首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
跨越断层埋地管道屈曲分析   总被引:19,自引:7,他引:19  
考虑埋地管道与土介质的相互作用,分析了管道作为薄壳结构的断层位错反应。管道模型化为四结点薄壳单元结构,土介质简化为弹塑性弹簧,建立了管土相互作用的有限元分析模型。计算中,考虑了管道与土介质的材料非线性,管道几何参数,断层类型及破碎带宽,断层滑移角,埋深,内压,温度应力等因素的影响,根据计算结果描绘出管道控制点位移,应力及应变时空分布曲线;比较不同参数下管道的反应特征,总结管道反应的变化规律。最终得到结论:在大位移断层运动作用下,埋地管道反应存在明显的非线性效应,断层类型,管道埋深等因素不能忽略。  相似文献   

2.
埋地管道地震作用下的破坏因素源于地震引起的永久地面变形(PGD),其中管道-土体间相互作用决定土体位移作用到管体的大小。利用离心机试验技术模拟埋地管道在逆断层大位移下的反应特性,重点讨论断层与管道的交角、断层位移大小、管土相互作用、管径和埋深五个参数对管道破坏的影响水平。实验结果表明:上述参数对管道断层作用的反应均有明显影响,其中断层的位移量、管土相互作用、埋深和管径的影响更为显著。本文的研究结果对于管道经过断层区的抗震设计有十分重要的意义。  相似文献   

3.
强烈地震引起的地面永久性大变形是导致埋地供水管线损坏的主要威胁之一。该研究借鉴链式结构的设计思想,基于传统承插式管道接口形式,研发了一种新型管道抗震接口,其可支持一定的轴向伸缩自由变形。当接口变形量达至极限状态时,接口发生自锁现象并能提供较高的抗拉承载力,进而带动相邻管道滑移,以抵消断层错动引起的变形量。针对新型抗震接口开展了轴向力学性能试验,并建立了跨断层下的管线数值模型;同时,数值结果与相关全尺寸试验进行对比验证。该研究以土体压实条件和断层穿越管道位置作为关键变量,研究了加固前后断层错动下承插式管道的力学响应。研究结果表明:提出的抗震接口能够有效地提高管道抵抗地面大变形能力,并且提高接口的轴向抗拉拔能力是提升管道抗断层错动能力的关键;对于松砂土跨断层下的承插式管道接口震损较为严重;断层穿越管道不同的位置会造成不同的接口变形规律;国内规范中管道接口的转角限值过于保守,不利于对跨断层承插式管道安全性能进行合理验算。  相似文献   

4.
碳纤维增强复合材料(CFRP)被广泛应用于工程结构加固领域,以提高结构抵抗变形的能力。基于管道-土体相互作用三维非线性有限元分析方法,研究逆断层作用下埋地油气钢管经外包CFRP加固后的非线性响应规律和破坏模式。基于Hashin失效准则模拟CFRP受力破坏过程,与相关理论公式进行对比验证,并对加固前后逆断层错动连续埋地钢管力学响应进行分析。研究结果表明,CFRP加固钢管可显著提高其抵抗逆断层错动的能力,0°/90°为最佳缠绕角度;管道内压的施加虽抑制了管道轴向应变的增加,但当管道发生局部屈曲后,管道内压会导致管道屈曲集中于应力最大处;管道内压的施加不仅增强了CFRP加固钢管的抗变形能力,还抑制了CFRP加固钢管发生局部屈曲后应变的发展。  相似文献   

5.
壳有限元方法是目前较先进的分析地震活动断层作用下埋地管线反应的方法 ,但是由于受断层错动影响的管道一般较长 ,因此该方法需要较大的计算资源 .本文提出一种等效边界方法 ,可以克服现有壳有限元方法的缺点 .埋地管线在地震断层作用下的大变形反应往往只发生在断层附近 ,而离断层较远处管段的变形反应相对较小 .本文从理论上得出一个等效边界 ,以非线性弹簧的形式应用到壳单元分析模型的两端 ,替代模型以外管段的影响 .这样只需对感兴趣的发生大变形的管段进行壳单元建模型 ,从而解决了现有的壳有限元方法需要大量计算机时和资源的缺点 .与现有的壳模型固定边界方法进行比较 ,验证了等效边界方法的合理性和有效性 .  相似文献   

6.
为研究PVC管的抗震性能,依据日本学者对PVC管所做的场地沉陷下的试验布局,建立了场地沉陷下PVC管的三维有限元模型。模拟结果显示,在50cm的沉陷位移作用下,沉陷区的接口发生了转动破坏;在沉陷区与非沉陷区的过渡区域,PVC管体进入了塑性。由管体壳单元、接口单元和土弹簧单元组成的有限元模型,能比较真实地给出管体和接口的变形。试验与数值模拟结果均表明,PVC管的抗震性能较弱。  相似文献   

7.
壳有限元方法是目前较先进的分析地震活动断层作用下埋地管线反应的方法, 但是由于受断层错动影响的管道一般较长,因此该方法需要较大的计算资源. 本文提出一种等效边界方法,可以克服现有壳有限元方法的缺点. 埋地管线在地震断层作用下的大变形反应往往只发生在断层附近,而离断层较远处管段的变形反应相对较小.本文从理论上得出一个等效边界,以非线性弹簧的形式应用到壳单元分析模型的两端,替代模型以外管段的影响. 这样只需对感兴趣的发生大变形的管段进行壳单元建模型,从而解决了现有的壳有限元方法需要大量计算机时和资源的缺点. 与现有的壳模型固定边界方法进行比较,验证了等效边界方法的合理性和有效性.   相似文献   

8.
为研究埋地管道在地震激励时管-土相互作用的动力响应问题,研发双向层状剪切连续体模型土箱,建立管G土相互作用有限元分析模型,对横向非一致地震激励下埋地管道地震响应进行数值模拟分析,并与试验结果进行对比.结果表明:数值模拟和振动台试验结果中的管道应变峰值均呈现出沿管道中间大两端小的现象,管道中间应变峰值最小达到两端的1.6倍左右;管道加速度、 土体加速度峰值均随着加载等级的提高而增大,涨幅愈加明显,多峰频率由0~10Hz逐渐向10~ 20Hz频域扩散,管道运动更为自由;土体位移随着加载等级的提高呈现逐级增大的现象,在加载等级增加到0.4g 时位移曲线斜率减小,土体非线性表现明显.数值模拟和振动台试验对比分析的结论表明数值模拟分析的合理性和试验结果的可靠性,为研究横向非一致激励对埋地管道地震响应的影响提供了依据.  相似文献   

9.
跨断层隔震管道管端与土体相互作用分析   总被引:1,自引:0,他引:1  
断层错动是造成埋地管道破坏的重要因素之一,因此,跨断层埋地管道在断层错动下的破坏机制、模型设计与参数分析和管道抗断层措施一直是生命线工程的前沿问题。对跨断层管道内力分析取得的成果较多,比较经典的是Newm ark-Hall方法、Kennedy方法和王汝梁方法,后来又出现基于壳模型的有限元分析方法。现有的管道抗断层措施具有其优点的同时亦有其不足。本文基于壳模型的有限元动力数值模拟,对一种管道跨断层隔震措施进一步研究,考虑管端与土体相互作用计算隔震管段的断层错动响应。计算结果表明拉应变容易在土中的管段传递,相比较而言,压应变不容易在土中的管段传递;最大拉应变降低比较多,最大压应变降低比较少。根据分析结果,对跨断层隔震管段边界条件的选取提出建议。  相似文献   

10.
穿越逆冲断层的埋地管道非线性反应分析   总被引:2,自引:0,他引:2  
金浏  李鸿晶 《地震学刊》2010,(2):130-134
穿越逆冲断层的埋地管道在地震作用下,容易发生局部屈曲或整体失稳等形式的破坏,研究逆冲断层作用下的埋地管道地震反应规律,对管道抗震设计及施工等具有重要的意义。本文将埋地管线及周围土体从半无限地球介质中取出,分别以空间薄壳单元和实体单元进行离散,采用非线性接触力学方法模拟管、土之间的滑移、分离及闭合现象;采用线性位移加载模拟断层的错动,考虑了系统初始应力状态的影响,对土体未开裂前的管土相互作用系统进行了拟静力数值分析;分析了位错量、土体刚度、埋设深度、径厚比及跨越角度对埋地管道反应的影响,得出了一些有益的结论。  相似文献   

11.
地震断层作用下的埋地管道等效分析模型   总被引:2,自引:0,他引:2  
王滨  李昕  周晶 《地震学刊》2009,(1):44-50
地震作用下,活动断层附近的埋地管道易发生强度屈服、局部屈曲或整体失稳等形式的破坏,建立准确、高效的埋地管道在断层作用下的计算模型,对管道的抗震设计和震后安全状态评估具有重要的实用价值。本文采用非线性弹簧模拟远离断层处埋地管道的反应,基于管土之间小变形段管道处于强化阶段,提出一种改进的管土等效分析模型,进一步减小了管土之间大变形段的分析长度,从而提高了有限元分析效率。该模型采用ALA推荐的方法计算管土间的滑动摩擦力,可以考虑土体种类的影响;用Kennedy方法确定管道的计算长度。通过与精确模型比较,验证了管土等效模型的合理性和有效性。  相似文献   

12.
This paper deals with seismic wave propagation effects on buried segmented pipelines. A finite element model is developed for estimating the axial pipe strain and relative joint displacement of segmented pipelines. The model accounts for the effects of peak ground strain, shear transfer between soil and pipeline, axial stiffness of the pipeline, joint characteristics of the pipeline, and variability of the joint capacity and stiffness. For engineering applications, simplified analytical equations are developed for estimating the maximum pipe strain and relative joint displacement. The finite element and analytical solutions show that the segmented pipeline is relatively flexible with respect to ground deformation induced by seismic waves and deforms together with the ground. The ground strain within each pipe segmental length is shared by the joint displacement and pipe barrel strain. When the maximum ground strain is higher than 0.001, the pipe barrel strain is relatively small and can be ignored. The relative joint displacement of the segmented pipeline is mainly affected by the variability of the joint pullout capacity and accumulates at locally weak joints.  相似文献   

13.
The performance of pipelines subjected to permanent strike–slip fault movement is investigated by combining detailed numerical simulations and closed-form solutions. First a closed-form solution for the force–displacement relationship of a buried pipeline subjected to tension is presented for pipelines of finite and infinite lengths. Subsequently the solution is used in the form of nonlinear springs at the two ends of the pipeline in a refined finite element model, allowing an efficient nonlinear analysis of the pipe–soil system at large strike–slip fault movements. The analysis accounts for large strains, inelastic material behavior of the pipeline and the surrounding soil, as well as contact and friction conditions on the soil–pipe interface. The numerical models consider infinite and finite length of the pipeline corresponding to various angles β between the pipeline axis and the normal to the fault plane. Using the proposed closed-form nonlinear force–displacement relationship for buried pipelines of finite and infinite length, axial strains are in excellent agreement with results obtained from detailed finite element models that employ beam elements and distributed springs along the pipeline length. Appropriate performance criteria of the steel pipeline are adopted and monitored throughout the analysis. It is shown that the end conditions of the pipeline have a significant influence on pipeline performance. For a strike–slip fault normal to the pipeline axis, local buckling occurs at relatively small fault displacements. As the angle between the fault normal and the pipeline axis increases, local buckling can be avoided due to longitudinal stretching, but the pipeline may fail due to excessive axial tensile strains or cross sectional flattening. Finally a simplified analytical model introduced elsewhere, is enhanced to account for end effects and illustrates the formation of local buckling for relative small values of crossing angle.  相似文献   

14.
埋地管道在断层错动作用下的内力分析及其抗震措施一直是生命线工程的一个重要问题与研究热点。对地下管道在断层错位下的响应计算,取得的成果较多,比较经典的有Newmark-Hall方法和Kennedy方法。后来又出现基于壳模型的简化方法,如高田至郎提出的简化计算方法等。相对来讲,关于管道抗震措施的研究成果较少。本文提出一种抗震措施,进行了基于壳模型的有限元动力数值模拟,并与4种松到中密场地土条件下的埋地管道断层错位响应进行对比分析。计算结果表明,本方法中三种长度管道的最大轴向拉应变远小于埋地管道的最大轴向拉应变,而且最大轴向压应变亦不大。  相似文献   

15.
Buried pipelines are often constructed in seismic and other geohazard areas, where severe ground deformations may induce severe strains in the pipeline. Calculation of those strains is essential for assessing pipeline integrity, and therefore, the development of efficient models accounting for soil‐pipe interaction is required. The present paper is aiming at developing efficient tools for calculating ground‐induced deformation on buried pipelines, often triggered by earthquake action, in the form of fault rupture, liquefaction‐induced lateral spreading, soil subsidence, or landslide. Soil‐pipe interaction is investigated by using advanced numerical tools, which employ solid elements for the soil, shell elements for the pipe, and account for soil‐pipe interaction, supported by large‐scale experiments. Soil‐pipe interaction in axial and transverse directions is evaluated first, using results from special‐purpose experiments and finite element simulations. The comparison between experimental and numerical results offers valuable information on key material parameters, necessary for accurate simulation of soil‐pipe interaction. Furthermore, reference is made to relevant provisions of design recommendations. Using the finite element models, calibrated from these experiments, pipeline performance at seismic‐fault crossings is analyzed, emphasizing on soil‐pipe interaction effects in the axial direction. The second part refers to full‐scale experiments, performed on a unique testing device. These experiments are modeled with the finite element tools to verify their efficiency in simulating soil‐pipe response under landslide or strike‐slip fault movement. The large‐scale experimental results compare very well with the numerical predictions, verifying the capability of the finite element models for accurate prediction of pipeline response under permanent earthquake‐induced ground deformations.  相似文献   

16.
Seismic damage to segmented buried pipelines is investigated in this paper. Information on their performance during past earthquakes is reviewed briefly. An analytical model for evaluating the response of long straight runs of segmented buried pipelines to seismic wave propagation is presented. It takes into account the non-linearity as well as the variability of the system characteristics. Also, results from laboratory tests by others are used to establish the relative joint displacement which leads to leakage. These two elements are combined to predict the damage ratio (number of leaks per kilometre) for cast iron pipes with lead caulked joints subject to a joint pull-out failure mode.  相似文献   

17.
Presently available simplified analytical methods and semi-empirical methods for the analysis of buried pipelines subjected to fault motion are suitable only for the strike-slip and the normal-slip type fault motions, and cannot be used for the reverse fault crossing case. A simple finite element model, which uses beam elements for the pipeline and discrete nonlinear springs for the soil, has been proposed to analyse buried pipeline subjected to reverse fault motion. The material nonlinearities associated with pipe-material and soil, and geometric nonlinearity associated with large deformations were incorporated in the analysis. Complex reverse fault motion was simulated using suitable constraints between pipe-nodes and ground ends of the soil spring. Results of the parametric study suggest that the pipeline's capacity to accommodate reverse fault offset can be increased significantly by choosing a near-parallel orientation in plan with respect to the fault line. Further improvement in the response of the pipeline is possible by adopting loose backfill, smooth and hard surface coating, and shallow burial depth in the fault crossing region. For normal or near normal orientations, pipeline is expected to fail due to beam buckling at very small fault offsets.  相似文献   

18.
In this paper, a nonlinear stochastic seismic analysis program for buried pipeline systems is developed on the basis of a probability density evolution method (PDEM). A finite element model of buried pipeline systems subjected to seismic wave propagation is established. The pipelines in this model are simulated by 2D beam elements. The soil surrounding the pipelines is simulated by nonlinear distributed springs and linear distributed springs along the axial and horizontal directions, respectively. The joints between the segmented pipes are simulated by nonlinear concentrated springs. Thereafter, by considering the basic random variables of ground motion and soil, the PDEM is employed to capture the stochastic seismic responses of pipeline systems. Meanwhile, a physically based method is employed to simulate the random ground motion field for the area where the pipeline systems are located. Finally, a numerical example is investigated to validate the proposed program.  相似文献   

19.
A new shell finite element method (FEM) model with an equivalent boundary is presented for estimating the response of a buried pipeline under large fault movement. The length of affected pipeline under fault movement is usually too long for a shell-mode calculation because of the limitation of memory and time of computers. In this study, only the pipeline segment near fault is modeled with plastic shell elements to study the local buckling and the large section deformation in pipe. The material property of pipe segment far away from the fault is considered as elastic, and nonlinear spring elements at equivalent boundaries are obtained and applied to two ends of shell model. Compared with the fixed-boundary shell model, the shell model with an equivalent boundary proposed by the study can remarkably reduce the needed memory and calculating time. Foundation item: National Natural Sciences Foundation of China (50078049). Contribution No. 04FE1017, Institute of Geophysics, China Earthquake Administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号