首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《水文科学杂志》2012,57(1):57-70
ABSTRACT

Leading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correlations on a seasonal basis were calculated using correlation and regression analyses between the leading streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correlation with autumn streamflow. Leading patterns of autumn and winter streamflow time series show predictability up to two seasons in advance from the Pacific sea-surface temperatures.  相似文献   

2.
Simulation of South-Asian Summer Monsoon in a GCM   总被引:1,自引:0,他引:1  
Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.  相似文献   

3.
Seasonal climate prediction for the Indian summer monsoon season is critical for strategic planning of the region. The mean features of the Indian summer monsoon and its variability, produced by versions of the ‘Florida State University Coupled Ocean-Atmosphere General Circulation Model’ (FSUCGCM) hindcasts, are investigated for the period 1987 to 2002. The coupled system has full global ocean and atmospheric models with coupled assimilation. Four member models were created by choosing different combinations of parameterizations of the physical processes in the atmospheric model component. Lower level wind flow patterns and rainfall associated with the summer monsoon season are examined from this fully coupled model seasonal integrations. By comparing with observations, the mean monsoon condition simulated by this coupled model for the June, July and August periods is seen to be reasonably realistic. The overall spatial low-level wind flow patterns and the precipitation distributions over the Indian continent and adjoining oceanic regions are comparable with the respective analyses. The anomalous below normal large-scale precipitation and the associated anomalous low-level wind circulation pattern for the summer monsoon season of 2002 was predicted by the model three months in advance. For the Indian summer monsoon, the ensemble mean is able to reproduce the mean features better compared to individual member models.  相似文献   

4.
Wavelet and cross-wavelet analysis are used to identify and describe spatial and temporal variability in Canadian seasonal precipitation, and to gain further insights into the dynamical relationship between the seasonal precipitation and the dominant modes of climate variability in the Northern Hemisphere. Results from applying continuous wavelet transform to seasonal precipitation series from 201 stations selected from Environment Canada Meteorological Network reveal striking climate-related features before and after the 1940s. The span of available observations, 1900–2000, allows for depicting variance and covariance for periods up to 12 years. Scale-averaged wavelet power spectra are used to simultaneously assess the temporal and spatial variability in each set of 201 seasonal precipitation time series. The most striking feature, in the 2–3-year period and in the 3–6-year period—the 6–12-year period is dominated by white noise and is not considered further—is a net distinction between the timing and intensity of the temporal variability in autumn, winter and spring–summer precipitation. It is found that the autumn season exhibits the most intense activity (or variance) in both the 2–3 year and the 3–6 year periods. The winter season corresponds to the least intense activity for the 2–3 year period, but it exhibits more activity than the spring–summer for the 3–6 year period.Cross-wavelet analysis is provided between the seasonal precipitation and four selected climatic indices: the Pacific North America (PNA), the North Atlantic Oscillation (NAO), the Northern Hemisphere Annular Mode (NAM) originally called the Arctic Oscillation, and the sea surface temperature series over the Niño-3 region (ENSO). The wavelet cross-spectra revealed coherent space–time variability of the climate–precipitation relationship throughout Canada. It is shown that strong climate/precipitation activity (or covariance) in the 2–6 year period starts after 1940 whatever the climatic index and the season. Prior to year 1940, only local and weaker 2–6 year activity is revealed in western Canada essentially in winter and autumn, but overall a non-significant precipitation/climate relationship is observed prior to 1940. Correlation analysis in the 2–6 year band between the seasonal precipitation and the selected climatic indices revealed strong positive correlations with the ENSO, the NAO, and the NAM in eastern and western Canada for the post-1940 period. For the period prior to 1940, the correlation tend be negative for all the indices whatever the region. A particular feature in the correlation analysis results is the consistently stronger and positive NAM–precipitation correlations in all the regions since 1940. The cross-wavelet spectra and the correlation analysis in the 2–6 year band suggest the presence of a change point around 1940 in Canadian seasonal precipitation—that is found to be more likely related to NAM dynamics.  相似文献   

5.
Ocean–atmosphere modes of climate variability in the Pacific and Indian oceans, as well as monsoons, regulate the regional wet and dry episodes in tropical regions. However, how those modes of climate variability, and their interactions, lead to spatial differences in drought patterns over tropical Asia at seasonal to interannual time scales remains unclear. This study aims to analyse the hydroclimate processes for both short- and long-term spatial drought patterns (3-, 6, 12- and 24-months) over Peninsular Malaysia using the Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index, and Palmer Drought Severity Index. Besides that, a generalized least squares regression is used to explore underlying circulation mechanisms of these spatio-temporal drought patterns. The tested drought indices indicate a tendency towards wetter conditions over Peninsular Malaysia. Based on principal component analysis, distinct spatio-temporal drought patterns are revealed, suggesting North–South and East–West gradients in drought distribution. The Pacific El Nino Southern Oscillation (ENSO), the South Western Indian Ocean (SWIO) variability, and the quasi-biennial oscillation (QBO) are significant contributors to the observed spatio-temporal variability in drought. Both the ENSO and the SWIO modulate the North–South gradient in drought conditions over Peninsular Malaysia, while the QBO contributes more to the East–West gradient. Through modulating regional moisture fluxes, the warm phases of the ENSO and the SWIO, and the western phases of the QBO weaken the southwest and northeast monsoon, leading to precipitation deficits and droughts over Peninsular Malaysia. The East–West or North–South gradients in droughts are related to the middle mountains blocking southwest and northeast moisture fluxes towards Peninsular Malaysia. In addition, the ENSO and QBO variations are significantly leading to short-term droughts (less than a year), while the SWIO is significantly associated with longer-duration droughts (2 years or more). Overall, this work demonstrates how spatio-temporal drought patterns in tropical regions are related to monsoons and moisture transports affected by the oscillations over the Pacific and Indian oceans, which is important for national water risk management.  相似文献   

6.
A global climate prediction system(PCCSM4) was developed based on the Community Climate System Model, version 4.0, developed by the National Center for Atmospheric Research(NCAR), and an initialization scheme was designed by our group. Thirty-year(1981–2010) one-month-lead retrospective summer climate ensemble predictions were carried out and analyzed. The results showed that PCCSM4 can efficiently capture the main characteristics of JJA mean sea surface temperature(SST), sea level pressure(SLP), and precipitation. The prediction skill for SST is high, especially over the central and eastern Pacific where the influence of El Ni?o-Southern Oscillation(ENSO) is dominant. Temporal correlation coefficients between the predicted Ni?o3.4 index and observed Ni?o3.4 index over the 30 years reach 0.7, exceeding the 99% statistical significance level. The prediction of 500-hPa geopotential height, 850-hPa zonal wind and SLP shows greater skill than for precipitation. Overall, the predictability in PCCSM4 is much higher in the tropics than in global terms, or over East Asia. Furthermore, PCCSM4 can simulate the summer climate in typical ENSO years and the interannual variability of the Asian summer monsoon well. These preliminary results suggest that PCCSM4 can be applied to real-time prediction after further testing and improvement.  相似文献   

7.
Daily precipitation/temperature data collected at 74 weather stations across the Pearl River basin of China (PRBC), for the years 1952–2013, were used to analyse extreme precipitation (EP) processes at annual and seasonal scales in terms of precipitation magnitude, occurrence rates, and timing. Peak‐over‐threshold sampling, modified Mann‐Kendall trend tests, and Poisson regression model were utilized in this study. Causes driving the observed statistical behaviours of EP were investigated, focusing particularly on the impacts of temperature change and the El Niño–Southern Oscillation (ENSO). EP events, which occur mainly during April and September, are most frequent in June. At an annual scale, they are subject to relatively even interannual distributions during the wet season. Significant trends were observed in the magnitude, frequency, and timing of EP events during the dry seasons, although no such trends were seen during the wet seasons. Seasonal shifts in EP can easily trigger sudden flood or drought events and warming temperatures, and ENSO events also have significant impacts on EP processes across the PRBC, as reflected by their increased magnitude and frequency in the western PRBC and decreased precipitation magnitudes in the eastern PRBC during ENSO periods. These results provide important evidence of regional hydrological responses to global climate changes in terms of EP regimes in tropical and subtropical zones.  相似文献   

8.
探讨了东亚地区副热带西风急流(EAJS)位置的年际 变化特征、影响及其可能机制. EAJS南北变动的影响主要集中在亚澳季风区和气候平均的北 半球副热带西风急流轴的南北两侧,这与SOI或ENSO相联系的大气环流响应很不相同,后者的 影响主要表现在中、东太平洋上. 北半球副热带西风急流存在着两个显著不同的模态,其中 一个模态反映的是亚太尤其是东亚地区的西风急流的南北变异,另一个模态出现在150°E~1 20°W的中、东太平洋上. 它们分别联系着不同的太平洋海温异常分布,但都能对夏季200hPa 南亚高压的强度产生影响,尤其是南亚高压的东部,从而可以对我国东部夏季旱涝灾害的形成 产生作用.  相似文献   

9.
Wave climate simulation for southern region of the South China Sea   总被引:2,自引:0,他引:2  
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.  相似文献   

10.
11.
《水文科学杂志》2012,57(2):242-253
ABSTRACT

The Source Region of Three Rivers (SRTR) has experienced wetter summer seasons than before in recent decades due to climate change. As the most important source of surface water, precipitation plays a key role in supplying the three largest rivers. This study investigates the impacts of the East Asian summer monsoon (EASM) and the South Asian summer monsoon (SASM) on precipitation in the SRTR. Using wavelet analysis tools, we found that: (i) summer precipitation in the SRTR showed notably different responses to the monsoon variability among the 14 stations studied; (ii) the influence of the EASM and SASM on summer precipitation was stronger in the southern and eastern SRTR; but (iii) this influence quickly dampened from southeast to northwest and became almost indiscernible in the northwestern SRTR. This research may help to increase the accuracy of long-term monsoon-rainfall prediction and improve water resource management in the SRTR.  相似文献   

12.
An analysis of the climate change signal for seasonal temperature and precipitation over the Northern Adriatic region is presented here. We collected 43 regional climate simulations covering the target area, including experiments produced in the context of the PRUDENCE and ENSEMBLES projects, and additional experiments produced by the Swedish Meteorological and Hydrological Institute. The ability of the models to simulate the present climate in terms of mean and interannual variability is discussed and the insufficient reproduction of some features, such as the intensity of summer precipitation, are shown. The contribution to the variance associated with the intermodel spread is computed. The changes of mean and interannual variability are analyzed for the period 2071–2100 in the PRUDENCE runs (A2 scenario) and the periods 2021–2050 and 2071–2100 (A1B scenario) for the other runs. Ensemble results show a major warming at the end of the 21st century. Warming will be larger in the A2 scenario (about 5.5 K in summer and 4 K in winter) than in the A1B. Precipitation is projected to increase in winter and decrease in summer by 20% (+0.5 mm/day and −1 mm/day over the Alps, respectively). The climate change signal for scenario A1B in the period 2021–2050 is significant for temperature, but not yet for precipitation. In summer, interannual variability is projected to increase for temperature and for precipitation. Winter interannual variability change is different among scenarios. A reduction of precipitation is found for A2, while for A1B a reduction of temperature interannual variability is observed.  相似文献   

13.
This paper presents the EOF analysis results of the lightning density (LD) anomalies for the different seasons in southeastern China and Indochina Peninsula by using the OTD/LIS database (June 1995 to Feb. 2003) of the global LD with 2.5Ü×2.5× resolution offered by Global Hydrology Resource Center. It is shown that the LD positive anomalies in the region occurred at the same time of NINO3 SSTA steep increase in the spring of 1997 and remained to be a higher level till the next spring, as well the corresponding anomaly percent maximum in different seasons was 89%, 30%, 45%, 498% and 55% successively from the beginning to the end of the 1997/98 El Niño event (ENSO). The centre of the LD positive anomalies for the spring or winter season is located at southeastern China and the adjacent coastal areas, but it for the summer or autumn season is located at the southern Indochina Peninsula and Gulf of Thailand, whose position for each season in the ENSO as contrasted with the normal years has a westward shift, and especially for winter or spring season a northward shift at the same time. In addition, an analysis of the interannual variations in the LD anomaly percent, convective precipitation and H-CAPE days in southern China shows that each among the three anomaly percents is correlative with the other for the positive anomaly zone and Kuroshio area. The relative variation of LD during the El Niño period is the highest among the three rates and is larger than that during the non-El Niño period, meaning that the response of lightning activities to the ENSO is the most sensitive in both areas. But the response of lightning activities and precipitation to the ENSO appears to be more complex and diversified either in Kuroshio area or in the Qinghai-Tibet Plateau and northwestern and northeastern China.  相似文献   

14.
This paper presents the EOF analysis results of the lightning density (LD) anomalies for the different seasons in southeastern China and Indochina Peninsula by using the OTD/LIS database (June 1995 to Feb. 2003) of the global LD with 2.5°×2.5° resolution offered by Global Hydrology Resource Center. It is shown that the LD positive anomalies in the region occurred at the same time of NINO3 SSTA steep increase in the spring of 1997 and remained to be a higher level till the next spring, as well the corresponding anomaly percent maximum in different seasons was 89%, 30%, 45%, 498% and 55% successively from the beginning to the end of the 1997/98 El Ni(~n)o event (ENSO). The centre of the LD positive anomalies for the spring or winter season is located at southeastern China and the adjacent coastal areas, but it for the summer or autumn season is located at the southern Indochina Peninsula and Gulf of Thailand, whose position for each season in the ENSO as contrasted with the normal years has a westward shift, and especially for winter or spring season a northward shift at the same time. In addition, an analysis of the interannual variations in the LD anomaly percent, convective precipitation and H-CAPE days in southern China shows that each among the three anomaly percents is correlative with the other for the positive anomaly zone and Kuroshio area. The relative variation of LD during the El Ni (~n)o period is the highest among the three rates and is larger than that during the non-El Ni(~n)o period, meaning that the response of lightning activities to the ENSO is the most sensitive in both areas. But the response of lightning activities and precipitation to the ENSO appears to be more complex and diversified either in Kuroshio area or in the Qinghai-Tibet Plateau and northwestern and northeastern China.  相似文献   

15.
Climate variability and change impact groundwater resources by altering recharge rates. In semi-arid Basin and Range systems, this impact is likely to be most pronounced in mountain system recharge (MSR), a process which constitutes a significant component of recharge in these basins. Despite its importance, the physical processes that control MSR have not been fully investigated because of limited observations and the complexity of recharge processes in mountainous catchments. As a result, empirical equations, that provide a basin-wide estimate of mean annual recharge using mean annual precipitation, are often used to estimate MSR. Here North American Regional Reanalysis data are used to develop seasonal recharge estimates using ratios of seasonal (winter vs. summer) precipitation to seasonal actual or potential evapotranspiration. These seasonal recharge estimates compared favorably to seasonal MSR estimates using the fraction of winter vs. summer recharge determined from isotopic data in the Upper San Pedro River Basin, Arizona. Development of hydrologically based seasonal ratios enhanced seasonal recharge predictions and notably allows evaluation of MSR response to changes in seasonal precipitation and temperature because of climate variability and change using Global Climate Model (GCM) climate projections. Results show that prospective variability in MSR depends on GCM precipitation predictions and on higher temperature. Lower seasonal MSR rates projected for 2050-2099 are associated with decreases in summer precipitation and increases in winter temperature. Uncertainty in seasonal MSR predictions arises from the potential evapotranspiration estimation method, the GCM downscaling technique and the exclusion of snowmelt processes.  相似文献   

16.
The exact size of the wetland area of South America is not known but may comprise as much as 20% of the sub-continent, with river floodplains and intermittent interfluvial wetlands as the most prominent types. A few wetland areas have been well studied, whereas little is known about others, including some that are very large. Despite the fact that most South American countries have signed the Ramsar convention, efforts to elaborate basic data have been insufficient, thereby hindering the formulation of a wetland-friendly policy allowing the sustainable management of these areas. Until now, the low population density in many wetland areas has provided a high level of protection; however, the pressure on wetland integrity is increasing, mainly as a result of land reclamation for agriculture and animal ranching, infrastructure building, pollution, mining activities, and the construction of hydroelectric power plants. The Intergovernmental Panel on Climate Change has predicted increasing temperatures, accelerated melting of the glaciers in Patagonia and the Andes, a rise in sea level of 20–60 cm, and an increase in extreme multiannual and short-term climate events (El Niño and La Niña, heavy rains and droughts, heat waves). Precipitation may decrease slightly near the Caribbean coast as well as over large parts of Brazil, Chile, and Patagonia, but increase in Colombia, Ecuador, and Peru, around the equator, and in southeastern South America. Of even greater impact may be a change in rainfall distribution, with precipitation increasing during the rainy season and decreasing during the dry season. There is no doubt that the predicted changes in global climate will strongly affect South American wetlands, mainly those with a low hydrologic buffer capacity. However, for the coming decades, wetland destruction by wetland-unfriendly development planning will by far outweigh the negative impacts of global climate change. South American governments must bear in mind that there are many benefits that wetlands bring about for the landscape and biodiversity as well as for humans. While water availability will be the key problem for the continent’s cities and agroindustries, intact wetlands can play a major role in storing water, buffering river and stream discharges, and recharging subterranean aquifers.  相似文献   

17.
赤道MJO活动对南海夏季风爆发的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
利用1979—2013年NCEP/DOE再分析资料的大气多要素日平均资料、美国NOAA日平均向外长波辐射资料和ERSST月平均海温资料,分析赤道大气季节内振荡(简称MJO)活动对南海夏季风爆发的影响及其与热带海温信号等的协同作用.结果表明,赤道MJO活动与南海夏季风爆发密切联系,MJO的湿位相(即对流活跃位相)处于西太平洋位相时,有利于南海夏季风爆发,而MJO湿位相处于印度洋位相时,则不利于南海夏季风爆发.赤道MJO活动影响南海夏季风爆发的物理过程主要是大气对热源响应的结果,当MJO湿位相处于西太平洋位相时,一方面热带西太平洋对流加强使潜热释放增加,导致处于热源西北侧的南海—西北太平洋地区对流层低层由于Rossby响应产生气旋性环流异常,气旋性环流异常则有利于西太平洋副热带高压的东退,另一方面菲律宾附近热源促进对流层高层南亚高压在中南半岛和南海北部的建立,使南海地区高层为偏东风,从而有利于南海夏季风建立;当湿位相MJO处于印度洋位相时,热带西太平洋对流减弱转为大气冷源,情况基本相反,不利于南海夏季风建立.MJO活动、孟加拉湾气旋性环流与年际尺度海温变化协同作用,共同对南海夏季风爆发迟早产生影响,近35年南海夏季风爆发时间与海温信号不一致的年份,基本上是由于季节转换期间的MJO活动特征及孟加拉湾气旋性环流是否形成而造成,因此三者综合考虑对于提高季风爆发时间预测水平具有重要意义.  相似文献   

18.
Groundwater, an essential resource, is likely to change with global warming because of changes in the CO2 levels, temperature and precipitation. Here, we combine water isotope geochemistry with climate modelling to examine future groundwater recharge in southwest Ohio, USA. We first establish the stable isotope profiles of oxygen and deuterium in precipitation and groundwater. We then use an isotope mass balance model to determine seasonal groundwater recharge from precipitation. Climate model output is used to project future changes in precipitation and its seasonal distribution under medium and high climate change scenarios. Finally, these results are combined to examine future changes in groundwater recharge. We find that 76% of the groundwater recharge occurs in the cool season. Climate models project precipitation increase in the cool season and decrease in the warm season. The total groundwater recharge is expected to increase by 3.2% (8.8%) under the medium (high) climate change scenarios.  相似文献   

19.
Simulations of LGM climate of East Asia by regional climate model   总被引:3,自引:0,他引:3  
ClimateconditionsintheLastGlacialMaximum(LGM)wereremarkablydifferentfromthepresentones.LGMglobalmeantemperaturewas5℃-10℃dropbutprecipitationdecreasescommonly.LGMhasbecomethekeyphasetoreconstructtheearthenvironmentalfield,retrieveextremecoldclimatecondit…  相似文献   

20.
Climate models project warmer temperatures for the north‐west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies. In the groundwater‐dominated watershed, aquifer storage and the associated slow summer recession are responsible for sustaining discharge even when the seasonal or annual water balance is negative, while in the runoff‐dominated watershed subsurface storage is exhausted every summer. There is a significant 1 year cross‐correlation between precipitation and discharge in the groundwater‐dominated watershed (r = 0·52), but climatic factors override geology in controlling the inter‐annual variability of streamflow. Warmer winters and earlier snowmelt over the past 60 years have shifted the hydrograph, resulting in summer recessions lasting 17 days longer, August discharges declining 15%, and autumn minimum discharges declining 11%. The slow recession of groundwater‐dominated streams makes them more sensitive than runoff‐dominated streams to changes in snowmelt amount and timing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号