首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
In order to improve the reliability of climate reconstruction, especially the climatologies outside the modern observed climate space, an improved inverse vegetation model using a recent version of BIOME4 has been designed to quantitatively reconstruct past climates, based on pollen biome scores from the BIOME6000 project. The method has been validated with surface pollen spectra from Eurasia and Africa, and applied to palaeoclimate reconstruction. At 6 cal ka BP (calendar years), the climate was generally wetter than today in southern Europe and northern Africa, especially in the summer. Winter temperatures were higher (1–5°C) than present in southern Scandinavia, northeastern Europe, and southern Africa, but cooler in southern Eurasia and in tropical Africa, especially in Mediterranean regions. Summer temperatures were generally higher than today in most of Eurasia and Africa, with a significant warming from ∼3 to 5°C over northwestern and southern Europe, southern Africa, and eastern Africa. In contrast, summers were 1–3°C cooler than present in the Mediterranean lowlands and in a band from the eastern Black Sea to Siberia. At 21 cal ka BP, a marked hydrological change can be seen in the tropical zone, where annual precipitation was ∼200–1,000 mm/year lower than today in equatorial East Africa compared to the present. A robust inverse relationship is shown between precipitation change and elevation in Africa. This relationship indicates that precipitation likely had an important role in controlling equilibrium-line altitudes (ELA) changes in the tropics during the LGM period. In Eurasia, hydrological decreases follow a longitudinal gradient from Europe to Siberia. Winter temperatures were ∼10–17°C lower than today in Eurasia with a more significant decrease in northern regions. In Africa, winter temperature was ∼10–15°C lower than present in the south, while it was only reduced by ∼0–3°C in the tropical zone. Comparison of palaeoclimate reconstructions using LGM and modern CO2 concentrations reveals that the effect of CO2 on pollen-based LGM reconstructions differs by vegetation type. Reconstructions for pollen sites in steppic vegetation in Europe show warmer winter temperatures under LGM CO2 concentrations than under modern concentrations, and reconstructions for sites in xerophytic woods/scrub in tropical high altitude regions of Africa are wetter for LGM CO2 concentrations than for modern concentrations, because our reconstructions account for decreased plant water use efficiency.  相似文献   

2.
Paleo-data suggest that East African mountain treelines underwent an altitudinal shift during the Last Glacial Maximum (LGM). Understanding the ecological and physiological processes underlying treeline response to such past climate change will help to improve forecasts of treeline change under future global warming. In spite of significant improvements in paleoclimatic reconstruction, the climatic conditions explaining this migration are still debated and important factors such as atmospheric CO2 concentration, the impact of lapse rate decreasing temperature along altitudinal gradients and rainfall modifications due to elevation have often been neglected or simplified. Here, we assess the effects of these different factors and estimate the influence of the most dominant factors controlling changes in past treeline position using a multi-proxy approach based on simulations from BIOME4, a coupled biogeography and biogeochemistry model, modified to account for the effect of elevation on vegetation, compared with pollen, and isotopic data. The results indicate a shift in mountain vegetation at the LGM was controlled by low pCO2 and low temperatures promoting species morphologically and physiologically better adapted to LGM conditions than many trees composing the forest belt limit. Our estimate that the LGM climate was cooler than today’s by ?4.5 °C (range: ?4.3 to ?4.6 °C) at the upper limit of the treeline, whereas at 831 m it was cooler by ?1.4 °C (range: ?2.6 to ?0.6 °C), suggests that a possible lapse rate modification strongly constrained the upper limit of treeline, which may limit its potential extension under future global warming.  相似文献   

3.
 Seventeen simulations of the Last Glacial Maximum (LGM) climate have been performed using atmospheric general circulation models (AGCM) in the framework of the Paleoclimate Modeling Intercomparison Project (PMIP). These simulations use the boundary conditions for CO2, insolation and ice-sheets; surface temperatures (SSTs) are either (a) prescribed using CLIMAP data set (eight models) or (b) computed by coupling the AGCM with a slab ocean (nine models). The present-day (PD) tropical climate is correctly depicted by all the models, except the coarser resolution models, and the simulated geographical distribution of annual mean temperature is in good agreement with climatology. Tropical cooling at the LGM is less than at middle and high latitudes, but greatly exceeds the PD temperature variability. The LGM simulations with prescribed SSTs underestimate the observed temperature changes except over equatorial Africa where the models produce a temperature decrease consistent with the data. Our results confirm previous analyses showing that CLIMAP (1981) SSTs only produce a weak terrestrial cooling. When SSTs are computed, the models depict a cooling over the Pacific and Indian oceans in contrast with CLIMAP and most models produce cooler temperatures over land. Moreover four of the nine simulations, produce a cooling in good agreement with terrestrial data. Two of these model results over ocean are consistent with new SST reconstructions whereas two models simulate a homogeneous cooling. Finally, the LGM aridity inferred for most of the tropics from the data, is globally reproduced by the models with a strong underestimation for models using computed SSTs. Received: 9 September 1998 / Accepted: 18 March 1999  相似文献   

4.
Equatorial air temperatures at low elevations in the New World tropics are shown by pollen and other data to have been significantly lowered in long intervals of the last glaciation. These new data show that long recognized evidence for cooling at high elevations in the tropics were symptomatic of general tropical cooling and that they did not require appeal to altered lapse rates or other special mechanisms to be made to conform with conclusions that equatorial sea surface temperatures (SSTs) were scarcely changed in glacial times. The new data should be read in conjunction with recent findings that Caribbean (SSTs) were lowered in the order of 5 ° C, contrary to previous interpretations. Thus these accumulating data show that low latitudes as well as high were cooled in glaciations. In part the earlier failure to find evidence of low elevation cooling in the lowland tropics resulted from the data being masked by strong signals for aridity given by old lake levels in parts of Africa and elsewhere. Global circulation models used to predict future effects of greenhouse warming must also be able to simulate the significant cooling of the large tropical land masses at glacial times with reduced greenhouse gas concentrations. Plants and animals of the Amazon forest and similar ecosystems are able to survive in wide ranges of temperatures, CO2 concentrations, and disturbance, though associations change constantly.  相似文献   

5.
Tropical forests are responsible for a large proportion of the global terrestrial C flux annually for natural ecosystems. Increased atmospheric CO2 and changes in climate are likely to affect the distribution of C pools in the tropics and the rate of cycling through vegetation and soils. In this paper, I review the literature on the pools and fluxes of carbon in tropical forests, and the relationship of these to nutrient cycling and climate. Tropical moist and humid forests have the highest rates of annual net primary productivity and the greatest carbon flux from soil respiration globally. Tropical dry forests have lower rates of carbon circulation, but may have greater soil organic carbon storage, especially at depths below 1 meter. Data from tropical elevation gradients were used to examine the sensitivity of biogeochemical cycling to incremental changes in temperature and rainfall. These data show significant positive correlations of litterfall N concentrations with temperature and decomposition rates. Increased atmospheric CO2 and changes in climate are expected to alter carbon and nutrient allocation patterns and storage in tropical forest. Modeling and experimental studies suggest that even a small increase in temperature and CO2 concentrations results in more rapid decomposition rates, and a large initial CO2 efflux from moist tropical soils. Soil P limitation or reductions in C:N and C:P ratios of litterfall could eventually limit the size of this flux. Increased frequency of fires in dry forest and hurricanes in moist and humid forests are expected to reduce the ecosystem carbon storage capacity over longer time periods.  相似文献   

6.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   

7.
Results from multiple model simulations are used to understand the tropical sea surface temperature (SST) response to the reduced greenhouse gas concentrations and large continental ice sheets of the last glacial maximum (LGM). We present LGM simulations from the Paleoclimate Modelling Intercomparison Project, Phase 2 (PMIP2) and compare these simulations to proxy data collated and harmonized within the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface Project (MARGO). Five atmosphere–ocean coupled climate models (AOGCMs) and one coupled model of intermediate complexity have PMIP2 ocean results available for LGM. The models give a range of tropical (defined for this paper as 15°S–15°N) SST cooling of 1.0–2.4°C, comparable to the MARGO estimate of annual cooling of 1.7 ± 1°C. The models simulate greater SST cooling in the tropical Atlantic than tropical Pacific, but interbasin and intrabasin variations of cooling are much smaller than those found in the MARGO reconstruction. The simulated tropical coolings are relatively insensitive to season, a feature also present in the MARGO transferred-based estimates calculated from planktonic foraminiferal assemblages for the Indian and Pacific Oceans. These assemblages indicate seasonality in cooling in the Atlantic basin, with greater cooling in northern summer than northern winter, not captured by the model simulations. Biases in the simulations of the tropical upwelling and thermocline found in the preindustrial control simulations remain for the LGM simulations and are partly responsible for the more homogeneous spatial and temporal LGM tropical cooling simulated by the models. The PMIP2 LGM simulations give estimates for the climate sensitivity parameter of 0.67°–0.83°C per Wm−2, which translates to equilibrium climate sensitivity for doubling of atmospheric CO2 of 2.6–3.1°C.  相似文献   

8.
Tropical rain forest in Southeast Asia has developed within an extensive archipelago during the past 65 million years or more. During the Miocene (beginning 25 million years BP), rain forest extended much further north (to southern China and Japan); since that time it has contracted. During the Pleistocene (beginning 2.0 million years BP), development of continental glaciers at high latitudes was associated in Southeast Asia with lowered sea level, cooler temperatures, and modified rainfall patterns. Fossil pollen records demonstrate that Southeast Asian vegetation during the last glacial maximum (ca. 18 000 BP) differed substantially from that of today, with an increase in the extent of montane vegetation and savannah and a decline in rain forest. These data show that the distribution and extent of rain forest in Southeast Asia has historically been quite sensitive to climatic change.  相似文献   

9.
Based on LGM experiments with an atmosphere–ocean general circulation model, we systematically investigated the effects of physical changes in the ocean and induced biological effects as well on the low atmospheric CO2 concentration (pCO2) at the last glacial maximum (LGM). Numerical experiments with an oceanic carbon-cycle model showed that pCO2 was lowered by ~30 ppm in the LGM ocean. Most of the pCO2 reduction was explained by the change in CO2 solubility in the ocean due to lower sea surface temperature (SST) during the LGM. Moreover, we found that SST changes in the high-latitude Northern Atlantic could explain more than one-third of the overall change in pCO2 induced by global SST change, suggesting an important feedback between the Laurentide ice sheet and pCO2.  相似文献   

10.
This study focuses on the differences between the present-day climate and the climate of the last glacial maximum (LGM) of 18 000 y BP using a zonally averaged energy balance climate model. The ocean is represented by a 2-D model with prescribed overturning pattern in which the overturning velocities can be adjusted freely. We discuss what influence the use of ice-age conditions (i.e. enhanced land-ice cover, reduced CO2-concentration and reduced oceanic overturning rate) has on the differences between ice-age and present-day climate. When compared to LGM sea-surface temperatures derived from proxy data, the model is able to simulate fairly well the important features of the meridional distribution of these temperature differences. Applying reduced ocean overturning rates during the LGM significantly decreases poleward heat transport in the oceans, thereby allowing for additional cooling of the polar regions and less cooling of the equatorial region. As a result, the agreement with CLIMAP proxy temperature differences increases, especially in the equatorial region. This mechanism can explain the slight differences in the CLIMAP proxy equatorial surface temperatures between the LGM and the present-day climate.  相似文献   

11.
To interpret past vegetation and climate changes from pollen data, we need to reveal the degree of similarity between modern analogues and fossil pollen spectra, which would help us predict the future climate and vegetation. Ninety surface pollen samples across six vegetation zones along an altitudinal gradient from 460 to 3510 m and 44 fossil samples at Caotan Lake were collected in the central Tianshan Mountains, northern Xinjiang, China. Discriminant analyses results, fossil pollen and phytolith assemblages were then used to reconstruct palaeovegetation and palaeoclimate in the area. The 90 surface samples were divided into six pollen zones (alpine cushion, alpine and subalpine meadow, montane Tianshan spruce forest, forest-steppe ecotone, Artemisia desert, typical desert), corresponding to the major vegetation types in the area. These zones follow a climatic gradient of increasing precipitation with increasing elevation. Paleovegetation reconstructed from 44 fossil pollen assemblages through discriminant analysis reflects the regional vegetation shifted from typical desert to Artemisia desert since 4640 cal. year BP in the Caotan Lake wetland. The fossil pollen and phytolith record also reveal the arid climate has not fundamentally changed in the period. But a dry-wet-dry local climate oscillation since 2700 cal. year BP has a fundamental influence on local wetland vegetation dynamics and peat accumulation of the Caotan wetland. Modern wetland landscape and surface pollen assemblages from the Ebinur Lake Wetland Nature Reserve provide further evidence for ferns and Betula growing in the Caotan Lake wetland during the historical period.  相似文献   

12.
 The atmospheric CO2 concentrations have been reconstructed over the past 600 ka based on regression between the Vostok CO2 data and the SPECMAP oxygen isotope values. A lag of 4.5 ka (CO2 preceding δ18O) gives the best results. A polynomial of order 5 explains 66% of the Vostok CO2 variance over the last 220 ka. The Northern Hemisphere ice-sheet volume was simulated over the past 575 ka using the LLN 2-D model, forced by insolation and these statistically reconstructed atmospheric CO2 concentrations. The simulated ice volume fluctuations resemble the deep-sea oxygen isotope variations. CO2 of interglacial level is necessary for explaining both the interglacial at oxygen isotopic stage 11 and our present-day interglacial.  相似文献   

13.
Over the last decades there have been a considerable number of deforestation studies in Latin America reporting lower rates compared with other regions; although these studies are either regional or local and do not allow the comparison of the intraregional variability present among countries or forest types. Here, we present the results obtained from a systematic review of 369 articles (published from 1990 to 2014) about deforestation rates for 17 countries and forest types (tropical lowland, tropical montane, tropical and subtropical dry, subtropical temperate and mixed, and Atlantic forests). Drivers identified as direct or indirect causes of deforestation in the literature were also analysed. With an overall annual deforestation rate of −1.14 (±0.092 SE) in the region, we compared the rates per forest type and country. The results indicate that there is a high variability of forest loss rates among countries and forest types. In general, Chile and Argentina presented the highest deforestation rates (−3.28 and −2.31 yearly average, respectively), followed by Ecuador and Paraguay (−2.19 and −1.89 yearly average, respectively). Atlantic forests (−1.62) and tropical montane forests (−1.55) presented the highest deforestation rates for the region. In particular, tropical lowland forests in Ecuador (−2.42) and tropical dry forests in Mexico (−2.88) and Argentina (−2.20) were the most affected. In most countries, the access to markets and agricultural and forest activities are the main causes of deforestation; however, the causes vary according to the forest types. Deforestation measurements focused at different scales and on different forest types will help governments to improve their reports for international initiatives, such as reducing emissions from deforestation and forest degradation (REDD+) but, more importantly, for developing local policies for the sustainable management of forests and for reducing the deforestation in Latin America.  相似文献   

14.
 To investigate the cloud response during cold and warm periods, we have performed simulations of the Last Glacial Maximum (LGM-21ky BP) and of double CO2 concentration using the LMD AGCM model. We observe that the thermal characteristics of these two climates are opposite, but the cloud response is more complex and does not display the same symmetry When doubling the CO2, the warming of the troposphere and the cooling of the stratosphere are clearly linked with a reduction in low-level clouds and an increase of high-level clouds associated with relative humidity changes. For the LGM, the cloud response is more complex. In the inter tropical region, we show that the Hadley cell is reinforced during LGM (+20%) whereas it is reduced (−10%) for the double CO2 experiments. The most important feature is that we observe an enlarged Hadley cell for LGM climate which strongly modifies the atmospheric dynamics and water transport. For LGM conditions, the cloud response is then mostly driven by these dynamical changes at low latitudes though at high latitudes the thermal changes explain a large part of the cloud response. Two different versions of the model, using different parametrizations for the precipitation show that cloud feedbacks may act differently for cold and warm climates; and that the cloud response may be more complex that previously expected, but also indicate that the details of these effects are model dependent.  相似文献   

15.
 The climate during the Last Glacial Maximum (LGM) has been simulated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) general circulation model (GCM) with both prescribed sea surface temperatures (SSTs) based on the CLIMAP reconstruction and computed SSTs with a simple thermodynamic slab ocean. Consistent with the Paleoclimate Modelling Intercomparison Project (PMIP), the other boundary conditions include the large changes in ice-sheet topography and geography, a lower sea level, a lower concentration of CO2 in the atmosphere, and a slightly different insolation pattern at the top of the atmosphere. The results are analysed in terms of changes in atmospheric circulation. Emphasis is given to the changes in surface temperatures, planetary waves, storm tracks and the associated changes in distribution of precipitation. The model responds in a similar manner to the changes in boundary conditions to previous studies in global mean statistics, but differs in its treatment of regional climates. Results also suggest that both the land ice sheets and sea ice introduce significant changes in planetary waves and transient eddy activity, which in turn affect regional climates. The computed SST simulations predict less sea ice and cooler tropical temperatures than those based on CLIMAP SSTs. It is unclear as to whether this is a model and/or a data problem, but the resulting changes in land temperatures and precipitation can be large. Snow mass budget analysis suggests that there is net ice loss along the southern edges of the Laurentide and Fennoscandian ice sheets and net ice gain over other parts of the two ice sheets. The net accumulation is mainly due to the decrease in ablation in the cold climate rather than to the changes in snowfall. The characteristics of the Greenland ice-sheet mass balance in the LGM simulations is also quite different from those in the present-day (PD) simulations. The ablation in the LGM simulations is negligible while it is a very important process in the ice mass budget in the PD simulations. Received: 10 January 1997 / Accepted: 11 December 1997  相似文献   

16.
Owen K. Davis 《Climatic change》1994,26(2-3):271-287
Decreased solar activity correlates with positive cosmogenic isotope anomalies, and with cool, wet climate in temperate regions of the world. The relationship of isotope anomalies to climate may be the opposite for areas influenced by monsoonal precipitation, i.e., negative anomalies may be wet and warm. Petersen (1988) has found evidence for increased summer precipitation in the American Southwest that can be shown to be coincident with negative14C anomalies during the Medieval Warm Period. The present study compares palynological indicators of lake level for the Southwest with Petersen's data and with the14C isotope chronology. Percentages of aquatic pollen and algae from three sites within the Arizona Monsoon record greater lake depth or fresher water from A.D. 700–1350, between the Roman IV and Wolf positive isotope anomalies, thereby supporting Petersens's findings. Maximum summer moisture coincides with maximum population density of prehistoric people of the Southwest. However, water depth at a more northern site was low at this time, suggesting a climateisotope relationship similar to that of other temperate regions. Further analysis of latitudinal patterns is hampered by inadequate14C dating.  相似文献   

17.
Jean Maley 《Climatic change》1991,19(1-2):79-98
This review paper presents first the main pollen results on the vegetation history of the rain forest during the late Quaternary.- The Lake Bosumtwi record (Ghana) shows the disappearance of rain forest from the base of the core (ca. 28 000 yr BP) to ca. 9000 yr BP. During this time interval the vegetation was of montane type with sparse clumps of trees. There is synchronism between montane vegetation disappearance and rain forest reappearance. This phenomenon occurred abruptly around 9000 yr BP.- The Lake Barombi Mbo record (West Cameroon) shows clearly that from ca. 24 000 yr BP until the present time, rain forest persisted with limited variations, and thus, this area represents a refuge area.From these data and other, one concludes that Afromontane vegetation extended to lowland during cool and humid phases.Other palaeoenvironmental data were obtained by diverse geological analyses of the lacustrine sediments. For Bosumtwi, the relatively precise reconstruction of lake-level fluctuations permitted several palaeoclimatic interpretations for the main Holocene phases.For Barombi Mbo, the evolution of total organic carbon (TOC) and total nitrogen (TON) seems to be related mainly to temperature evolution. By comparison with present-day mountain environments, TOC and TON increase in cool environments, but decrease when warmth and humidity increase, as during Holocene time, because the recycling processes speed up in the topsoil. For the same period the alteration of the soils in the catchment produced a strong increase of kaolinite. All these change intervened ca. 9500 yr BP, which is a key date in tropical Africa.In conclusion, climatic correlations between equatorial and dry north tropical Africa illustrate how changes in the forest block must have important effects on adjacent climatic zones.  相似文献   

18.
Much work is under way to identify and quantify the feedbacks between vegetation and climate. Palaeoclimate modelling may provide a mean to address this problem by comparing simulations with proxy data. We have performed a series of four simulations of the Last Glacial Maximum (LGM, 21,000 years ago) using the climate model HadSM3, to test the sensitivity of climate to various changes in vegetation: a global change (according to a previously discussed simulation of the LGM with HadSM3 coupled to the dynamical vegetation model TRIFFID); a change only north of 35°N; a change only south of 35°N; and a variation in stomatal opening induced by the reduction in atmospheric CO2 concentration. We focus mainly on the response of temperature, precipitation, and atmosphere dynamics. The response of continental temperature and precipitation mainly results from regional interactions with vegetation. In Eurasia, particularly Siberia and Tibet, the response of the biosphere substantially enhances the glacial cooling through a positive feedback loop between vegetation, temperature, and snow-cover. In central Africa, the decrease in tree fraction reduces the amount of precipitation. Stomatal opening is not seen to play a quantifiable role. The atmosphere dynamics, and more specifically the Asian summer monsoon system, are significantly altered by remote changes in vegetation: the cooling in Siberia and Tibet act in concert to shift the summer subtropical front southwards, weaken the easterly tropical jet and the momentum transport associated with it. By virtue of momentum conservation, these changes in the mid-troposphere circulation are associated with a slowing of the Asian summer monsoon surface flow. The pattern of moisture convergence is slightly altered, with moist convection weakening in the western tropical Pacific and strengthening north of Australia.  相似文献   

19.
The contributions of expanded continental ice, reduced atmospheric CO2, and changes in land albedo to the maintenance of the climate of the last glacial maximum (LGM) are examined. A series of experiments is performed using an atmosphere-mixed layer ocean model in which these changes in boundary conditions are incorporated either singly or in combination. The model used has been shown to produce a reasonably realistic simulation of the reduced temperature of the LGM (Manabe and Broccoli 1985b). By comparing the results from pairs of experiments, the effects of each of these environmental changes can be determined.Expanded continental ice and reduced atmospheric CO2 are found to have a substantial impact on global mean temperature. The ice sheet effect is confined almost exclusively to the Northern Hemisphere, while lowered CO2 cools both hemispheres. Changes in land albedo over ice-free areas have only a minor thermal effect on a global basis. The reduction of CO2 content in the atmosphere is the primary contributor to the cooling of the Southern Hemisphere. The model sensitivity to both the ice sheet and CO2 effects is characterized by a high latitude amplification and a late autumn and early winter maximum.Substantial changes in Northern Hemisphere tropospheric circulation are found in response to LGM boundary conditions during winter. An amplified flow pattern and enhanced westerlies occur in the vicinity of the North American and Eurasian ice sheets. These alterations of the tropospheric circulation are primarily the result of the ice sheet effect, with reduced CO2 contributing only a slight amplification of the ice sheet-induced pattern.  相似文献   

20.
S. J. Kim 《Climate Dynamics》2004,22(6-7):639-651
The role of reduced atmospheric CO2 concentration and ice sheet topography plus its associated land albedo on the LGM climate is investigated using a coupled atmosphere-ocean-sea ice climate system model. The surface cooling induced by the reduced CO2 concentration is larger than that by the ice sheet topography plus other factors by about 30% for the surface air temperature and by about 100% for the sea surface temperature. A large inter-hemispheric asymmetry in surface cooling with a larger cooling in the Northern Hemisphere is found for both cases. This asymmetric inter-hemispheric temperature response is consistent in the ice sheet topography case with earlier studies using an atmospheric model coupled with a mixed-layer ocean representation, but contrasts with these results in the reduced CO2 case. The incorporation of ocean dynamics presumably leads to a larger snow and sea ice feedback as a result of the reduction in northward ocean heat transport, mainly as a consequence of the decrease in the North Atlantic overturning circulation by the substantial freshening of the North Atlantic convection regions. A reversed case is found in the Southern Ocean. Overall, the reduction in atmospheric CO2 concentration accounts for about 60% of the total LGM climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号