首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 693 毫秒
1.
新疆南天山地区重力场动态演化特征   总被引:3,自引:1,他引:2       下载免费PDF全文
通过分析南天山地区2005-2008年近8期流动重力测量资料,研究了重力场的时空动态演化特征,提取与地震活动有关的信息,并对重力场变化与构造活动及地震活动的关系进行了探讨.结果表明:重力场变化与构造环境变化有关;地震孕育发生阶段重力场出现一定范围的区域性重力异常;地震往往多发于重力场变化正负值交替的零线附近.  相似文献   

2.
南天山—帕米尔地区近期重力场动态变化特征   总被引:1,自引:0,他引:1  
利用2014—2016年南天山—帕米尔地区5期流动重力观测资料,分析该地区半年和一年尺度重力变化特征,探讨了地震孕育发生与重力场变化特征的关系。结果表明:南天山—帕米尔地区半年和一年尺度重力变化量分别为(10~20)×10~(-8)m·s~(-2)和(20~30)×10~(-8)m·s~(-2),重力场变化有明显的分区特征,塔里木盆地较多表现出重力正值变化,南天山和帕米尔地区正负值变化交替出现。重力场变化能较好地反映该地区地震孕育和发生过程,地震发生前,在震中附近地区的重力变化值出现上升的趋势。在孕震区及附近地区出现重力变化高梯度带,并伴随有重力变化零线,且地震多发生在重力变化正值集中区的零线附近。  相似文献   

3.
伽师及其邻近地区重力场动态演化特征初步分析   总被引:2,自引:0,他引:2  
通过对伽师及邻近地区2005~2007年5期流动重力测量资料的系统分析,研究了该区域重力场的时空动态演化特征。结果表明,重力变化与构造环境变化有关,地震孕育发生阶段,重力场将有明显的异常变化。地震多发于重力变化正负值交替的零线附近,正负重力异常变化梯度带的附近是物质增减差异剧烈的地区,能量易于积累,从而产生地震。与GPS观测结果相互印证,表明受大的构造背景影响,测区内重力异常的正负值分布反映了区域间的应力挤压作用。  相似文献   

4.
通过强震震例阐述了重力观测在地震预测中的作用,分析了强震震间期与同震及震后重力场变化特征、区域重力场变化及其与强震活动的关系。强震前区域重力场出现大范围的有序性变化,震源区附近产生与地震孕育发生有关的局部重力异常区,并沿区域主要发震构造断裂带出现显著的重力变化梯度带;强震一般发生在重力变化高梯度带转弯附近或重力变化四象限分布特征中心附近;重力场动态变化图像能够较清晰地反映强震孕育、发展、调整过程的重力变化信息,并基于震例提出了强震震前重力变化的“场-源-带”基本模式。最后,提出我国重力监测预报发展中仍存在的问题,并对利用重力监测资料开展地震预测预报研究进行了展望。  相似文献   

5.
基于2010年5月—2013年10月的6期在河西地区流动重力测量资料获得的重力场时空变化结果,分析该区近期重力场变化及与2013年门源MS5.1地震的关系。结果表明:河西地区重力场变化空间分布显示在活动断裂附近重力变化较大,沿祁连山北缘断裂、昌马—门源断裂及庄浪河断裂形成与断裂带走向基本一致的重力变化高梯度带,反映了断裂构造活动引起的重力局部异常变化特征。2013年门源MS5.1地震发生在重力变化的高梯度带附近。  相似文献   

6.
对川西地区2000~2001年雅江—康定间6.0级地震前后的重力观测资料进行了处理,绘制了重力场变化等值线图和三维曲面图,从动态的观点研究了雅江地震前后重力场的图像变化特征。结果表明:①重力变化与构造环境变化有关,地震前重力场有明显的异常变化。②雅江地震前后重力场空间分布图较好地反映了鲜水河断裂带及北西向的理塘断裂和北东的玉龙西断裂构造活动弓l起的重力变化。③地震发生在重力异常下降区及高梯度带附近。  相似文献   

7.
2013年四川芦山Ms7.0地震前的重力变化   总被引:6,自引:0,他引:6       下载免费PDF全文
利用川西地区2010-2012年期间的流动重力观测资料,系统分析了区域重力场变化及其与2013年4月20日四川芦山7.0级地震发生的关系.结果主要表明:①区域重力场异常变化与北东向龙门山断裂带南段和北北西向马尔康断裂带在空间上关系密切,反映沿该两断裂带(段)在2010-2012年期间发生了引起地表重力变化效应的构造活动或变形.②芦山7.0级地震前,测区内出现了较大空间范围的区域性重力异常,而震源区附近产生了局部重力异常,沿龙门山断裂带南段形成了重力变化高梯度带,其中,宝兴、天全、康定、泸定、石棉一带重力差异变化达100×10-8m·s-2以上;这些可能反映芦山地震前,区域及震源区附近均产生与该地震孕育、发生有关的构造运动或应力增强作用.③重力场差分动态演化图像和重力场累积变化动态图像均反映芦山7.0级地震孕育过程的最后2~3年出现较显著的流动重力异常变化,可视为该地震的中期前兆信息;本文第一作者等也曾基于该流动重力异常变化在芦山7.0级地震前做过一定程度的中期预测,尤其是地点预测.本文的例子再次证明流动重力观测能较好地捕捉到强震孕育发生过程中,特别是该过程最后阶段的重力异常变化信息.因此,区域流动重力场观测对未来强震的中-长期预测,尤其是在发震地点的判定上具有优势.  相似文献   

8.
利用北天山中段最新的流动重力观测数据,通过整理计算平差,绘制该地区半年和一年尺度的重力场变化图像;选取横跨北天山中段乌鲁木齐、独山子两条测线,并分别绘制其重力剖面变化图;结合北天山中段地区动力构造环境,剖析该地区重力变化特征及其与地震孕育之间的关系。分析表明:北天山中段地区重力异常变化值不大,重力变化等值线图和剖面变化图均能较好地反映重力场随时空变化特征;北天山中段动态重力变化特征基本反映了该地区动力构造运动的外部环境;研究区域内的重力场空间格局分布特征较清晰,其重力变化具有明显的分区特征,山体和盆地之间的重力变化具有显著差异,山体与盆地边缘正负重力变化交替出现,且变化相对较平稳。  相似文献   

9.
2013年甘肃岷县漳县6.6级地震前后重力场动态变化   总被引:3,自引:3,他引:0       下载免费PDF全文
利用青藏高原东北缘2011-2013年期间的流动重力观测资料,系统分析了区域重力场动态变化及其与2013年7月22 H岷县漳县6.6级地震发生的关系.结果表明:1)测区内重力场异常变化与主要断裂带在空间上关系密切,反映沿主要断裂带(段)在2011-2013年期间发生了引起地表重力变化效应的构造活动或变形.2)岷县漳县6.6级地震前,测区内先出现了较大空间范围的区域性重力异常,后在震源区附近产生了局部重力异常及重力变化高梯度带,其中,甘肃临夏与岷县一带重力差异变化达150×10 8ms-2以上;这些可能反映岷县漳县地震前,区域及震源区附近均产生与该地震孕育、发生有关的构造运动或应力增强作用.3)重力场1a尺度动态变化图像和差分动态演化图像均反映岷县漳县6.6级地震孕育过程的最后2a出现较显著的流动重力异常变化,地震发生在NE向重力变化高梯度带上、重力变化零值线附近和等值线的拐弯部位.4)基于流动重力异常变化在岷县漳县6.6级地震前做过一定程度的中期预测,尤其是地点判定.  相似文献   

10.
利用2008年以来辽宁地区流动重力网观测资料,探讨了该地区重力场时空演化特征与中小地震震中分布的关系,分析认为:(1)测区重力场出现高值异常现象,重力场异常时空动态变化与该区构造活动密切相关;(2)辽宁地区近年来所发生M3.0级以上中小地震震中分布多位于重力异常高值区。  相似文献   

11.
最小二乘配置下的天山地区应变场特征分布   总被引:1,自引:0,他引:1       下载免费PDF全文
利用已有的GPS观测数据,借助球面最小二乘配置方法对天山地区的GPS速度场进行研究,得到了研究区域应变场的空间分布特征.其最大主压应变表明,大地震多发生在主压应变快速交替变化的地带,主压应变最大值主要分布于西南天山与帕米尔弧及塔里木西北交汇的地区,强地震(M7.0—8.0)基本发生在该区域.面膨胀值表明天山地区应变呈挤压收缩的特征.   相似文献   

12.
南天山及塔里木北缘构造带西段地震构造研究   总被引:4,自引:0,他引:4       下载免费PDF全文
田勤俭  丁国瑜  郝平 《地震地质》2006,28(2):213-223
南天山及塔里木北缘构造带位于帕米尔地区东北侧,地震活动强烈。文中通过地质构造剖面、深部探测资料和地震震源机制解资料,综合研究了该区的地震构造模型。结果认为,该区的构造活动主要表现为天山地块逆冲于塔里木地块之上。天山构造系统包括迈丹断裂及其前缘推覆构造;塔里木构造系统包括深部的塔里木北缘断裂、基底共轭断层和浅部的推覆构造。塔里木北缘断裂是发育于塔里木地壳内部的高角度断裂,其形成原因在于塔里木和天山构造变形方向的差异。塔里木北缘断裂为研究区大地震的主要发震构造,天山推覆构造和塔里木基底断裂系统均具有不同性质的中强地震发震能力  相似文献   

13.
The interaction zone between southern Tianshan and northern Tarim is located at the northeast side of Pamir. It is a region with high seismicity. We constructed a seismotectonic model for the west part of this zone from geological profiles, deep crust seismic detection and earthquake focal mechanisms data. Based on the synthesized geological features, deep crust structure, and earthquake focal mechanisms, we think that the main regional tectonic feature is that the Tianshan tecto-lithostratigraphic unit overthrusts on the Tarim block. The Tianshan tectonic system includes the Maidan fault and thrust sheets in front of the fault; The Tarim tectonic system includes the underground northern Tarim margin fault, conjugate faults in basement and overthrust fault in shallow. The northern Tarim margin fault is a high angle fault deep in the Tarim crust, adjusting different trending deformation between Tianshan and Tarim. It is a major active fault that can generate large earthquakes. The other faults, such as the Tianshan overthrust system and the Tarim basement faults in this area may generate moderately strong earthquakes with different styles.  相似文献   

14.
We use the Pg seismic phase along the Korla-Jimsar profile across the Tianshan orogen and the 3D finite difference method to inverse the velocity structure of the upper crust beneath the basement of this mountain. Based on the velocity structure, the Korla-Jimsar profile can be divided into three parts, i.e. the north edge of the Tarim basin, the Tianshan orogen, and the south margin of the Junggar basin. Within the Tianshan there is a pattern of four convexities and three concavities, which correspond to the southern Tianshan, the Yanqi basin, the middle Tianshan, the Turpan basin, and the Bogda Mountains. In the north edge of the Tarim basin, the basement is about 10km deep with small lateral variations of velocity. In the Tianshan the velocity varies greatly laterally. The basement depth of the Yanqi basin is 6 km, which becomes shallow rapidly northward, and almost to the surface at the middle Tianshan. South to Kumux there is a small intermountain basin, where the maximum basement depth is 3 km, and also turns very shallow near Kumux. The Luntai fault, which bounds the Tarim basin and Tianshan, has vertical dislocation of about 5 km. The Turpan basin is covered with so thick a sediment that its basement is 7 km deep. The boundary fault between the Tianshan and Turpan is the Bolohoro fault which is characterized by quick deepening basement and 7 km vertical dislocation. In the Junggar basin the basement is 8 km deep. On the Korla-Jimsar profile, the velocity distribution of the upper crust and the structure are featured by NS symmetry on both sides of the axis of the Middle Tianshan, consistent with the deep structure revealed by this profile. It means that the Tarim basin and the Junggar basin underthrust toward the Tianshan from south and north, respectively. Such a structural style is different from that of another profile, i.e. the Xayar-Burjing profile, suggesting that there may be an important tectonic boundary between these two profiles.  相似文献   

15.
The middle part of the Tianshan Mountains in Xinjiang is located in the north-central part of the Tianshan orogenic belt, between the rigid Tarim Basin and Junggar Basin. It is one of the regions with frequent deformation and strong earthquake activities. In this paper, 492 MS>2.5 earthquake events recorded by Xinjiang seismograph network from 2009 to 2018 were collected. The MS3.5 earthquake was taken as the boundary, the focal mechanism solutions of the earthquake events in this region were calculated by CAP method and FOCEMEC method respectively. At the same time the focal mechanism solutions of GCMT recorded historical earthquake events in this region were also collected. According to the global stress map classification standard, the moderate-strong earthquakes in the region are mainly dominated by thrust with a certain slip component, which are distributed near the combined belts of the Tarim Basin, Junggar Basin, Turpan Basin and Yili Basin with Tianshan Mountains. The thrust component decreases from south to north, while the strike-slip component increases. The spatial distribution characteristics of the tectonic stress field in the middle section of the Tianshan Mountains in Xinjiang are obtained by using the damped regional-scale stress field inversion method. The maximum principal compressive stress in axis the study area rotated in a fan shape from west to east, the NW direction in the western section gradually shifted to NE direction, its elevation angle is nearly horizontal, in the state of near horizontal compression. The minimum principal compressive stress axis is nearly EW, and the elevation angle is nearly vertical. Influenced by large fault zones such as Kashi River, Bolhinur, Nalati, Fukang, the southern margin of the Junggar and the north Beiluntai, the local regional stress field presents complex diversity. Under the influence of the northward extrusion of Pamir and Tarim blocks, the whole Tianshan is shortened by compression, but its shortening rate decreases from south to north and from west to east, the stress shape factor increases gradually from west to east, the intermediate principal compressive stress axis exhibits a change in compression to extension. There are some differences in the characteristics of tectonic stress field between the north and south of Tianshan Mountains. The regional maximum principal compressive stress axis is 15° north by east on the south side, while it is nearly NS on the north side. The deformation of the Tianshan Mountains and the two basins on both sides is obviously larger than that in the inside of the mountain. Changes in the crustal shortening rate caused by the rotation of the rigid Tarim block and Junggar block to the relatively soft Tianshan block, as well as the uplifts of Borokonu and Bogda Mountains, the comprehensive influence of the material westward expansion constitute the stress field distribution characteristics of the north and south sides of the middle section of Tianshan Mountains. The recent two MS6.6 earthquakes in the region caused the regional stress field to rotate counterclockwise. The post-earthquake stress field and the main source focal mechanism solution tend to be consistent. The seismic activity in the study area is week in the south and strong in the north. The focal depth is about 20km. Most strike-slip earthquakes occur near the junction belt of the Tianshan and Junggar Basin.  相似文献   

16.
天山-帕米尔结合带的地壳速度结构及地震活动研究   总被引:13,自引:3,他引:10       下载免费PDF全文
利用流动地震台阵记录的地震数据,通过地震层析技术反演了天山—帕米尔结合带的P波速度结构,揭示出地壳结构的非均匀特征及其与地震活动的对应关系. 分析结果表明,天山和西昆仑的双向挤压导致塔里木西部边缘地壳严重变形,在山前地区形成基底隆起带,地壳深部则被断裂分割成为若干块体,有的块体可能卷入造山带内部;喀什坳陷地壳深部结构相对完整,变形程度较弱;天山和西昆仑的地壳结构显示出缩短增厚的波速特性,在与塔里木接壤的局部地区,壳幔边界附近存在热物质的侵入迹象. 大部分地震都发生在塔里木西部边缘的壳内高速块体周围,推测块体之间的相互作用和应力调整是导致天山—帕米尔结合带频繁发生地震的主要原因,伽师地震则与构造变形由天山向塔里木内部扩展以及该地区的地壳非均匀结构有关.  相似文献   

17.
帕米尔东北缘及塔里木盆地西北部弧形构造的扩展特征   总被引:15,自引:0,他引:15  
归纳了帕米尔东北缘弧形构造的基本特征 ,分析了塔里木盆地西北部EW向逆断裂背斜带与NNW向隐伏走滑断裂之间的关系。通过塔里木盆地与西南天山和帕米尔东北缘变形特征的对比 ,认为塔里木盆地西北部的变形样式与帕米尔东北缘的弧形构造类似 ,弧形构造具有由帕米尔东北缘向塔里木盆地扩展的特征 ,这种构造是帕米尔向北挤入运动所特有的变形样式  相似文献   

18.
Northwest Guangxi is located in the Youjiang fold belt and the Hunan-Guangxi fold belt of secondary structure unit of South China fold system. The South China fold was miogeosyncline in the early Paleozoic, the Caledonian fold returned and transformed into the standard platform, and the Indosinian movement ended the Marine sedimentary history, which laid the basic structural framework of this area. Since the neotectonic period, large areas have been uplifted intermittently in the region and Quaternary denudation and planation planes and some faulted basins have been developed. Affected by the strong uplift of Yunnan-Guizhou plateau, the topography of the region subsides from northwest to southeast, with strong terrain cutting and deep valley incision. Paleozoic carbonate rocks and Mesozoic clastic rocks are mainly exposed on the earth's surface, and its geomorphology is dominated by corrosion and erosion landforms. The dating results show that most of the structures in northwest Guangxi are middle Pleistocene active faults, and the movement mode is mainly stick-slip. According to the seismogeological research results of the eastern part of the Chinese mainland, the active faults of the middle Pleistocene have the structural conditions for generating earthquakes of about magnitude 6. In the northwest Guangxi, the crustal dynamic environment and geological structure are closely related to Sichuan and Yunnan regions. Under the situation that magnitude 6 earthquakes occurred successively in Sichuan and Yunnan region and magnitude 7 earthquakes are poised to happen, the risk of moderately strong earthquakes in the northwest Guangxi region cannot be ignored. Based on the analysis of deep structure and geophysical field characteristics, it is concluded that the Tian'e-Nandan-Huanjiang area in the northwestern Guangxi is not only the area with strong variation of the Moho surface isobath, but also the ML3.0 seismic gap since September 2015, and the abnormal low b value area along the main fault. Regions with these deep structural features often have the conditions for moderately strong earthquakes. The paper systematically analyzes the spatial and temporal distribution features and mechanism of regional gravitational field and horizontal crust movement and further studies and discusses the changes of regional gravitational field, crustal horizontal deformation and interaction between geologic structure and seismic activity based on 2014-2018 mobile gravity measurements and 2015-2017 GPS observation data in the northwestern Guangxi. The results show that:1)On July 15, 2017, a MS4.0 earthquake in Nandan happened near the center of four quadrants of changes of gravity difference, and the center of abnormal area is located at the intersection of the Mulun-Donglang-Luolou Fault, the Hechi-Nandan Fault and the Hechi-Yizhou Fault. The dynamic graph of differential scale gravitational field reflects the gravity changes at the epicenter before and after the Nandan earthquake, which is a process of system evolution of "local gravity anomaly to abnormal four-quadrant distribution features → to earthquake occurring at the turning point of gravity gradient zone and the zero line to backward recovery variation after earthquake". Meanwhile, according to the interpretation of focal mechanism of the Nandan earthquake, seismogram and analysis of seismic survey results, the paper thinks that the four-quadrant distribution of positive and negative gravity, which is consistent with the effect of strike-slip type seismogenic fault before Nandan earthquake, demonstrates the existence of dextral strike-slip faulting; 2)The pattern of spatial distribution of gravitational field change in northwestern Guangxi is closely related to active fault. The isoline of cumulative gravity generally distributes along Nandan-Hechi Fault and Hechi-Yizhou Fault. The gravity on both sides of the fault zone is different greatly, and gradient zone has influences on a broad area; the spatial distribution of deformation field is generally featured by horizontal nonuniformity. Tian'e-Nandan-Huanjiang area is located at the high gradient zone of gravity changes and the horizontal deformation surface compressional transition zone, as well as near the intersection of Hechi-Yizhou Fault, Hechi-Nandan Fault and Du'an-Mashan Fault; 3)The geometric shape of gravitational field in northwestern Guangxi corresponds to the spatial distribution of horizontal crustal movement, which proves the exchange and dynamic action of material and energy in the region that cause the change and structural deformation of fault materials and the corresponding gravity change on earth's surface. The recent analysis of abnormal crustal deformation in northwestern Guangxi shows that Tian'e-Nandan-Huanjiang is a gradient zone of abnormal gravity change and also a horizontal deformation surface compressional transition zone. It locates at the section of significant change of Moho isobaths, the seismicity gap formed by ML3.0 earthquakes and the abnormal low b-value zone. According to comprehensive analysis, the region has the risk of moderately strong earthquake.  相似文献   

19.
新疆伽师强震群区基底界面结构特征   总被引:3,自引:0,他引:3       下载免费PDF全文
用射线分布分析法对伽师强震群区的高分辨折射地震剖面资料进行了更进一步的分析处理, 得到了伽师强震群区更完整的基底界面结构特征. 结果表明,在伽师强震群区地壳上部存在两个明显的结构界面:第一个界面的结构连续、完整,其埋深变化不大, 在2.6~3.3 km之间,为一向天山方向逐渐抬升、 近平直的倾斜界面;第二个界面的埋深变化较大, 在8.5~11.8 km之间,为古老的塔里木盆地结晶基底. 在约37 km桩号附近结晶基底有近2.5 km的深度突变, 推断可能是伽师强震群区超基底断裂所致. 以该断裂为界,结晶基底分为西南、东北两段. 每段内界面的埋深变化不大, 西南段的埋深约11.5 km, 东北段的埋深约为8.5~9.0 km,该段在从西南向东北整体抬升的背景上略有上隆,反映出在塔里木地块西北缘特殊的构造环境下上部地壳的变形特征.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号