首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
构造生烃     
生烃是岩石中所含的有机质产生流体有机化合物的化学反应。岩石有机质化学反应存在两种系统:封闭系统和开放系统,随着埋深加大,烃源岩越来越致密,岩石的化学反应逐渐由开放系统转变为封闭系统。目前的生烃理论仅仅是开放系统下烃源岩成熟与生烃理论,烃源岩成熟与生烃是不匹配的。封闭系统下烃源岩成熟与生烃是不匹配的,烃源岩成熟但不生烃,而是形成另外一种成熟的固体有机质。大多数情况是烃源岩为半封闭系统,烃源岩处于欠生烃状态。构造运动形成的断层和裂隙将烃源岩与疏导层沟通,烃源岩迅速由封闭、半封闭系统转变为开放系统。这种生烃系统的转变形成短时间内过量生烃,笔者将这种生烃作用命名为构造生烃,意味着构造运动期即为主生烃期,伴随着多次构造运动可以形成多个幕式生烃高峰。构造生烃理论开拓两个极其重要的勘探领域:第一,新构造勘探。以往认为已经过了生、排烃期的构造得以解放,如渤海湾郯庐断裂带第四纪圈闭不是过了主生烃期,而是正处于构造生烃的过生烃高峰期。以PL19-3为代表的油气运聚强度只有构造生烃能够解释;第二,超深勘探,特别是天然气勘探。深层勘探的下限将大大延伸,生烃门限,特别是生气门限将大大加深,仅生烃而言万米都不是天然气勘探的极限。  相似文献   

2.
通过生烃模拟获取生烃动力学参数是近年来油气资源评价工作中极为重要的一个环节,利用地层热压生排烃模拟装置对南黄海盆地南二凹陷阜四段烃源岩进行了生烃模拟实验,并拟合了生烃动力学参数。实验及研究结果表明,阜四段烃源岩的生烃演化可分为3个阶段:第1阶段产烃量随温度上升快速增大,以产油为主;第2阶段产烃量随温度上升缓慢增加,为油、气同产;第3阶段产烃量随温度上升快速增大,主要是以生气为主。实验拟合出阜四段烃源岩的生油活化能为228 kJ/mol,生气活化能为280 kJ/mol。与常压-完全开放体系试验、金管-高压釜实验装置的实验结果对比,本次实验南黄海盆地阜四段烃源岩在地层热压条件下出现生油窗滞后现象,烃源岩样品在高成熟演化阶段依然具有较高的液态烃产率。阜四段生油活化能值较高,其内在原因是有机质受到烃源岩孔隙中高压水的"保护"作用以及受生烃空间的影响,延缓了烃源岩的热演化进程。综合前人实验结果分析,有限空间热压生烃模拟实验环境更接近于烃源岩在地层条件下的生烃条件,实验结果对南黄海盆地的油气资源潜力评价及油气勘探方向具有指导意义。  相似文献   

3.
丽水—椒江凹陷是东海陆架盆地油气勘探的一个重要领域,目前处于较低的油气勘探阶段。基于现有地质资料,在烃源岩发育特征及有机质丰度、类型和成熟度分析的基础上,采用含油气盆地数值模拟技术,定量恢复了研究区月桂峰组烃源岩的生排烃史。结果表明,月桂峰组烃源岩有机质丰度高,有机质类型以Ⅱ1型和Ⅱ2型为主,具有油气兼生的能力,总体上处于成熟阶段和高成熟阶段;月桂峰组烃源岩具有较高的生排烃强度,总体上经历了2次生排烃过程,但在不同构造单元存在明显的差异性。总之,以月桂峰组烃源岩为油气来源的含油气系统是该区油气勘探的主要目标。  相似文献   

4.
为了综合确定平北地区的主力烃源岩,深化其油气成藏动力学过程研究,在烃源岩分布特征及有机质丰度、类型和成熟度分析的基础上,应用舍油气盆地数值模拟技术,定量恢复了研究区主要烃源岩层系的生排烃历史。研究表明,平北地区主要发育始新统平湖组、渐新统花港组两套烃源岩系,其中平湖组暗色泥岩为主力烃源岩,具较高的有机质丰度、成熟度、生排烃强度与排烃效率;以平湖组为源岩的油气系统应是本区油气勘探的主要目标。  相似文献   

5.
东海西湖凹陷浙东中央背斜带烃源岩生排烃史研究   总被引:9,自引:1,他引:9  
为了深化西湖凹陷浙东中央背斜带油气成藏过程的研究,优化勘探目标选择,在烃源岩特征分析的基础上,应用动态数值模拟技术,定量恢复了研究区主要烃源岩层系的生排烃历史,研究表明,浙东中央背斜带主要发育4套烃源岩系,其中始新统平湖组泥岩与煤层为主力烃源岩,具较高的有机质丰度=生烃强度与排烃效率,烃类排出具阶段性、多期次幕式排烃的特点汉平湖组为源岩的油气系统应是本区油气勘探的主要目标。  相似文献   

6.
通过对比分析中国近海含油气盆地内烃源岩的生烃潜力、储集层、盖层、油气运移、圈闭发育与主要生烃、排烃期配套等油气地质条件认为,上述诸因素在油气成藏过程中的相互配套程度的差异是造成中国近海具有相似生烃潜力的含油气盆地其油气富集程度差别巨大的关键因素。  相似文献   

7.
地层压力对油气勘探与开发具有重要影响。以前人的研究成果为基础,通过对地层压力影响因素的综合分析,指出垂向载荷、生烃作用、构造应力是地层压力的主要影响因素,也是超压地层形成的主要机制。以渤海湾盆地车西洼陷为例,指出欠压实与生烃作用是导致车西中央洼陷带和大王北西次洼深陷区异常高压的主要原因。  相似文献   

8.
通过综合运用有机地球化学方法,利用实测和收集到的烃源岩数据,对堡古2井的烃源岩进行分析,从有机质丰度、有机质成熟度、热解产率和排烃门限对区内烃源岩进行了评价,研究了该井的有机生烃特征,结果表明,南堡3号潜山发育丰富的烃源岩,有机碳含量高,有机质类型以Ⅱ1、Ⅱ2型为主,烃源岩已不同程度地进入成熟 高成熟阶段.综合分析表明,南堡3号潜山具备一定的生烃条件和油气勘探前景,可作为下一步的重要勘探和开发目标.  相似文献   

9.
对美国在采页岩气赋存场所的对比分析发现,页岩气主要分布在由阿巴拉契亚逆冲断裂带、沃希托(Ouachita)逆冲断裂带、拉腊米逆冲断裂带所围的前陆盆地中.究其原因,前陆盆地下部地层通常为厚度较大的富含有机质的克拉通时期的沉积,它为页岩气的形成提供了充足的物质基础;而前陆盆地的上部地层通常受后期冲断褶皱的挤压,由此引发的构造热事件为下部烃源岩的成熟和页岩层天然裂缝的产生提供了热力学条件.鄂尔多斯西缘前陆盆地的上三叠统延长组为主要烃源岩,其中,西南部泥页岩具有厚度大、有机质丰富、成熟度高等特点,与福特沃斯前陆盆地Barnett页岩相似,因此,推测鄂西前陆盆地西南部为页岩气赋存的有利场所,具有较好的页岩气勘探前景.  相似文献   

10.
西湖凹陷平北地区平湖组发育海陆过渡相的煤系烃源岩,以生烃潜力为主要依据对煤岩以及暗色泥岩的有机质丰度进行了评价,并建立了相应的评价标准,评价结果显示其有机质丰度均为中等―好,煤岩表现为S1+S290 mg/g,HI100 mg/g,氯仿沥青"A"1.0%;暗色泥岩表现为TOC1%, S_1+S_22 mg/g,氯仿沥青"A"0.05%,总烃"HC"150×10~(-6)。干酪根元素分析显示煤的干酪根类型主要为Ⅱ_1-Ⅱ_2型,富氢的显微组分含量较高,壳质组中的树脂体、孢子体及角质体含量达到10%~20%,且含有约20%的富氢镜质体,表明煤具有较高的生油潜力;暗色泥岩的富氢显微组分低于煤岩,有机质类型主要为Ⅱ2-Ⅲ型,以生气为主。根据镜质体反射率Ro以及S_1+S_2/TOC等指标共同确定了平北地区烃源岩的生烃门限(3 100 m)和排烃门限(3 500 m)。热模拟实验显示平湖组煤具有油气共生的特点,具有较高的产油率,可达130 mg/g TOC,产气率可达125 mg/g TOC;暗色泥岩以生气为主,产油率最高仅为50 mg/g TOC,产气率可达185 mg/g TOC,且生气周期长。基于平北地区较重的原油碳同位素和生物标志物特征对比,认为煤成油在研究区广泛存在。  相似文献   

11.
Deposition of organic rich black shales and dark gray limestones in the Berriasian-Turonian interval has been documented in many parts of the world. The Early Cretaceous Garau Formation is well exposed in Lurestan zone in Iran and is composed of organic-rich shales and argillaceous limestones. The present study focuses on organic matter characterization and source rock potential of the Garau Formations in central part of Lurestan zone. A total of 81 core samples from 12 exploratory wells were subjected to detailed geochemical analyses. These samples have been investigated to determine the type and origin of the organic matter as well as their petroleum-generation potential by using Rock-Eval/TOC pyrolysis, GC and GCMS techniques. The results showed that TOC content ranges from 0.5 to 4.95 percent, PI and Tmax values are in the range of 0.2 and 0.6, and 437 and 502 °C. Most organic matter is marine in origin with sub ordinary amounts of terrestrial input suggesting kerogen types II-III and III. Measured vitrinite reflectance (Rrandom%) values varying between 0.78 and 1.21% indicating that the Garau sediments are thermally mature and represent peak to late stage of hydrocarbon generation window. Hydrocarbon potentiality of this formation is assessed fair to very good capable of generating chiefly gas and some oil. Biomarker characteristics are used to provide information about source and maturity of organic matter input and depositional environment. The relevant data include normal alkane and acyclic isoprenoids, distribution of the terpane and sterane aliphatic biomarkers. The Garau Formation is characterized by low Pr/Ph ratio (<1.0), high concentrations of C27 regular steranes and the presence of tricyclic terpanes. These data indicated a carbonate/shale source rock containing a mixture of aquatic (algal and bacterial) organic matter with a minor terrigenous organic matter contribution that was deposited in a marine environment under reducing conditions. The results obtained from biomarker characteristics also suggest that the Garau Formation is thermally mature which is in agreement with the results of Rock-Eval pyrolysis.  相似文献   

12.
Marine carbonate rocks are widespread and their sedimentary layers are huge and thick.Many oil seepages outcrops are found in the Middle-Upper Proterozoic of North China. Combined with previous data, the paper discusses the evaluation criteria of marine carbonate source rocks.Many factors,such as organic matter types of source rocks,thermal maturity,mineral and chemical composition,paleotemperature and source-reservioir relationship etc. Should be considered. Therefore,the abundance cutoff criteria of organic matters in North China especially in the Southern area,needs further.In this paper,North China is divided into the north area dn the south area,and the organic matter type,organic matter abundance and degree of thermal evolution of organic matter in the two areas in overall and both of them are high thermal evaluation level.Furthermore,the majority of the organic matters of the source rock have been in highly over matured phase.Source rock mature period of Liulaobei Formation and Xuhuai Group in the southern area ids equal to that of the lower Xiamalin Formation in the northern area,the hydrocarbon generation capacity of Chuanlinggou Formation,and different organic matter types obtained with different methods on source rock research in the south area of North China are also put forward.  相似文献   

13.
The Upper Cretaceous Mukalla coals and other organic-rich sediments which are widely exposed in the Jiza-Qamar Basin and believed to be a major source rocks, were analysed using organic geochemistry and petrology. The total organic carbon (TOC) contents of the Mukalla source rocks range from 0.72 to 79.90% with an average TOC value of 21.50%. The coals and coaly shale sediments are relatively higher in organic richness, consistent with source rocks generative potential. The samples analysed have vitrinite reflectance in the range of 0.84–1.10 %Ro and pyrolysis Tmax in the range of 432–454 °C indicate that the Mukalla source rocks contain mature to late mature organic matter. Good oil-generating potential is anticipated from the coals and coaly shale sediments with high hydrogen indices (250–449 mg HC/g TOC). This is supported by their significant amounts of oil-liptinite macerals are present in these coals and coaly shale sediments and Py-GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30. The shales are dominated by Type III kerogen (HI < 200 mg HC/g TOC), and are thus considered to be gas-prone.One-dimensional basin modelling was performed to analysis the hydrocarbon generation and expulsion history of the Mukalla source rocks in the Jiza-Qamar Basin based on the reconstruction of the burial/thermal maturity histories in order to improve our understanding of the of hydrocarbon generation potential of the Mukalla source rocks. Calibration of the model with measured vitrinite reflectance (Ro) and borehole temperature data indicates that the present-day heat flow in the Jiza-Qamar Basin varies from 45.0 mW/m2 to 70.0 mW/m2 and the paleo-heat flow increased from 80 Ma to 25 Ma, reached a peak heat-flow values of approximately 70.0 mW/m2 at 25 Ma and then decreased exponentially from 25 Ma to present-day. The peak paleo-heat flow is explained by the Gulf of Aden and Red Sea Tertiary rifting during Oligocene-Middle Miocene, which has a considerable influence on the thermal maturity of the Mukalla source rocks. The source rocks of the Mukalla Formation are presently in a stage of oil and condensate generation with maturity from 0.50% to 1.10% Ro. Oil generation (0.5% Ro) in the Mukalla source rocks began from about 61 Ma to 54 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 25 Ma to 20 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Mukalla source rocks began from 15 Ma to present-day.  相似文献   

14.
Understanding the hydrocarbon accumulation pattern in unconventional tight reservoirs is crucial for hydrocarbon evaluation and oil/gas extraction from such reservoirs. Previous studies on tight oil accumulation are mostly concerned with self-generation or from source to reservoir rock over short distances. However, the Lucaogou tight oil in Jimusar Sag of Junggar Basin shows transitional feature in between. The Lucaogou Formation comprises fine-grain sedimentary rocks characterized by thin laminations and frequently alternating beds. The Lucaogou tight silt/fine sandstones are poorly sorted. Dissolved pores are the primary pore spaces, with average porosity of 9.20%. Although the TOC of most silt/fine sandstones after Soxhlet extraction is lower than that before extraction, they show that the Lucaogou siltstones in the area of study have fair to good hydrocarbon generation potential (average TOC of 1.19%, average S2 of 4.33 mg/g), while fine sandstones are relatively weak in terms of hydrocarbon generation (average TOC of 0.4%, average S2 of 0.78 mg/g). The hydrocarbon generation amount of siltstones, which was calculated according to basin modeling transformation ratio combined with original TOC based on source rock parameters, occupies 16%–72% of oil retention amount. Although siltstones cannot produce the entire oil reserve, they certainly provide part of them. Grain size is negatively correlated with organic matter content in the Lucaogou silt/fine sandstones. Fine grain sediments are characterized by lower deposition rate, stronger adsorption capacity and oxidation resistance, which are favorable for formation of high quality source rocks. Low energy depositional environment is the primary reason for the formation of siltstones containing organic matter. Positive correlation between organic matter content and clay content in Lucaogou siltstones supports this view point. Lucaogou siltstones appear to be effective reservoir rocks due to there relatively high porosity, and also act as source rocks due to the fair to good hydrocarbon generation capability.  相似文献   

15.
The microstructure of black siliceous shale from the lower Cambrian Niutitang Formation, Sichuan Basin in China was investigated by the combination of field emission scanning electron microscope (FE-SEM) and argon ion beam milling. The nanometer-to micrometer-scale pore systems of shales are an important control on gas storage and fluid migration. In this paper, the organic porosity in shale samples within oil and gas window has been investigated, and the formation mechanism and diagenetic evolution of nanopores have been researched.FE-SEM reveals five pore types that are classified as follows: organic nanopores, pores in clay minerals, nanopores of framework minerals, intragranular pores in microfossils, and microfractures. Numerous organic nanopores are observed in shales in the gas window, whereas microfractures can be seen within the organic matter of shales in the oil window. Microfractures in oil window shales could be attributed to pressure buildup in the organic matter when incompressible liquid hydrocarbon are generated, and the orientation of microfractures is probably parallel to the bedding and strength anisotropy of the formation. Pores in clay minerals are always associated with the framework of clay flakes, and develop around rigid mineral grains because the pressure shadows of mineral grains protect pores from collapse, and the increasing of silt content would lead to an increase in pressure shadows and improve porosity. Nanopores of rock framework are probably related to dissolution by acidic fluids from hydrocarbon generation, and the dissolution-related pores promote permeability of shales. Porosity in the low-TOC, low-thermal-maturity shales contrast greatly with those of high-TOC, high-thermal-maturity shales. While the high-TOC shales contain abundant organic microporosity, the inorganic pores can contribute a lot to the porosity of the low-TOC shales.  相似文献   

16.
苏北盆地古近系为陆相泥页岩沉积,纵向上主要发育阜二段、阜四段两套富有机质泥页岩,其中阜二段泥页岩厚度大,有机质丰度高、类型以Ⅰ-Ⅱ1型为主,主要处于成熟演化阶段;各类微乳隙、微裂缝发育,形成的网状储集体系为油气的赋存与流动提供了空间,具备形成页岩油气的物质基础和储集条件;无机矿物中脆性矿物含量较高,黏土矿物含量较低,利于页岩油的开采;多口井见到油气显示,部分井试获工业油流,展示苏北盆地页岩油具有较大的勘探潜力.  相似文献   

17.
The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S_2, oil-base mud has certain impact on Rock-Eval S_1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area.  相似文献   

18.
The Shoushan Basin is an important hydrocarbon province in the Western Desert, Egypt, but the origin of the hydrocarbons is not fully understood. In this study, organic matter content, type and maturity of the Jurassic source rocks exposed in the Shoushan Basin have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. The Jurassic source rock succession comprises the Ras Qattara and Khatatba Formations, which are composed mainly of shales and sandstones with coal seams. The TOC contents are high and reached a maximum up to 50%. The TOC values of the Ras Qattara Formation range from 2 to 54 wt.%, while Khatatba Formation has TOC values in the range 1-47 wt.%. The Ras Qattara and Khatatba Formations have HI values ranging from 90 to 261 mgHC/gTOC, suggesting Types II-III and III kerogen. Vitrinite reflectance values range between 0.79 and 1.12 VRr %. Rock−Eval Tmax values in the range 438-458 °C indicate a thermal maturity level sufficient for hydrocarbon generation. Thermal and burial history models indicate that the Jurassic source rocks entered the mature to late mature stage for hydrocarbon generation in the Late Cretaceous to Tertiary. Hydrocarbon generation began in the Late Cretaceous and maximum rates of oil with significant gas have been generated during the early Tertiary (Paleogene). The peak gas generation occurred during the late Tertiary (Neogene).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号