首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We show that collisions with stellar-mass black holes can partially explain the absence of bright giant stars in the Galactic Centre, first noted by Genzel et al. We show that the missing objects are low-mass giants and asymptotic giant branch stars in the range  1–3 M  . Using detailed stellar evolution calculations, we find that to prevent these objects from evolving to become visible in the depleted K bands, we require that they suffer collisions on the red giant branch, and we calculate the fractional envelope mass losses required. Using a combination of smoothed particle hydrodynamic calculations, restricted three-body analysis and Monte Carlo simulations, we compute the expected collision rates between giants and black holes, and between giants and main-sequence stars in the Galactic Centre. We show that collisions can plausibly explain the missing giants in the  10.5 < K < 12  band. However, depleting the brighter  ( K < 10.5)  objects out to the required radius would require a large population of black hole impactors which would in turn deplete the  10.5 < K < 12  giants in a region much larger than is observed. We conclude that collisions with stellar-mass black holes cannot account for the depletion of the very brightest giants, and we use our results to place limits on the population of stellar-mass black holes in the Galactic Centre.  相似文献   

2.
We present CCD BVI photometry for the southern open cluster NGC 2489 and its surrounding field. The sample consists of 2182 stars measured in an area of 13.6 × 13.6 arcmin2, extending down to   V ∼ 21.5  . These data are supplemented with CORAVEL radial-velocity observations for seven red giant candidates. A cluster angular radius of 6.7 ± 0.6 arcmin, equivalent to 3.5 ± 0.3 pc, is estimated from star counts carried out inside and outside the cluster region. The comparison of the cluster colour–magnitude diagrams with isochrones of the Padova group yields   E ( B − V ) = 0.30 ± 0.05, E ( V − I ) = 0.40 ± 0.05  and   V − M V = 12.20 ± 0.25  for log   t = 8.70 ( t = 500+130−100 Myr)  and   Z = 0.019  . NGC 2489 is then located at 1.8 ± 0.3 kpc from the Sun and 25 pc below the Galactic plane. The analysis of the kinematical data allowed us to confirm cluster membership for six red giants, one of them being a spectroscopic binary. A mean radial velocity of 38.13 ± 0.33 km s−1 was derived for the cluster red giants. The properties of a sample of open clusters aligned along the line of sight of NGC 2489 are examined.  相似文献   

3.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

4.
Diffuse 511-keV line emission, from the annihilation of cold positrons, has been observed in the direction of the Galactic Centre for more than 30 yr. The latest high-resolution maps of this emission produced by the SPI instrument on INTEGRAL suggest at least one component of the emission is spatially coincident with the distribution of ∼70 luminous, low-mass X-ray binaries detected in the soft gamma-ray band. The X-ray band, however, is generally a more sensitive probe of X-ray binary populations. Recent X-ray surveys of the Galactic Centre have discovered a much larger population (>4000) of faint, hard X-ray point sources. We investigate the possibility that the positrons observed in the direction of the Galactic Centre originate in pair-dominated jets generated by this population of fainter accretion-powered X-ray binaries. We also consider briefly whether such sources could account for unexplained diffuse emission associated with the Galactic Centre in the microwave (the Wilkinson Microwave Anisotropy Probe 'haze') and at other wavelengths. Finally, we point out several unresolved problems in associating Galactic Centre 511-keV emission with the brightest X-ray binaries.  相似文献   

5.
We investigate whether the recently observed population of high-velocity white dwarfs can be derived from a population of binaries residing initially within the thin disc of the Galaxy. In particular, we consider binaries where the primary is sufficiently massive to explode as a Type II supernova. A large fraction of such binaries are broken up when the primary then explodes as a supernova, owing to the combined effects of the mass loss from the primary and the kick received by the neutron star on its formation. For binaries where the primary evolves to fill its Roche lobe, mass transfer from the primary leads to the onset of a common envelope phase during which the secondary and the core of the primary spiral together as the envelope is ejected. Such binaries are the progenitors of X-ray binaries if they are not broken up when the primary explodes. For those systems that are broken up, a large number of the secondaries receive kick velocities ∼100–200 km s−1 and subsequently evolve into white dwarfs. We compute trajectories within the Galactic potential for this population of stars and relate the birth rate of these stars over the entire Galaxy to those seen locally with high velocities relative to the local standard of rest (LSR) . We show that for a reasonable set of assumptions concerning the Galactic supernova rate and the binary population, our model produces a local number density of high-velocity white dwarfs compatible with that inferred from observations. We therefore propose that a population of white dwarfs originating in the thin disc may make a significant contribution to the observed population of high-velocity white dwarfs.  相似文献   

6.
It appears that most stars are born in clusters, and that at birth most stars have circumstellar discs which are comparable in size to the separations between the stars. Interactions between neighbouring stars and discs are therefore likely to play a key role in determining disc lifetimes, stellar masses, and the separations and eccentricities of binary orbits. Such interactions may also cause fragmentation of the discs, thereby triggering the formation of additional stars.   We have carried out a series of simulations of star–disc interactions using an SPH code which treats self-gravity, hydrodynamic and viscous forces. We find that interactions between discs and stars provide a mechanism for removing energy from, or adding energy to, the orbits of the stars, and for truncating the discs. However, capture during such encounters is unlikely to be an important binary formation mechanism.   A more significant consequence of such encounters is that they can trigger fragmentation of the disc, via tidally and compressionally induced gravitational instabilities, leading to the formation of additional stars and substellar objects. When the disc spins and stellar orbits are randomly oriented, encounters lead to the formation of new companions to the original star in 20 per cent of encounters. If most encounters are prograde and coplanar, as suggested by simulations of dynamically triggered star formation, then new companions are formed in approximately 50 per cent of encounters.  相似文献   

7.
We study the evolution of binary stars in globular clusters using a new Monte Carlo approach combining a population synthesis code ( startrack ) and a simple treatment of dynamical interactions in the dense cluster core using a new tool for computing three- and four-body interactions ( fewbody ). We find that the combination of stellar evolution and dynamical interactions (binary–single and binary–binary) leads to a rapid depletion of the binary population in the cluster core. The maximum binary fraction today in the core of a typical dense cluster such as 47 Tuc, assuming an initial binary fraction of 100 per cent, is only ∼ 5–10 per cent. We show that this is in good agreement with recent Hubble Space Telescope observations of close binaries in the core of 47 Tuc, provided that a realistic distribution of binary periods is used to interpret the results. Our findings also have important consequences for the dynamical modelling of globular clusters, suggesting that 'realistic models' should incorporate much larger initial binary fractions than has usually been the case in the past.  相似文献   

8.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

9.
We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary  50–100 M  star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of  ≳200–400 km s−1  (typical of pulsars), while  3–4 M  stars can attain velocities of  ≳300–400 km s−1  (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.  相似文献   

10.
We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437−244 and 1025−229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (|RM|<20 rad m−2). The giant sources are defined to be those with overall projected size 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity–size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton loss owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.  相似文献   

11.
This paper extends our previous study of planet/brown dwarf accretion by giant stars to solar-mass stars located on the red giant branch. The model assumes that the planet is dissipated at the bottom of the convective envelope of the giant star. The evolution of the giant is then followed in detail. We analyse the effects of different accretion rates and different initial conditions. The computations indicate that the accretion process is accompanied by a substantial expansion of the star, and, in the case of high accretion rates, hot bottom burning can be activated. The possible observational signatures that accompany the engulfing of a planet are also extensively investigated. They include the ejection of a shell and a subsequent phase of IR emission, an increase in the 7Li surface abundance and a potential stellar metallicity enrichment, spin-up of the star because of the deposition of orbital angular momentum, the possible generation of magnetic fields and the related X-ray activity caused by the development of shear at the base of the convective envelope, and the effects on the morphology of the horizontal branch in globular clusters. We propose that the IR excess and high Li abundance observed in 4–8 per cent of the G and K giants originate from the accretion of a giant planet, a brown dwarf or a very low-mass star.  相似文献   

12.
The computation of theoretical pulsar populations has been a major component of pulsar studies since the 1970s. However, the majority of pulsar population synthesis has only regarded isolated pulsar evolution. Those that have examined pulsar evolution within binary systems tend to either treat binary evolution poorly or evolve the pulsar population in an ad hoc manner. Thus, no complete and direct comparison with observations of the pulsar population within the Galactic disc has been possible to date. Described here is the first component of what will be a complete synthetic pulsar population survey code. This component is used to evolve both isolated and binary pulsars. Synthetic observational surveys can then be performed on this population for a variety of radio telescopes. The final tool used for completing this work will be a code comprised of three components: stellar/binary evolution, Galactic kinematics and survey selection effects. Results provided here support the need for further (apparent) pulsar magnetic field decay during accretion, while they conversely suggest the need for a re-evaluation of the assumed typical millisecond pulsar formation process. Results also focus on reproducing the observed     diagram for Galactic pulsars and how this precludes short time-scales for standard pulsar exponential magnetic field decay. Finally, comparisons of bulk pulsar population characteristics are made to observations displaying the predictive power of this code, while we also show that under standard binary evolutionary assumption binary pulsars may accrete much mass.  相似文献   

13.
Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is oriented at an angle of 24°–27° to the Sun–Galactic Centre line-of-sight. The ratio of semimajor and semiminor bar axis scalelengths in the Galactic plane   x 0, y 0  , and vertical bar scalelength z 0, is   x 0 :  y 0 :  z 0= 10 : 3.5 : 2.6  , suggesting a slightly more prolate bar structure than the working model of Gerhard which gives the scalelength ratios as   x 0 :  y 0 :  z 0= 10 : 4 : 3  .  相似文献   

14.
We consider the possibility that the excess of cosmic rays near ∼1018 eV, reported by the AGASA and SUGAR groups from the direction of the Galactic Centre, is caused by a young, very fast pulsar in the high-density medium. The pulsar accelerates iron nuclei to energies ∼1020 eV, as postulated by the Galactic models for the origin of the highest-energy cosmic rays. The iron nuclei, about 1 yr after pulsar formation, leave the supernova envelope without energy losses and diffuse through the dense central region of the Galaxy. Some of them collide with the background matter creating neutrons (from disintegration of Fe), neutrinos and gamma-rays (in inelastic collisions). We suggest that neutrons produced at a specific time after the pulsar formation are responsible for the observed excess of cosmic rays at ∼1018 eV. From normalization of the calculated neutron flux to the one observed in the cosmic ray excess, we predict the neutrino and gamma-ray fluxes. It has been found that the 1 km2 neutrino detector of the IceCube type should detect from a few up to several events per year from the Galactic Centre, depending on the parameters of the considered model. Moreover, future systems of Cherenkov telescopes (CANGAROO III, HESS, VERITAS) should be able to observe  1–10 TeV  gamma-rays from the Galactic Centre if the pulsar was created inside a huge molecular cloud about  3–10×103 yr  ago.  相似文献   

15.
A significant fraction of planetary nebulae (PNe) and protoplanetary nebulae (PPNe) exhibit aspherical, axisymmetric structures, many of which are highly collimated. The origin of these structures is not entirely understood, however, recent evidence suggests that many observed PNe harbour binary systems, which may play a role in their shaping. In an effort to understand how binaries may produce such asymmetries, we study the effect of low-mass  (<0.3 M)  companions (planets, brown dwarfs and low-mass main-sequence stars) embedded into the envelope of a  3.0-M  star during three epochs of its evolution [red giant branch, asymptotic giant branch (AGB), interpulse AGB]. We find that common envelope evolution can lead to three qualitatively different consequences: (i) direct ejection of envelope material resulting in a predominately equatorial outflow, (ii) spin-up of the envelope resulting in the possibility of powering an explosive dynamo-driven jet and (iii) tidal shredding of the companion into a disc which facilitates a disc-driven jet. We study how these features depend on the secondary's mass and discuss observational consequences.  相似文献   

16.
We use the Cambridge stellar evolution code stars to model the evolution of 5 and  7 M  zero-metallicity stars. With enhanced resolution at the hydrogen- and helium-burning shell in the asymptotic giant branch (AGB) phases, we are able to model the entire thermally pulsing AGB (TP-AGB) phase. The helium luminosities of the thermal pulses are significantly lower than in higher metallicity stars so there is no third dredge-up. The envelope is enriched in nitrogen by hot-bottom burning of carbon that was previously mixed in during second dredge-up. There is no s -process enrichment owing to the lack of third dredge-up. The thermal pulses grow weaker as the core mass increases and they eventually cease. From then on the star enters a quiescent burning phase which lasts until carbon ignites at the centre of the star when the CO core mass is  1.36 M  . With such a high degeneracy and a core mass so close to the Chandrasekhar mass, we expect these stars to explode as type 1.5 supernovae, very similar to type Ia supernovae but inside a hydrogen-rich envelope.  相似文献   

17.
Diffuse gamma-rays in the Galactic Centre region have been studied. We propose that there exists a population of millisecond pulsars in the Galactic Centre, which emit GeV gamma-rays through synchrotron-curvature radiation as predicted by outer gap models. These GeV gamma-rays from unresolved millisecond pulsars probably contribute to the diffuse gamma-ray spectrum detected by EGRET which displays a break at a few GeV. We have used a Monte Carlo method to obtain simulated samples of millisecond pulsars in the Galactic Centre region covered by EGRET  (∼ 15)  according to the different period and magnetic field distributions from observed millisecond pulsars in the Galactic field and globular clusters, and superposed their synchrotron-curvature spectra to derive the total GeV flux. Our simulated results suggest that there probably exist about 6000 unresolved millisecond pulsars in the region of angular resolution of EGRET, the emissions of which could contribute significantly to the observed diffuse gamma-rays in the Galactic Centre.  相似文献   

18.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

19.
The structure of the Galactic bar   总被引:1,自引:0,他引:1  
We present a deep near-infrared wide-angle photometric analysis of the structure of the inner Galactic bar and central disc. The presence of a triaxial structure at the centre of the Galaxy is confirmed, consistent with a bar inclined at  22°± 55  from the Sun—Galactic Centre line, extending to approximately 2.5 kpc from the Galactic Centre and with a rather small axis ratio. A feature at  ℓ=−98  not aligned with this triaxiality suggests the existence of a second structure in the inner Galaxy, a double triaxiality or an inner ring. We argue that this is likely to be the signature of the end of the Galactic bar, at approximately 2.5–3 kpc, which is circumscribed by an inner pseudo-ring. No thick dust lane preceding the bar is detected and a hole in the dust distribution of the disc inside the bar radius is inferred.  相似文献   

20.
Using our non-local time-dependent theory of convection, the linear non-adiabatic oscillations of 10 evolutionary model series with masses of  1–3 M  are calculated. The results show that there is a red giant instability strip in the lower temperature side of the Hertzsprung–Russell diagram which goes along the sequences of the red giant branch and the asymptotic giant branch. For red giants of lower luminosities, pulsation instability is found at high order overtones; the lower order modes from the fundamental to the second overtone are stable. Towards higher luminosity and lower effective temperature, instability moves to lower order modes, and the amplitude growth rate of oscillations also grows. At the high luminosity end of the strip, the fundamental and the first overtone become unstable, while all the modes above the fourth order become stable. The excitation mechanisms have been studied in detail. It is found that turbulent pressure plays a key role for excitation of red variables. The frozen convection approximation is unavailable for the low temperature stars with extended convective envelopes. In any case, this approximation can explain neither the red edge of the Cepheid instability strip, nor the blue edge of the pulsating red giant instability strip. An analytic expression of a pulsation constant as a function of stellar mass, luminosity and effective temperature is presented from this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号