首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed turbidity results show that (i) the highest SSC is found in the coastal areas while in the outer shelf sea areas turbid water is much more difficult to observe, (ii) the surface layer SSC is much lower than the bottom layer SSC and (iii) the winter SSC is higher than the summer SSC. The Regional Ocean Modeling System (ROMS) is used to simulate the SSC distribution in the BYECS. A comparison between the modeled SSC and the observed SSC in the BYECS shows that the modeled SSC can reproduce the principal features of the SSC distribution in the BYECS. The dynamic mechanisms of the sediment erosion and transport processes are studied based on the modeled results. The horizontal distribution of the SSC in the BYECS is mainly determined by the current-wave induced bottom stress and the fine-grain sediment distribution. The current-induced bottom stress is much higher than the wave-induced bottom stress, which means the tidal currents play a more significant role in the sediment resuspension than the wind waves. The vertical mixing strength is studied based on the mixed layer depth and the turbulent kinetic energy distribution in the BYECS. The strong winter time vertical mixing, which is mainly caused by the strong wind stress and surface cooling, leads to high surface layer SSC in winter. High surface layer SSC in summer is restricted in the coastal areas.  相似文献   

2.
The chlorophyll a(Chl a) is an important indicator of marine ecosystems. The spatiotemporal variation of the Chl a greatly aff ects the mariculture and marine ranching in coastal waters of the Shandong Peninsula. In the current study, the climatology and seasonal variability of surface Chl-a concentration around the Shandong Peninsula are investigated based on 16 years(December 2002–November 2018) of satellite observations. The results indicate that the annual mean Chl-a concentration is greater in the Bohai Sea than in the Yellow Sea and decreases from coastal waters to off shore waters. The highest Chl-a concentrations are found in Laizhou Bay(4.2–8.0 mg/m 3), Haizhou Bay(4.2–5.9 mg/m 3) and the northeast coast of the Shandong Peninsula(4.4–5.0 mg/m 3), resulting from the combined eff ects of the intense riverine input and long residence time caused by the concave shape of the coastline. The seasonal Chl-a concentration shows a signifi cant spatial variation. The Chl-a concentrations in these three subregions generally exhibit an annual maximum in August/September, due to the combined eff ects of sea surface temperature, river discharge and sea surface wind. In the southeast coast region, however, the Chl-a concentration is lowest throughout the year and reaches a maximum in February with a minimum in July, forced by the seasonal evolution of the Yellow Sea Cold Water and monsoon winds. The interannual Chl-a concentration trends vary among regions and seasons. There are signifi cant increasing trends over a large area around Haizhou Bay from winter to summer, which are mainly caused by the rising sea surface temperature and eutrophication. In other coastal areas, the Chl-a concentration shows decreasing trends, which are clearest in summer and induced by the weakening land rainfall. This study highlights the diff erences in the Chl-a dynamics among regions around the Shandong Peninsula and is helpful for further studies of coupled physical-ecological-human interactions at multiple scales.  相似文献   

3.
Internal waves can bring nutrients to the upper level of water bodies and facilitate phytoplankton photosynthesis. Internal waves occur frequently in the northern portion of the South China Sea and inflict an important effect on chlorophyll a distribution. In this study, in-situ observation and satellite remote sensing data were used to study the effects of internal waves on chlorophyll a distribution. Based on the in-situ observations, lower chlorophyll a concentrations were present in the middle and bottom level in areas in which internal waves occur frequently, while the surface chlorophyll a distribution increased irregularly, and a small area with relatively higher chlorophyll a concentrations was observed in the area around the Dongsha Island. Satellite remote sensing showed that the chlorophyll a concentration increased in the area near Dongsha Island, where internal waves frequently occurred. The results of the increased chlorophyll a concentration in the surface water near Dongsha Island in the northern portion of the South China Sea indicated that internal waves could uplift phytoplankton and facilitate phytoplankton growth.  相似文献   

4.
Water samples were collected in 120 stations in the Bohai Sea of China to analyze the distribution of dissolved nutrients and assess the degree of eutrophication in August 2002. The result shows that the average concentration of DIN increased and the PO4-P concentration sharply decreased compared to the previous data of corresponding period. The high concentrations of DIN and PO4-P occurred in coastal waters, especially in the bays and some river estuaries, while the high concentrations of SiO3-Si in the surface and middle depth occurred in the central area of the Bohai Sea. The average ratio of DIN/ PO4-P was much higher than the Redfield Ratio (16:1). Apparently, PO4-P was one of the limiting nutrient for phytoplankton growing in the sea. The average concentrations of DON and DOP were higher than their inorganic forms. The results of eutrophication assessment show that 22.1% of all stations were classified as violating the concentration levels of the National Seawater Quality Standard (GB 3097-1997) for DIN and only 3.9% for PO4-P. The average eutrophication index in the overall area was 0.21±0.22 and the high values occurred in Bohai Bay, Liaodong Bay and near the Yellow River estuary. This means that the state of eutrophication was generally mesotrophic in the Bohai Sea, but relatively worse in the bays, especially some river estuaries.  相似文献   

5.
This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (ΣPAH) in the surface sediments of China’s marginal seas. BC content ranges from <0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw), which comprises a significant fraction (27%–41%) of the total organic carbon (TOC) preserved in the sediments. In ...  相似文献   

6.
The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Lüshun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts. Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we have been able to show for the first time that the distribution of suspended load can be used to identify water masses.  相似文献   

7.
The observed currents in summer in the Bohai Sea   总被引:3,自引:0,他引:3  
A harmonic method was used to analyze the tidal currents observed in summer at 11 stations made from 1996 to 2001 in the Bohai Sea, China. Data was compared among different instruments and intervals. Elliptic elements were calculated based on harmonic constants, of which vertical distributions of the maximum speed and rotation direction were discussed for understanding the characteristics of diurnal and semi-diurnal tidal current components. The results indicate that the maximum speed of M2 tidal current component is much larger than that of K1; the rotation direction of M2 tidal current constituent is clockwise in the central part of the Bohai Sea and in the Laizhou Bay, but anticlockwise in the Liaodong Bay and Bohai Bay. For K1 tidal current constituent, it is clockwise in the central Bohai Sea but anti-clockwise in the Laizhou Bay and Liaodong Bay. The tidal currents in most stations in the Bohai Sea were regular semidiurnal except for those in the central Bohai Sea, being irregular semidiurnal.  相似文献   

8.
Performances of 5 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating the chlorophyll concentration over the tropical Indian Ocean are evaluated. Results show that these models are able to capture the dominant spatial distribution of observed chlorophyll concentration and reproduce the maximum chlorophyll concentration over the western part of the Arabian Sea, around the tip of the Indian subcontinent, and in the southeast tropical Indian Ocean. The seasonal evolution of chlorophyll concentration over these regions is also reproduced with significant amplitude diversity among models. All of 5 models is able to simulate the interannual variability of chlorophyll concentration. The maximum interannual variation occurs at the same regions where the maximum climatological chlorophyll concentration is located. Further analysis also reveals that the Indian Ocean Dipole events have great impact on chlorophyll concentration in the tropical Indian Ocean. In the general successful simulation of chlorophyll concentration, most of the CMIP5 models present higher than normal chlorophyll concentration in the eastern equatorial Indian Ocean.  相似文献   

9.
Numerical Study on Density Residual Currents of the Bohai Sea in Summer   总被引:2,自引:0,他引:2  
M2 tide and density residual currents in the Bohai Sea were examined using the Blumberg and Mellor 3D nonlinear numerical coastal circulation model incorporating,Mellor and Yamada level 2.5 turbulent closure model.The tidal results showed good agreement with previous work.The model results indicated that the density residual currents are robust in summer;and that at the transition zone between well-mixed and stratified water,the horizontal velocity is high and the vertical velocity is positive.  相似文献   

10.
Distribution of suspended matter in seawater in the Southern Yellow Sea is investigated in five regions: 1) the Northern Jiangsu bank, the highest TSM (total suspended matter) content region; 2) the high TSM content region off the Changjiang River mouth; 3) the high TSM content region off the Chengshan Cape; 4) the low TSM region off Haizhou Bay; 5) the central part of the Southern Yellow Sea, a low TSM content region. The vertical distribution of TSM is mainly characterized by a spring layer of suspended matter, written as “suspended-cline” whose genesis is related to storms in winter. In this paper, non-combustible components and grain sizes in suspended matter, relationship between suspended matter and bottom sediments, and salinity in seawater are described. Investigation result shows that, in this area, suspended matter comes mainly from resuspended bottom sediment and secondarily from present discharge loads from rivers and biogenic materials. Discharged sediments from the Huanghe River move around the Chengshan Cape and affect the northwestern region of this area. Sediments from the Changjiang River affect only the southern part and have little or no direct influence on the central deep region. Wave is the main factor affecting distribution of suspended matter. Water depth controls the critical depth acted on by waves. The cold water mass in the central region limits horizontal and vertical dispersions of terrigenous materials. Suspended matter here has the transitional properties of the epicontinental sea. Its concentration and composition are different from those of a semi-closed sea (such as the Bohai Sea) and those of the East China Sea outer continental shelf or those near oceanic areas.  相似文献   

11.
The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.  相似文献   

12.
Diversion of the Yellow River is a unique geological event in offshore China, causing changes of the sedimentary environment in eastern China Seas. The last diversion took place in AD 1855, with the estuary diverted from the Yellow Sea into the Bohai Sea. The identification of the river diversion events in the shelf sediments would not only provide the definite ages for the sediments, but also give a clue for better understanding of the sedimentation in that area. In this study, 210 Pb, grain size, geochemical element, and foraminiferal data in core H205 from the north Yellow Sea were systematically investigated. A high-resolution sedimentary record was established, which was coupled with the Yellow River diversion and runoff changes. The results show that the foraminiferal composition and foraminiferal abundance of the sediments from the north Yellow Sea had good response to the Yellow River diversion in 1855. Before the change, shallow water assemblages dominated the foraminifera, and the abundance of each foraminiferal species was very low. After the diversion event, the abundance of most foraminifera increased sharply, with a maximum increase of 16 times, and the assemblage was still dominated by shallow water species. Furthermore, the changes in foraminiferal abundance in the core sediments corresponded well with the discharge fluctuation of the Yellow River since 1855. When the Yellow River began entering the Bohai Sea, the Yellow River water, which is rich in nutrients, along with the coastal currents affected the north Yellow Sea, increased the primary productivity in the north Yellow Sea, which is the main reason for the abrupt increase and fluctuation of foraminiferal abundance in this area. At the meantime, the East Asian winter monsoon could also promote the development of nearshore foraminiferal species by enhancing the coastal currents.  相似文献   

13.
DIMETHYLSULFIDE IN THE SOUTH CHINA SEA   总被引:1,自引:0,他引:1  
INTRODUCTIONGreateffortsweredevotedrecentlytostudyingdimethylsulfide(DMS)distributioninseawater,asitaccountsforthemajorpartofthesulfurfluxfromtheoceanstotheatmosphere.Moreover,itsoxidationproductsintheatmospheremayinfluenceenvironmentalacidificationand…  相似文献   

14.
Strom surges are not only determined by the atmospheric forcing,but also influenced by the coastal geometry and bathymetry.The Bohai Sea,as one of China’s marginal seas,is seriously harmed by storm surges,especially those caused by cold-air outbreaks.As the coastline of the Bohai Sea has changed evidently these years,storm surges may have new characteristics due to the changes in the local geometry.This paper aims to find out these new characteristics by primarily investigating the influence of the changes in the local geometry on storm surges with numerical methods.20 scenarios were constructed based on the track and inten-sity of the cold-air outbreaks to describe the actual situation.By analyzing the model results of the control scenarios,it is found that the main changes of the maximum surge elevation occur in the Bohai Bay and the Laizhou Bay.At the top of the Bohai Bay,the maximum surge elevation is obviously decreased,while in the Laizhou Bay,it is enhanced by the growing Yellow River Delta.This,however,does not suggest that the storm surges in the Laizhou Bay become more serious.A comparison of the risk assessment of storm surges in the Tanggu,Huanghua and Yangjiaogou regions shows that the risk of storm surges in these coastal areas is lightened by the evolvement of the coastal geometry.Particularly near Yangjiaogou,though the maximum surge elevation becomes higher to subject more areas to risk,the risk is still reduced by the evolvement of the Yellow River Delta.  相似文献   

15.
When investigating the long-term variation of wave characteristics as associated with storm surges in the Bohai Sea, the Simulating Waves Nearshore(SWAN) model and ADvanced CIRCulation(ADCIRC) model were coupled to simulate 32 storm surges between 1985 and 2014. This simulation was validated by reproducing three actual wave processes, showing that the simulated significant wave height(SWH) and mean wave period agreed well with the actual measurements. In addition, the long-term variations in SWH, patterns in SWH extremes along the Bohai Sea coast, the 100-year return period SWH extreme distribution, and waves conditional probability distribution were calculated and analyzed. We find that the trend of SWH extremes in most of the coastal stations was negative, among which the largest trend was-0.03 m/a in the western part of Liaodong Bay. From the 100-year return period of the SWH distribution calculated in the Gumbel method, we find that the SWH extremes associated with storm surges decreased gradually from the center of the Bohai Sea to the coast. In addition, the joint probability of wave and surge for the entire Bohai Sea in 100-year return period was determined by the Gumbel logistic method. We therefore, assuming a minimum surge of one meter across the entire Bohai Sea, obtained the spatial SWH distribution. The conclusions of this study are significant for offshore and coastal engineering design.  相似文献   

16.
We review the species composition,distribution, and seasonal variation of fouling acorn barnacles in Chinese waters-from Bohai Sea and Yellow Sea to East and South China Seas. Thirty-two species of acorn barnacles were found, of which, the dominant species are Amphibalanus amphitrite, A. reticulatus, A. variegates, Balanus trigonus, Fistulobalanus kondakovi, Megabalanus tintinnabulum, Striatobalanus amaryllis, and Eurapha withersi in the fouling communities. A. amphitrite is the dominant species in the coastal waters of Bohai Sea and Yellow Sea and A. reticulatus is dominant in the East and South China Seas. The settlement period of fouling acorn barnacles is usually in summer and autumn. From north to south with the decrease of latitude, their settlement period obviously extends, even to the whole year, and the species number also increases.0ther environmental factors, such as salinity and distance from shore, also play an important role in the distribution of fouling acorn barnacles.  相似文献   

17.
Phytoplankton pigment patterns and community composition were investigated in the northern South China Sea using high-performance liquid chromatography and the CHEMTAX software from February 11 to 23, 2009. We recognized four different vertical distribution patterns of pigments: chlorophyll a (Chl a)-like type, divinyl chlorophyll a (DV Chl a) type, even distribution type, and surface type. The average value of ratios of accessory photo-protective pigments (APP) to accessory photo-synthetic pigments was 0.8...  相似文献   

18.
With sulfide increasingly recognized as an important parameter to assess the oxidation-reduction level in aqueous environment, research on its geochemical behavior is becoming important. Water samples collected in Bohai Sea(1–19 August, 2010), Yellow Sea(20–30 November, 2010) and East China Sea(3–17 June, 2010 and 1–10 November, 2010) were used to determine the occurrence and distribution of dissolved sulfide by methylene blue spectrophotometric method. Results show that:(1) horizontally, concentration of dissolved sulfide significantly varied from the coastal region to the open sea and profoundly influenced by physical processes. High values occurred in the river-sea boundary zone "marginal filter" due to rich riverine input, frequent upwelling and active exchange in shelf edge. Terrestrial input from adjacent rivers and the current cycling contributed to the high sulfide appeared in western Bohai Sea, eastern Shandong Peninsula, and northeast of Changjiang(Yangtze) River estuary. Especially, relative higher sulfide values occurred in Yellow Sea, which is consistent with the variation of salinity largely due to the hydrodynamic feature;(2) vertically, measurement of dissolved sulfide in bottom water was higher and more variable than that in surface water caused by the wind-induced resuspension and dissimilatory sulfate reduction. Moreover, nutrient-type profile clearly identified that oxidation plays a major role in the biogeochemistry cycle of sulfide in water;(3) seasonally, investigation for East China Sea in June and November reflected seasonal variation of Changjiang River Diluted Water, Kuroshio Current, and Taiwan Warm Current. Concentration in June was much higher than that sampled in November at most stations. Mean concentration of dissolved sulfide varied seasonally from 2.26 μg/L(June) to 1.16 μg/L(November) in surface and 3.00 μg/L(June) to 1.56 μg/L(November) in bottom. Progress in the field is slow and more effort is needed to ensure the accuracy and reliability of determination and estimate the natural or anthropogenic contribution of dissolved sulfide in ecosystems.  相似文献   

19.
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes approximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case.Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.  相似文献   

20.
Distributions of inorganic nutrients in the bohai sea of china   总被引:2,自引:0,他引:2  
1 Introduction TheBohaiSeaislocatedinthenorthernChinawithlongitudesofbetween 117°38′Eand 12 2°31′Eandlat itudesofbetween 37°0 8′Nand 4 1°0 2′N .Itisashal lowseawithanaveragewaterdepthof 18m (LiuandZhang ,2 0 0 0 ) .Severalbigrivers ,suchastheLiaoheRiver,theHaiheRiverandtheYellowRiver ,findtheirwaysintotheBohaiSeaandtransportlargeamountofnutrientsandsuspendedmattersfromthecontinentintothesea (Zhangetal.,1994 ;Zhang ,1996 ) .Duringthelasttwodecades ,marineenviron mentintheBohai…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号