首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochemical reference materials (RMs) for microbeam techniques are typically characterised by averages and dispersion statistics (e.g., standard deviation, variance) that are calculated for a number of measurements (beam shots). It is proposed that the mapping of RMs will add spatial information that better characterises the grouping and magnitudes of the heterogeneities and provides the information necessary to define a minimum analytical mass. A simple mathematical solution is proposed, which can be easily computed and understood. The analogous notions to sill and range from geostatistics are applied to the minimum analytical mass versus the relative standard deviation. To assess grouping and magnitudes of the heterogeneities, a ‘proximity number’ is computed for each average value ± ‘n’ standard deviations (magnitude). Different chemical anomalies have been simulated to demonstrate the behaviour of the proximity number. To further test the proposed spatial geochemistry concept, sulfide‐ and oxide‐bearing RMs have been selected because many are crippled with nugget effect. They have been mapped with a micro‐XRF apparatus, and results are presented for CHR‐Bkg, CHR‐Pt+, MASS‐1, MASS‐3, WMS‐1 and WMS‐1a. MASS‐1 and MASS‐3 are the most suitable RMs for microbeam techniques. Spatial geochemistry offers a new approach to better characterise reference materials.  相似文献   

2.
A delayed plastic model, based on the theory of plasticity, is proposed to represent the time‐dependent behaviour of materials. It is assumed in this model that the stress can lie outside the yield surface and the conjugate stress called static stress is defined on the yield surface. The stress–strain relation is calculated based on the plastic theory embedding the static stress. Thus, the stress–strain relation of the model practically corresponds to that of the inviscid elastoplastic model under fairly low rate deformation. The delayed plastic model is coupled with the Cam‐clay model for normally consolidated clays. The performance of the model is then examined by comparing the model predictions with reported time‐dependent behaviour of clays under undrained triaxial conditions. It is shown that the model is capable of predicting the effect of strain rate during undrained shear and the undrained creep behaviour including creep rupture. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
A new model for calculating the resistance to penetration into geological or geologically derived materials is proposed. We assume steady‐state flow of the target material over the penetrator. The target medium is described by a rate dependent constitutive equation that accounts for combined effects of strain rate and compaction on yielding. The wedge‐shaped penetrator is considered to be rigid. The influence of the characteristics of the penetrator/target interface, impact velocity, target mechanical properties and nose geometry on the resistance to penetration is investigated. It is found that for low to intermediate impact velocities, accounting for friction results in a blunter optimal wedge geometry for optimal penetration performance. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A three‐dimensional phenomenological model is developed to describe the long‐term creep of gypsum rock materials. The approach is based on the framework of continuum damage mechanics where coupling with viscoelasticity is adopted. Specifically, a local damage model based on the concept of yield surface is proposed and deeply investigated. Among the many possibilities, we choose in this work its coupling with a generalized Kelvin–Voigt rheological model to formulate the whole behavior. Long‐term as well as short‐term relaxation processes can be integrated in the model by means of as many as necessary viscoelastic processes. The numerical discretization is described for an easy integration within a finite element procedure. Finally, a set of numerical simulations is given to show the possibilities of the presented model. It shows good agreement with some experimental results found in the literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A new macroscopic constitutive model for non‐cohesive granular materials, with the focus on coarse‐sized materials (railway ballast), is presented. The model is based on the concepts of rate‐independent isotropic plasticity. The Backward Euler rule is used for integrating the pertinent evolution equations. The resulting incremental relations are solved in the strain space that is extended with the internal (hardening) variables. The model is calibrated using data from Conventional Triaxial Compression (CTC) tests, carried out at the University of Colorado at Boulder. A function evaluation method is used for the optimization, whereby a ‘multi‐vector’ strategy for choosing the appropriate start vector is proposed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents parallel and serial viscoelasto‐plastic models to simulate the rate‐independent and the rate‐dependent permanent deformation of stone‐based materials, respectively. The generalized Maxwell viscoelastic and Chaboche's plastic models were employed to formulate the proposed parallel and serial viscoelasto‐plastic constitutive laws. The finite element (FE) implementation of the parallel model used a displacement‐based incremental formulation for the viscoelastic part and an elastic predictor—plastic corrector scheme for the elastoplastic component. The FE framework of the serial viscoelasto‐plastic model employed a viscoelastic predictor—plastic corrector algorithm. The stone‐based materials are consisted of irregular aggregates, matrix and air voids. This study used asphalt mixtures as an example. A digital sample was generated with imaging analysis from an optically scanned surface image of an asphalt mixture specimen. The modeling scheme employed continuum elements to mesh the effective matrix, and rigid bodies for aggregates. The ABAQUS user material subroutines defined with the proposed viscoelasto‐plastic matrix models were employed. The micromechanical FE simulations were conducted on the digital mixture sample with the viscoelasto‐plastic matrix models. The simulation results showed that the serial viscoelasto‐plastic matrix model generated more permanent deformation than the parallel one by using the identical material parameters and displacement loadings. The effect of loading rates on the material viscoelastic and viscoelasto‐plastic mixture behaviors was investigated. Permanent deformations under cyclic loadings were determined with FE simulations. The comparison studies showed that the simulation results correctly predicted the rate‐independent and rate‐dependent viscoelasto‐plastic constitutive properties of the proposed matrix models. Overall, these studies indicated that the developed micromechanical FE models have the abilities to predict the global viscoelasto‐plastic behaviors of the stone‐based materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper a micro‐polar continuum approach is proposed to model the essential properties of cohesionless granular materials like sand. The model takes into account the influence of particle rotations, the mean grain size, the void ratio, the stresses and couple stresses. The constitutive equations for the stresses and couple stresses are incrementally non‐linear and based on the concept of hypoplasticity. For plane strain problems the implementation of the model in a finite element program is described. Numerical studies of the evolution of micro‐polar effects within a granular strip under plane shearing are presented. It is shown that the location and evolution of shear localization is strongly influenced by the initial state and the micro‐polar boundary conditions. For large shearing the state quantities tend towards a stationary state for which a certain coupling between the norm of the stress deviator and the norm of the couple stress tensor can be derived. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The continuous improvement of analytical procedures using multi‐collector technologies in ICP‐mass spectrometry has led to an increased demand for isotope standards with improved homogeneity and reduced measurement uncertainty. For magnesium, this has led to a variety of available standards with different quality levels ranging from artefact standards to isotope reference materials certified for absolute isotope ratios. This required an intercalibration of all standards and reference materials, which we present in this interlaboratory comparison study. The materials Cambridge1, DSM3, ERM‐AE143, ERM‐AE144, ERM‐AE145, IRMM‐009 and NIST SRM 980 were cross‐calibrated with expanded measurement uncertainties (95% confidence level) of less than 0.030‰ for the δ25/24Mg values and less than 0.037‰ for the δ26/24Mg values. Thus, comparability of all magnesium isotope delta (δ) measurements based on these standards and reference materials is established. Further, ERM‐AE143 anchors all magnesium δ‐scales to absolute isotope ratios and therefore establishes SI traceability, here traceability to the SI base unit mole. This applies especially to the DSM3 scale, which is proposed to be maintained. With ERM‐AE144 and ERM‐AE145, which are product and educt of a sublimation–condensation process, for the first time a set of isotope reference materials is available with a published value for the apparent triple isotope fractionation exponent θapp, the fractionation relationship ln α(25/24Mg)/ln α(26/24Mg).  相似文献   

10.
This paper proposes a yield and failure criterion for cohesive and frictional materials. The function is given by the combination of a Lode dependence for the behaviour in the deviatoric plane and a meridian function for the pressure‐dependent behaviour. A variety of shapes can be achieved with the proposed criterion including Lode dependences which are able to reproduce the behaviour of isotropic and cross‐anisotropic materials in the deviatoric plane. The criterion is validated through the comparison with experimental data based on multiaxial experimental tests on clays, sands, rocks and concrete. Finally, the convexity of the criterion is analysed and discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Strain gradient implies an important characteristic in localized damage deformation, which can be observed in the softening state of brittle materials, and strain gradients constitute the basic behaviours of localization failure area of the materials. The most important point in strain gradient is its damaging function including an internal length scale, which can be used to express the scale effects of mechanical responses of brittle rock mass. By extending the strain gradient theory and introducing an intrinsic material length scale into the constitutive law, the authors develop an isotropic damage model as well as a micro‐crack‐based anisotropic damage model for rock‐like materials in this paper. The proposed models were used to simulate the damage localization under uniaxial tension and plain strain compression, respectively. The simulated results well illustrated the potential of these models in dealing with the well‐known mesh‐sensitivity problem in FEM. In the computation, elements with C1 continuity have been implemented to incorporate the proposed models for failure localization. When regular rectangle elements are encountered, the coupling between finite difference method (FDM) and conventional finite element method (FEM) is used to avoid large modification to the existing FEM code, and to obtain relatively higher efficiency and reasonably good accuracy. Application of the anisotropic model to the 3D‐non‐linear FEM analysis of Ertan arch dam has been conducted and the results of its numerical simulation coincide well with those from the failure behaviours obtained by Ertan geophysical model test. In this paper, new applications of gradient theories and models for a feasible approach to simulate localized damage in brittle materials are presented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
This article is devoted to numerical modeling of anisotropic damage and plasticity in saturated quasi‐brittle materials such as rocks and concrete. The damaged materials are represented by an isotropic poroelastic matrix containing a number of families of microcracks. Based on previous works, a discrete thermodynamic approach is proposed. Each family of microcracks exhibits frictional sliding along crack surfaces as well as crack propagation. The frictional sliding is described by a Coulomb–Mohr‐type plastic criterion by taking into account the effect of fluid pressure through a generalized effective stress concept. The damage evolution is entirely controlled by and coupled with the frictional sliding. The effective elastic properties as well as Biot's coefficients of cracked porous materials are determined as functions of induced damage. The inelastic deformation due to frictional sliding is also taken into account. The procedure for the identification of the model's parameters is presented. The proposed model is finally applied to study both mechanical and poromechanical responses of a typical porous brittle rock in drained and undrained compression tests as well as in interstitial pressure controlled tests. The main features of material behaviors are well reproduced by the model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Previous work on three‐dimensional shakedown analysis of cohesive‐frictional materials under moving surface loads has been entirely for isotropic materials. As a result, the effects of anisotropy, both elastic and plastic, of soil and pavement materials are ignored. This paper will, for the first time, develop three‐dimensional shakedown solutions to allow for the variation of elastic and plastic material properties with direction. Melan's lower‐bound shakedown theorem is used to derive shakedown solutions. In particular, a generalised, anisotropic Mohr–Coulomb yield criterion and cross‐anisotropic elastic stress fields are utilised to develop anisotropic shakedown solutions. It is found that shakedown solutions for anisotropic materials are dominated by Young's modulus ratio for the cases of subsurface failure and by shear modulus ratio for the cases of surface failure. Plastic anisotropy is mainly controlled by material cohesion ratio, the rise of which increases the shakedown limit until a maximum value is reached. The anisotropic shakedown limit varies with frictional coefficient, and the peak value may not occur for the case of normal loading only. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This study presents two three‐parameter failure criteria for cohesive‐frictional materials based on the Mohr–Coulomb failure function. One proposed failure criterion can be linked to Mogi's empirical formula and incorporates the well‐known Von‐Mises, Drucker–Prager, and Linear Mogi criteria as special cases. Another one with smooth and convex cross sections contains a general Lode dependence in the deviatoric plane and includes the Matsuoka–Nakai and Lade–Duncan Lode dependences as special cases. The effect of the intermediate principal stress on the strength of the material can be taken into account in both criteria. The proposed criteria are numerically calibrated against polyaxial data sets of many different types of rocks and concrete. The comparison results show that the performance of the proposed criteria is excellent, and the failure criterion with a general Lode dependence performs better than the other one for concrete. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Crushability is one of the important behaviors of granular materials particularly under high stress states, and affects both the deformability and strength of the materials that are in essence associated with state‐dependent dilatancy. In this presentation, first, a new critical state model is proposed to take into account the three different modes of compressive deformation of crushable granular materials, i.e. particle rearrangement, particle crushing and pseudo‐elastic deformation. Second, the governing equations for cavity expansion in crushable granulates are introduced, in which the state‐dependent dilatancy as well as the bounding surface plasticity model are used. Then, the procedure to obtain semi‐analytical solutions to cavity expansion in the material is described in detail, in which a commercial differential equation solver is employed. Finally, cavity expansion analyses are carried out on Toyoura sand, a well‐documented granular material, to demonstrate the effects of crushability and state‐dependent dilatancy. The study shows that particle crushing does occur at both high stress and critical states and affects the stress fields and the deformation behavior of the material surrounding the cavity in association with state‐dependent dilatancy. This leads to conclusion that particle crushing and state‐dependent dilatancy have to be taken into account when cavity expansion theory is used to interpret cone penetration tests and pressuremeter tests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A literature review has shown that there exist adequate techniques to obtain ground reaction curves for tunnels excavated in elastic‐brittle and perfectly plastic materials. However, for strain‐softening materials it seems that the problem has not been sufficiently analysed. In this paper, a one‐dimensional numerical solution to obtain the ground reaction curve (GRC) for circular tunnels excavated in strain‐softening materials is presented. The problem is formulated in a very general form and leads to a system of ordinary differential equations. By adequately defining a fictitious ‘time’ variable and re‐scaling some variables the problem is converted into an initial value one, which can be solved numerically by a Runge–Kutta–Fehlberg method, which is implemented in MATLAB environment. The method has been developed for various common particular behaviour models including Tresca, Mohr–Coulomb and Hoek–Brown failure criteria, in all cases with non‐associative flow rules and two‐segment piecewise linear functions related to a principal strain‐dependent plastic parameter to model the transition between peak and residual failure criteria. Some particular examples for the different failure criteria have been run, which agree well with closed‐form solutions—if existing—or with FDM‐based code results. Parametric studies and specific charts are created to highlight the influence of different parameters. The proposed methodology intends to be a wider and general numerical basis where standard and newly featured behaviour modes focusing on obtaining GRC for tunnels excavated in strain‐softening materials can be implemented. This way of solving such problems has proved to be more efficient and less time consuming than using FEM‐ or FDM‐based numerical 2D codes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The purpose of this paper is to present a physically based plasticity model for non‐coaxial granular materials. The model, which we shall call the double slip and rotation rate model (DSR2 model), is a pair of kinematic equations governing the velocity field. The model is based on a discrete micro‐analysis of the kinematics of particles in contact, and is formulated by introducing a quantity called the averaged micro‐pure rotation rate (APR) into the unified plasticity model which was proposed by one of the authors. Our macro–micro mechanical analysis shows that the APR is a non‐linear function of, among other quantities, the macro‐rotation rate of the major principal axis of stress taken in the opposite sense. The requirement of energy dissipation used in the double‐sliding free‐rotating model appears to be unduly restrictive as a constitutive assumption in continuum models. In the DSR2 model the APR tensor and the spin tensor are directly linked with non‐coaxiality of the stress and deformation rate tensors. We also propose a simplified plasticity model based on the DSR2 model for a class of dilatant materials, and analyse its material stability. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
As a result of deposition process and particle characteristics, granular materials can be inherently anisotropic. Many researchers have strongly suggested that the inherent anisotropy is the main reason for the deformation non‐coaxiality of granular materials. However, their relationships are not unanimous because of the limited understanding of the non‐coaxial micro‐mechanism. In this study, we investigated the influence of inherent anisotropy on the non‐coaxial angle using the discrete element method. Firstly, we developed a new discrete element method approach using rough elliptic particles and proposed a novel method to produce anisotropic specimens. Secondly, the effects of initial specimen density and particle characteristics, such as particle aspect ratio A m, rolling resistance coefficient β , and bedding plane orientation δ , were examined by a series of biaxial tests and rotational principal axes tests. Findings from the numerical simulations are summarized as follows: (1) the peak internal friction angle ? p and the non‐coaxial angle i both increase with the initial density, A m and β , and they both increase initially and then decrease with δ in the range of 0–90°; (2) among the particle characteristics, the influence of A m is the most significant; and (3) for anisotropic specimens, the non‐coaxial angle can be calculated using the double slip and rotation rate model. Then, an empirical formula was proposed based on the simulation results to depict the relationship between the non‐coaxial angle and the particle characteristics. Finally, the particle‐scale mechanism of non‐coaxiality for granular materials was discussed from the perspective of energy dissipation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the effects of a non‐coaxial model on simulated stress–strain behaviour of granular materials subject to simple shearing under various initial conditions. In most cases, a significant difference of predictions between coaxial and non‐coaxial modelling is found during the early stage in shearing. With the increase in shearing, non‐coaxial simulations approach and tend to coincide with coaxial simulations. It is also found that the roles of non‐coaxial modelling in simulating simple shear behaviour are considerably influenced by hardening rules, flow rules, initial static lateral pressure coefficients. In some cases, the non‐coaxial modelling gives a similar simulation as the coaxial modelling. In other cases, the non‐coaxial modelling decreases the hardening response or softening response of materials, compared with the coaxial modelling. Under certain conditions, the predicted peak strength of materials with non‐coaxial modelling is larger than that for coaxial modelling. Some of these observations can be attributed to the amount of principal stress rotation in various cases analysed. Others can be attributed to the difference between the directions of the non‐coaxial plastic flow and those for coaxial plastic flow. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号