnetic field at the time of emplacement. Results show therefore that most of the clasts acquired a new magnetization oriented parallel to the magnetic field at the moment of the ignimbrite deposition, suggesting that the clasts were heated up to or above the highest blocking temperature (T b) of the magnetic minerals (T b = 580°C for magnetite; T b = 600–630°C for hematite). We obtained similar emplacement temperature estimations for six out of the seven volcanic units belonging to the Toconquis Group, with the exception of one unit (Lower Merihuaca), where we found two distinct magnetic components. The estimation of emplacement temperatures in this latter case is constrained at 580–610°C, which are lower than the other ignimbrites. These estimations are also in agreement with the lowest pre-eruptive magma temperatures calculated for the same unit (i.e., 790°C; hornblende–plagioclase thermometer; Folkes et al. 2011b). We conclude that the Cerro Galán ignimbrite and Toconquis Group ignimbrites were emplaced at temperatures equal to or higher than 620°C, except for Lower Merihuaca unit emplaced at lower temperatures. The homogeneity of high temperatures from proximal to distal facies in the Cerro Galán ignimbrite provides constraints for the emplacement model, marked by a relatively low eruption column, low levels of turbulence, air entrainment, surface–water interaction, and a high level of topographic confinement, all ensuring minimal heat loss.  相似文献   

17.
Nevados de Chillán Volcanic Complex, central Chile, has been active for at least 640 ka—a period spanning a number of glacial and interglacial periods. Geologic mapping, radiometric dating and geochemical analysis have identified six new volcanic units and produced four new 40Ar/39Ar ages for Cerro Blanco, the northern subcomplex of Nevados de Chillán volcano. Compositions range from dacite to basaltic-andesite and a new geologic map is presented. Examination of lava fracture structures on both newly mapped lavas and those mapped during previous studies has enabled interpretations of former eruptive environments. Palaeoenvironment reconstructions, combined with 40Ar/39Ar ages and comparison with the marine oxygen isotope record, show that at least three phases of volcanic activity have occurred during the evolution of Cerro Blanco: (1) a constructive, pre-caldera collapse period; (2) a period of caldera formation and collapse; and (3) a constructive period of dome growth forming the modern day volcanic centre. This style of volcanic evolution, whereby large-scale caldera collapse is followed by growth of a new stratocone is common at Andean volcanoes.  相似文献   

18.
The Donguinyó-Huichapan caldera complex is located 110 km to the NNW of Mexico City, in the central sector of the Mexican Volcanic Belt. It is a 10 km in diameter complex apparently with two overlapping calderas, each one related to an ignimbrite sequence that contrasts in composition, mineralogy, welding, distribution, and physical aspect. The geologic evolution of this complex includes the following phases, 1) A first caldera formed at 5.0 ± 0.3 Ma, with the eruption of several discrete pulses of andesitic to trachydacitic pyroclastic flows that produced a series of densely welded ignimbrites; 2) At 4.6 ± 0.3 Ma, several small shield volcanoes and cinder cones built the rim of this caldera and erupted basaltic-andesite and andesitic lava flows; 3) At 4.2 ± 0.2 Ma, a second caldera was formed associated to the eruption of the Huichapan Tuff, which is a rhyolitic pyroclastic sequence consisting of minor unwelded ignimbrites, pumice fall and surge deposits, and a voluminous welded ignimbrite; 4) Also yielding an age of 4.2 ± 0.2 Ma, several trachydacitic lava domes were extruded along the new ring fracture and formed the rim of the Huichapan caldera, as well as five intra-caldera domes of dacitic and trachydacitic composition. Peripheral volcanism includes a large 2.5 ± 0.1 Ma shield volcano that was emplaced on the Huichapan caldera rim.The two calderas that form the Donguinyó-Huichapan complex have contrasting differences in volcanic styles that were apparently due to their differences in composition. Products erupted by the Donguinyó caldera are basaltic-andesite to trachydacitic in composition, whereas Huichapan caldera products are all high-silica rhyolites.  相似文献   

19.
The small- to moderate-volume, Quaternary, Siwi pyroclastic sequence was erupted during formation of a 4 km-wide caldera on the eastern margin of Tanna, an island arc volcano in southern Vanuatu. This high-potassium, andesitic eruption followed a period of effusive basaltic andesite volcanism and represents the most felsic magma erupted from the volcano. The sequence is up to 13 m thick and can be traced in near-continuous outcrop over 11 km. Facies grade laterally from lithic-rich, partly welded spatter agglomerate along the caldera rim to two medial, pumiceous, non-welded ignimbrites that are separated by a layer of lithic-rich, spatter agglomerate. Juvenile clasts comprise a wide range of densities and grain sizes. They vary between black, incipiently vesicular, highly elongate spatter clasts that have breadcrusted pumiceous rinds and reach several metres across to silky, grey pumice lapilli. The pumice lapilli range from highly vesicular clasts with tube or coalesced spherical vesicles to denser finely vesicular clasts that include lithic fragments.Textural and lithofacies characteristics of the Siwi pyroclastic sequence suggest that the first phase of the eruption produced a base surge deposit and spatter-poor pumiceous ignimbrite. A voluminous eruption of spatter and lithic pyroclasts coincided with a relatively deep withdrawal of magma presumably driven by a catastrophic collapse of the magma chamber roof. During this phase, spatter clasts rapidly accumulated in the proximal zone largely as fallout, creating a variably welded and lithic-rich agglomerate. This phase was followed by the eruption of moderately to highly vesiculated magma that generated the most widespread, upper pumiceous ignimbrite. The combination of spatter and pumice in pyroclastic deposits from a single eruption appears to be related to highly explosive, magmatic eruptions involving low-viscosity magmas. The combination also indicates the coexistence of a spatter fountain and explosive eruption plume for much of the eruption.Editorial responsibility: R. Cioni  相似文献   

20.
The evolution of the Colima volcanic complex can be divided into successive periods characterized by different dynamic and magmatic processes: emission of andesitic to dacitic lava flows, acid-ash and pumice-flow deposits, fallback nuées ardentes leading to pyroclastic flows with heterogeneous magma, plinian air-fall deposits, scoriae cones of alkaline and calc-alkaline nature. Four caldera-forming events, resulting either from major ignimbrite outbursts or Mount St. Helens-type eruptions, separate the main stages of development of the complex from the building of an ancient shield volcano (25 × 30 km wide) up to two summit cones, Nevado and Fuego.The oldest caldera, C1 (7–8 km wide), related to the pouring out of dacitic ash flows, marks the transition between two periods of activity in the primitive edifice called Nevado I: the first one, which is at least 0.6 m.y. old, was mainly andesitic and effusive, whereas the second one was characterized by extrusion of domes and related pyroclastic products. A small summit caldera, C2 (3–3.5 km wide), ended the evolution of Nevado I.Two modern volcanoes then began to grow. The building of the Nevado II started about 200,000 y. ago. It settled into the C2 caldera and partially overflowed it. The other volcano, here called Paleofuego, was progressively built on the southern side of the former Nevado I. Some of its flows are 50,000 y. old, but the age of its first outbursts is not known. However, it is younger than Nevado II. These two modern volcanoes had similar evolutions. Each of them was affected by a huge Mount St. Helens-type (or Bezymianny-type) event, 10,000 y. ago for the Paleofuego, and hardly older for the Nevado II. The landslides were responsible for two horseshoe-shaped avalanche calderas, C3 (Nevado) and C4 (Paleofuego), each 4–5 km wide, opening towards the east and the south. In both cases, the activity following these events was highly explosive and produced thick air-fall deposits around the summit craters.The Nevado III, formed by thick andesitic flows, is located close to the southwestern rim of the C3 caldera. It was a small and short-lived cone. Volcan de Fuego, located at the center of the C4 caldera, is nearly 1500 m high. Its activity is characterized by an alternation of long stages of growth by flows and short destructive episodes related to violent outbursts producing pyroclastic flows with heterogeneous magma and plinian air falls.The evolution of the primitive volcano followed a similar pattern leading to formation of C1 and then C2. The analogy between the evolutions of the two modern volcanoes (Nevado II–III; Paleofuego-Fuego) is described. Their vicinity and their contemporaneous growth pose the problem of the existence of a single reservoir, or two independent magmatic chambers, after the evolution of a common structure represented by the primitive volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号