首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
陈建涛  叶春明 《华南地震》2010,30(Z1):145-152
南海东南边缘的马尼拉海沟是国际上公认具有发生破坏性地震海啸条件的危险地区,由于南海没有大面积的岛屿阻隔海啸传播,如果在马尼拉海沟发生大地震引发海啸,那么将对广东省漫长的海岸线造成严重破坏。广东省南海地震海啸监测预警系统建设在广东省地震速报系统和国家地震自动速报备份系统的基础上,由地震速报、震源机制快速计算、海啸数值模拟计算等模块组成,对南海地震海啸进行实时监测,提供海啸波浪到达海岸线的估计时刻和最大海浪高度,提供预警信息等社会公共服务。  相似文献   

2.
广东省地震海啸危险分析与监测预警系统构想   总被引:1,自引:0,他引:1  
杨马陵 《华南地震》2005,25(4):25-33
对广东省地震海啸的潜在危险进行了分析,认为广东省可能面临的海啸威胁主要来自南海东部。一旦发生地震海啸,将出现重大的灾害,并对广东省的社会和经济产生巨大的影响。提出了建立广东省地震海啸监测预警系统的初步构想。  相似文献   

3.
准确预估南海海啸风险是有效防灾减灾的前提.前人一般把弹性半无限空间背景下解算出来的海底位错直接等同于初始海啸分布,继而开展海啸传播过程研究.由于断层破裂并非瞬时完成,破裂过程会导致初始海啸波高小于海底位错量,即初始海啸衰减.本文基于高精度地形和高密度网格,求解非线性浅水方程,分别针对马尼拉断裂带的南段、中段和北段,构建南海海啸传播数值模型,试图定量考察初始海啸衰减作用对南海海啸的影响.模拟结果表明一定幅度的初始波高衰减将导致几乎相同幅度的海啸波高衰减,相应的偏差可以忽略.在保守的初始海啸衰减幅度(10%)下,模拟结果显示我国东南沿海、越南东部沿海和巴拉望岛为海啸危险区.另外,模型显示科里奥利力导致的波高变化幅度小于5 cm且其分布样式符合预期,这进一步佐证了数值模型的可靠性,也表明在实际南海海啸模拟中可以忽略科里奥利力进而提高计算效率.结合前人的沉积学认识和本文的数值模拟结果,本文认为南澳岛、西沙东岛和越南绥和周边曾同时遭受海啸侵袭,产生海啸的断裂带最有可能是马尼拉断裂带南段.后续有必要加强南澳岛、西沙东岛和越南东部的沉积学研究,识别更早的海啸事件,以期有力约束南海下次海啸事件的发生年...  相似文献   

4.
越洋海啸的数值模拟   总被引:3,自引:0,他引:3  
破坏性海啸基本上都是越洋海啸,如1960年智利海啸、2004年苏门答腊海啸。越洋海啸的传播机制与近场海啸不同,进行数值模拟所采用的数学模型也不同。本文分析比较Boussinesq方程和线性浅水方程,选用后者作为进行越洋海啸数值模拟的数学模型,基于有限差分法,运用蛙跃格式求解微分方程。以2004年苏门答腊海啸作为算例,把计算结果与NOAA和NGDC的计算结果进行对比,验证本文的数学模型和计算方法的可靠性,为以后进一步的海啸危险性分析和海啸预警等研究工作提供技术支持。  相似文献   

5.
1604年泉州海外大地震及其海啸影响分析   总被引:1,自引:0,他引:1  
黄昭  王善雄  王喜年 《地震》2006,26(4):94-102
由于史料记载的模糊和局限性, 1604年泉州海外8级大地震是否引发地震海啸灾难, 一直是有争议的。 该文从这次地震历史资料的辨别、 考证和分析研究认为, 泉州海外大地震并未引发地震海啸产生的显著灾害。 在相关的史料与台湾海峡发震构造的分析基础上, 通过潜在海啸源的鉴别以及海啸源参数的确定, 对泉州滨海断裂和台湾海峡浅滩南缘海啸源进行数值模拟计算。 在计算过程中, 利用了1994年台湾海峡浅滩南缘地震的海啸波验潮站资料, 对计算模型和方法进行了检验。 1604年泉州海外大地震的潜在海啸源(滨海断裂)的数值计算结果表明, 海啸波对泉州湾沿岸的增减水效应不足以造成灾难性的影响, 因此也为1604年泉州海外大地震未引发灾难性的海啸提供了新的证据。  相似文献   

6.
介绍由广东省地震局开发的南海地震监测与海啸数值模拟平台,该平台主要由两部分组成:一是基于国家地震自动速报备份系统的南海地震实时监测平台,全天候实时监测南海及其周边地区进行地震自动速报,如果震级达到6级以上,平台发出声音报警,并预留短信接口,可发布海啸预警信息;二是基于COMCOT模式的南海地震海啸数值模拟平台,根据地震三要素、震源参数、断层参数等,进行数值模拟海啸传播过程,计算海啸到达海岸线的时间和浪高,获得海啸传播时程和破坏程度,用于预判发布海啸预警信息。这两者之间关系密切,缺一不可,先有地震,后才引发海啸,而海啸预警才是最终目的。  相似文献   

7.
地震海啸的激发与传播   总被引:1,自引:0,他引:1  
本文围绕海啸的激发和传播两个方面简述了有限矩形源产生的地表形变场、浅水波浪理论和Boussinesq方程等基本理论,讨论了震源参数对海啸传播的影响,比较分析了海啸的数值模拟方法,介绍了我国地震海啸的研究进展等。  相似文献   

8.
2010年2月27日06时34分(北京时间14时34分),在智利中南部近岸(36.1°S,72.6°W)发生Mw8.8级地震,并引发了泛太平洋范围的海啸,太平洋沿岸多个国家的验潮站和海啸监测浮标均监测到了强震引发的海啸;海啸波传播25 h后到达我国沿海.本文利用海啸数值模型对此次地震海啸进行了数值模拟.重点模拟了我国沿...  相似文献   

9.
基于强震台网的我国沿海海啸走时预警   总被引:5,自引:1,他引:4  
经济快速发展的中国沿海地区,面临着潜在海啸袭击危险。海啸传播走时分析是海啸预警系统的重要组成部分。本文基于强震台网提供的地震要素,从理论上讨论海啸预警时间计算方法。在球坐标系下,建立了远洋海啸传播模型,采用差分技术,实现远洋海啸传播数值模拟,首次针对我国主要城市进行了海啸走时计算,分析了我国沿海走时特点,指出了未来发生在太平洋的远洋海啸对我国的长江三角洲会有较大影响。本文计算海啸走时方法可以为我国建设的新一代基于数值海啸预警系统提供技术支持。  相似文献   

10.
海啸传播模型与数值模拟研究进展   总被引:1,自引:0,他引:1  
海啸在浅水大陆架的传播问题由于其非线性作用和浅水效应而变得十分复杂,然而目前成熟的海啸传播理论及数值模拟结果在这方面与实际并不一致.本文比较分析了可用来模拟大陆架海啸传播的浅水波模型和数值方法,并提出对我国东海陆架边缘可能发生的近海海啸需要开展数值试验研究.  相似文献   

11.
In real-time operational coastal forecasting systems for the northwest European shelf, the representation accuracy of tide–surge models commonly suffers from insufficiently accurate tidal representation, especially in shallow near-shore areas with complex bathymetry and geometry. Therefore, in conventional operational systems, the surge component from numerical model simulations is used, while the harmonically predicted tide, accurately known from harmonic analysis of tide gauge measurements, is added to forecast the full water-level signal at tide gauge locations. Although there are errors associated with this so-called astronomical correction (e.g. because of the assumption of linearity of tide and surge), for current operational models, astronomical correction has nevertheless been shown to increase the representation accuracy of the full water-level signal. The simulated modulation of the surge through non-linear tide–surge interaction is affected by the poor representation of the tide signal in the tide–surge model, which astronomical correction does not improve. Furthermore, astronomical correction can only be applied to locations where the astronomic tide is known through a harmonic analysis of in situ measurements at tide gauge stations. This provides a strong motivation to improve both tide and surge representation of numerical models used in forecasting. In the present paper, we propose a new generation tide–surge model for the northwest European Shelf (DCSMv6). This is the first application on this scale in which the tidal representation is such that astronomical correction no longer improves the accuracy of the total water-level representation and where, consequently, the straightforward direct model forecasting of total water levels is better. The methodology applied to improve both tide and surge representation of the model is discussed, with emphasis on the use of satellite altimeter data and data assimilation techniques for reducing parameter uncertainty. Historic DCSMv6 model simulations are compared against shelf wide observations for a full calendar year. For a selection of stations, these results are compared to those with astronomical correction, which confirms that the tide representation in coastal regions has sufficient accuracy, and that forecasting total water levels directly yields superior results.  相似文献   

12.
In the last 15 years there have been 16 tsunami events recorded at tide stations on the Pacific Coast of Canada. Eleven of these events were from distant sources covering almost all regions of the Pacific, as well as the December 26, 2004 Sumatra tsunami in the Indian Ocean. Three tsunamis were generated by local or regional earthquakes and two were meteorological tsunamis. The earliest four events, which occurred in the period 1994–1996, were recorded on analogue recorders; these tsunami records were recently re-examined, digitized and thoroughly analysed. The other 12 tsunami events were recorded using digital high-quality instruments, with 1-min sampling interval, installed on the coast of British Columbia (B.C.) in 1998. All 16 tsunami events were recorded at Tofino on the outer B.C. coast, and some of the tsunamis were recorded at eight or more stations. The tide station at Tofino has been in operation for 100 years and these recent observations add to the dataset of tsunami events compiled previously by S.O. Wigen (1983) for the period 1906–1980. For each of the tsunami records statistical analysis was carried out to determine essential tsunami characteristics for all events (arrival times, maximum amplitudes, frequencies and wave-train structure). The analysis of the records indicated that significant background noise at Langara, a key northern B.C. Tsunami Warning station located near the northern end of the Queen Charlotte Islands, creates serious problems in detecting tsunami waves. That station has now been moved to a new location with better tsunami response. The number of tsunami events observed in the past 15 years also justified re-establishing a tide gauge at Port Alberni, where large tsunami wave amplitudes were measured in March 1964. The two meteorological events are the first ever recorded on the B.C. coast. Also, there have been landslide generated tsunami events which, although not recorded on any coastal tide gauges, demonstrate, along with the recent investigation of a historical catastrophic event, the significant risk that landslide generated tsunami pose to coastal and inland regions of B.C.  相似文献   

13.
快速准确的海啸源模型是近场海啸精确预警的关键.尽管目前还没有办法直接对其进行正演定量计算,但是可以通过多源地震、海啸观测数据进行反演或联合反演推算.不同的海啸源可能导致不同的预警结论,了解不同类型海啸源适用性、评估海啸源特征差异对近场海啸的影响,无论对于海啸预警还是海啸模拟研究尤为重要.本文评估分析了6种不同同震断层模型对2011年3月11日日本东北地震海啸近场数值预报的影响,重点对比分析了有限断层模型与均一滑动场模型对近场海啸产生、传播、淹没特征的影响及各自的误差.研究表明:近场海啸波能量分布主要取决于海啸源分布特征,特别是走向角的差异对海啸能量分布影响较大;有限断层模型对海啸灾害最为严重的39°N以南沿岸地区的最大海啸爬坡高度明显优于均一滑动场模型结果;综合对比DART浮标、GPS浮标及近岸潮位站共32个站次的海啸波幅序列结果发现有限断层模型整体平均绝对/相对误差比均一滑动场模型平均误差要低,其中Fujii海啸源的平均绝对/相对误差最小,分别是0.56m和26.71%.UCSB海啸源的平均绝对/相对误差次之.3个均一滑动场模型中USGSCMT海啸源模拟精度最高.相对于深海、浅海观测站,有限断层模型比均一滑动场模型对近岸观测站计算精度更高.海啸源误差具有显著的方向性,可能与反演所采用的波形数据的代表性有关;谱分析结果表明Fujii海啸源对在12至60min主频波谱的模拟要优于UCSB海啸源.海啸源中很难真实反映海底地震破裂过程,然而通过联合反演海啸波形数据推算海啸源的方法可以快速确定海啸源,并且最大限度的降低地震破裂过程与海啸产生的不确定性带来的误差.  相似文献   

14.
First, we investigated some aspects of tsunami–tide interactions based on idealized numerical experiments. Theoretically, by changing total ocean depth, tidal elevations influence the speed and magnitude of tsunami waves in shallow regions with dominating tidal signals. We tested this assumption by employing a simple 1-D model that describes propagation of tidal waves in a channel with gradually increasing depth and the interaction of the tidal waves with tsunamis generated at the channel's open boundary. Important conclusions from these studies are that computed elevations by simulating the tsunami and the tide together differ significantly from linear superposing of the sea surface heights obtained when simulating the tide and the tsunami separately, and that maximum tsunami–tide interaction depends on tidal amplitude and phase. The major cause of this tsunami–tide interaction is tidally induced ocean depth that changes the conditions of tsunami propagation, amplification, and dissipation. Interactions occur by means of momentum advection, bottom friction, and variable water flux due to changing total depth and velocity. We found the major cause of tsunami–tide interactions to be changing depth. Secondly, we investigate tsunami–tide interactions in Cook Inlet, Alaska, employing a high-resolution 2-D numerical model. Cook Inlet has high tides and a history of strong tsunamis and is a potential candidate for tsunami impacts in the future. In agreement with previous findings, we find that the impacts of tsunamis depend on basin bathymetries and coastline configurations, and they can, in particular, depend on tsunami–tide interactions. In regions with strong tides and tsunamis, these interactions can result in either intensification or damping of cumulative tsunami and tide impacts, depending on mean basin depth, which is regulated by tides. Thus, it is not possible to predict the effect of tsunami–tide interaction in regions with strong tides without making preliminary investigations of the area. One approach to reduce uncertainties in tsunami impact in regions with high tides is to simulate tsunamis together with tidal forcing.  相似文献   

15.
We explained spectra of distant tsunamis observed in enclosed basins by applying the synthesis method based on joint analysis of tsunami and background spectra from a number of stations. This method is the generalization of the method proposed by Rabinovich (J. Geopys. Res. 102, 12663-12676, 1997) to separate source and topography effects in recorded tsunami waves. The source function is extracted by inversion of the tsunami/background spectra averaged from many observational sites. The method is applied to the 2009 Papua tsunami observed at the Owase tide station in southwest Japan, a region with complicated topography and numerous bays and inlets. The synthesized spectrum explains the observed spectral amplitudes for each frequency component. It is shown that averaging of tsunami and background from various tide gauge stations in semi-enclosed basins is an efficient approach to extract the source function.  相似文献   

16.
We studied the 11 March 2011 Tohoku tsunami through analysis of the sea level records from 21 tide gauge and 16 DART (Deep-ocean Assessment and Reporting of Tsunamis) stations from across the Pacific Ocean. The extreme power of this trans-oceanic tsunami was indicated by the trough-to-crest heights of 3.03 m at Arena Cove on the western coast of the USA and 3.94 m at Coquimbo on the southern coast of Chile. The average value of the maximum amplitude was 163.9 cm for the examined tide gauge records. At many coastal tide gauge stations the largest wave arrived several hours after the first arrival of the tsunami wave, and the tsunami lasted for a long time with an average duration of 4 days. On the contrary, at most of the DART stations in the deep ocean, the first wave was the largest, the tsunami amplitudes were smaller with an average maximum of 51.2 cm, and the durations were shorter with an average of 2 days. The two dominant tsunami periods on the DART records were 37 and 67.4 min, which are possibly attributed to the width and length of the tsunami source fault, respectively. The dimensions of the tsunami source was estimated as 233 km × 424 km. Wavelet analyses of tide gauge and DART records showed that most of the tsunami energy was distributed at the wide period band of around 10–80 min during the first hour after the tsunami arrival, then it was concentrated in a relatively narrower band. The frequency-time plots showed the switches and lapses of tsunami energy at the 35- and 65-min period bands.  相似文献   

17.
On December 12, 1992 a large earthquake (M s 7.5) occurred just north of Flores Island, Indonesia which, along with the tsunami it generated, killed more than 2,000 people. In this study, teleseismicP andSH waves, as well asPP waves from distances up to 123°, are inverted for the orientations and time histories of multiple point sources. By repeating the inversion for reasonable values of depth, time separation and spatial separation, a 2-fault model is developed. Next, the vertical deformation of the seafloor is estimated from this fault model. Using a detailed bathymetric model, linear and nonlinear tsunami propagation models are tested. The data consist of a single tide gauge record at Palopo (650 km to the north), as well as tsunami runup height measurements from Flores Island and nearby islands. Assuming a tsunami runup amplification factor of two, the two-fault model explains the tide gauge record and the tsunami runup heights on most of Flores Island. It cannot, however, explain the large tsunami runup heights observed near Leworahang (on Hading Bay) and Riangkroko (on the northeast peninsula). Massive coastal slumping was observed at both of these locations. A final model, which in addition to the two faults, includes point sources of large vertical displacement at these two locations explains the observations quite well.  相似文献   

18.
The destructive Pacific Ocean tsunami generated off the east coast of Honshu, Japan, on 11 March 2011 prompted the West Coast and Alaska Tsunami Warning Center (WCATWC) to issue a tsunami warning and advisory for the coastal regions of Alaska, British Columbia, Washington, Oregon, and California. Estimating the length of time the warning or advisory would remain in effect proved difficult. To address this problem, the WCATWC developed a technique to estimate the amplitude decay of a tsunami recorded at tide stations within the Warning Center’s Area of Responsibly (AOR). At many sites along the West Coast of North America, the tsunami wave amplitudes will decay exponentially following the arrival of the maximum wave (Mofjeld et al., Nat Hazards 22:71–89, 2000). To estimate the time it will take before wave amplitudes drop to safe levels, the real-time tide gauge data are filtered to remove the effects of tidal variations. The analytic envelope is computed and a 2 h sequence of amplitude values following the tsunami peak is used to obtain a least squares fit to an exponential function. This yields a decay curve which is then combined with an average West Coast decay function to provide an initial tsunami amplitude-duration forecast. This information may then be provided to emergency managers to assist with response planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号