首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Estuaries are important areas highly susceptible to anthropogenic degradations like pollution. Estuarine species have thus to cope with many types of constraints depending on the estuaries' characteristics. The European flounder Platichthys flesus is considered as a sentinel species for the monitoring of estuarine water quality. In this study, juvenile flounders (0+ group) were sampled from three contrasted Channel estuaries, i.e. the Seine, the Canche and the Tamar, and we characterized their liver proteomes by using a two-dimensional electrophoresis based proteomic approach.We showed that 27 protein spots differentially accumulated between the 3 populations. Six of these proteins were identified by MALDI TOF–TOF mass spectrometry. Flounders from the Seine and from the Tamar, two highly polluted estuaries, displayed common differences, i.e. an increase of the energetic- and the glutathione-metabolism. The most accumulated protein in the Seine's samples (6.7-fold) was a Vitelline Membrane Outer layer protein 1 homolog, suggesting oogenesis deregulation in these juvenile (sexually immature) flounders. Future works applying this kind of proteomic approach on flounders experimentally exposed to conditions that mimic environmental constraints will help to better understand the significance of these environmental proteomic signatures.  相似文献   

2.
Juveniles of both stone flounder Platichthys bicoloratus and starry flounder Platichthys stellatus utilize estuaries as nursery grounds. To understand their habitat selection and the functions of habitats such as food supply, we defined the seasonal distribution of recently settled fish of these species in shallow nursery areas and investigated their feeding habits in the Natori River estuary, Japan. Distribution of stone flounder was limited to the lower estuary (<3 km upriver from the mouth) and stone flounder were most abundant near the mouth. Recently settled starry flounder were first detected further upstream in areas characterized by low salinity <10 and by the absence of the predatory sand shrimp Crangon uritai. Early juvenile stone and starry flounders consumed mainly siphons of the bivalve Nuttallia olivacea and the mysid Neomysis awatschensis, respectively; however, 1- and 2-yr-old fish of both stone and starry flounders fed mainly on the bivalve siphons. These results indicate that habitat selections of juvenile stone and starry flounders enable utilization of preferred prey and predator avoidance, respectively, and that non-overlap of these species' habitats results in avoidance of inter-specific competition for food between these two species.  相似文献   

3.
Prey availability is one of the most important factors affecting the quality of nursery grounds. Estuaries play an important role as nursery grounds for juvenile stone flounder, but the mechanism behind the consistently high availability of prey has never been examined. This study investigates which prey is mainly selected by juvenile stone flounder (15–55 mm standard length) in the estuary of the Natori River, northern Japan. In a cage experiment, juveniles showed positive selection for the palps of the spionid polychaete Pseudopolydora kempi in March, and for the siphons of the bivalve Nuttallia olivacea in April, May and June in both sandy and muddy-sand habitats. This selective predation showed that sublethal predation on regenerable parts of invertebrates is important for stone flounder. Nuttallia olivacea, the dominant bivalve in the estuary, was more abundant and in better somatic condition in the sandy area in spite of the stronger siphon-cropping pressure by juvenile stone flounder. These results confirm that sublethal predation on highly abundant benthos plays an important role in forming estuarine habitats into areas of high prey availability for juvenile stone flounder, which leads to their high growth rate.  相似文献   

4.
Several flatfish species, including southern flounder (Paralichthys lethostigma) recruit to estuaries during early life. Therefore, evaluation of estuarine sites and habitats that serve as nurseries is critical to conservation and management. The present study used density data in conjunction with biochemical condition and growth measurements to evaluate settlement sites used by southern flounder in the Galveston Bay Estuary (GBE). In 2005, beam-trawl collections were made in three major sections of the GBE (East Bay, Galveston Bay, West Bay). Three sites were sampled in each bay. Within each sampling site, replicate collections were taken from three habitats: 1) marsh edge (< 1 m depth), 2) intermediate zone (10–20 m from marsh interface;  1 m depth), and 3) bay zone (typically > 100 m from marsh interface; depth > 1 m). Average size of southern flounder collected was 12–19 mm standard length, and peak densities occurred in January and February. Catch data indicated that densities of southern flounder were significantly greater in East Bay (2.75 per 100 m2) than in Galveston Bay (0.91 per 100 m2) or in West Bay (0.45 per 100 m2). Densities were statistically similar among habitats. Otolith-based estimates of age indicated that the majority of southern flounder collected were 35–45 days old and derived from early December to early January hatch-dates. Growth rates were similar among bays and among habitats, with the average growth rate being 0.40 mm day− 1 (range: 0.21–0.76 mm day− 1). RNA:DNA was above the established baseline value for nutritional stress, indicating that newly settled southern flounder in the GBE were in relatively high condition. Habitat-specific differences in RNA:DNA ratios were not observed; however, ratios were significantly lower in West Bay (average 8.0) than in East Bay (average 9.5) or in Galveston Bay (average 9.8), suggesting the condition of new recruits may vary spatially within the GBE. Findings from the current study suggest density and condition of newly settled southern flounder vary at the bay scale, suggesting that parts of GBE do not function equally as nurseries.  相似文献   

5.
To investigate feeding habits of juvenile flounder (Platichthys flesus) and turbot (Psetta maxima) in relation to habitat characteristics a field survey with push net sampling was conducted in nursery areas with different ecological characteristics in the northern Baltic proper. Sampling sites were stratified to cover several different habitat types defined by substrate and wave exposure. Apart from flatfishes and epifauna, samples of macrofauna, meiofauna and hyperbenthic planktons were collected from each site together with data on vegetation, depth, salinity, temperature and turbidity. The diet differed between species where flounder diet was dominated by chironomids, copepods and oligochaetes while turbot apart from chironomids had a high incidence of amphipods, gobies and mysids. In both species there was a shift in diet with size, although this shift was influenced by the habitat. Among the environmental variables investigated, wave exposure was found to significantly influence flounder diet. Food preference in the most exposed areas was dominated by oligochaetes and copepods instead of chironomids, which dominated in sheltered areas. This study shows that habitat characteristics can have a major influence on feeding habits of juvenile flatfish.  相似文献   

6.
The elemental composition of otoliths from juvenile English sole Pleuronectes vetulus and speckled sanddab Citharichthys stigmaeus living in estuaries and sandy coastal habitats were compared to determine if a chemical habitat tag existed that could be used to differentiate fish living in the alternative juvenile habitats. Juveniles of both species were collected from seven estuaries and 11 coastal sites along 500 km of the central California coast. Collections occurred in three years: 1998, 1999 and 2000. The chemical composition of the otoliths was analyzed using solution-based inductively coupled plasma mass spectrometry. The multi-elemental composition (Sr, Li, Ba, Mn) of otoliths from estuarine and coastal fish differed significantly for all models (global, region and years models) examined in this study. For each species, discriminant function analysis (DFA) for the global model, which pooled juveniles collected from three regions over multiple years, classified fish into estuarine and coastal groups with close to 80% accuracy. The two main elements in the discriminant models, Sr and Li, differed consistently between habitats; Sr was higher and Li was lower in estuarine fish. Classification success was modestly improved by generating separate discriminant functions for each region (regions model) because of some regional differences in Sr and Li concentrations. Classification success also was improved in some cases by generating separate discriminant functions for each year (years model) because Ba and Mn differed between habitats in only some years. Despite this variability in the concentration of elements in some regions and years, a chemical habitat tag was present in each species that could be used to discriminate coastal and estuarine juveniles over a large geographic area and over three years with very different oceanographic conditions (e.g., El Niño, La Niña). In addition, I found that English sole and speckled sanddab had striking similarities in their chemical habitat tags and that, in some cases, one species could be used as a proxy to classify juveniles of the other species without compromising the accuracy of the habitat tag. The ability to use a proxy classification model would significantly reduce the number of juvenile fish that would need to be collected and analyzed in order to classify members of an ecologically similar species. The chemical habitat tags found in this study appears to be promising tools for identifying fish that have lived in alternative juvenile habitats and, ultimately, the proportional contribution of estuarine and coastal habitats to the central California populations of English sole and speckled sanddab.  相似文献   

7.
Turbidity limits gas exchange in a large macrotidal estuary   总被引:1,自引:0,他引:1  
In estuaries, the gas transfer velocity (k) is driven by a combination of two major physical drivers, wind and water current. The k values for CO2 in the macrotidal Gironde Estuary were obtained from 159 simultaneous pCO2 and floating chamber flux measurements. Values of k increased with wind speed and were significantly greater when water currents and wind were in opposing directions. At low wind speeds (<1 m s−1), k increased with water current velocities (0–1.5 m s−1) following an exponential trend. The latter was a good proxy for the Y-intercept in a generic equation for k versus wind speed in estuaries. We also found that, in this turbid estuary, k was significantly lower at high turbidity. The presence of suspended material in great concentrations (TSS > 0.2 g L−1) had a significant role in attenuating turbulence and therefore gas exchange. This result has important consequences for modeling water oxygenation in estuarine turbidity maxima. For seven low turbidity estuaries previously described in the literature, the slope of the linear regression between k and wind speed correlates very well with the estuary surface area due to a fetch effect. In the Gironde Estuary, this slope follows the same trend at low turbidity (TSS < 0.2 g L−1), but is on average significantly lower than in other large estuaries and decreases linearly with the TSS concentration. A new generic equation for estuaries is proposed that gives k as a function of water current velocity, wind speed, estuarine surface area and TSS concentration.  相似文献   

8.
With the persistence of the sub-Saharan drought since the 1970s, the Sine Saloum estuary (Senegal) – the second largest coastal Biosphere Reserve of West-Africa – has become an “inverse estuary” and hypersaline (salinity > 60) in its upstream part. A one-year survey was conducted from April 2007 to March 2008 at eight sites distributed along the salinity gradient, to investigate the recruitment patterns of young-of-the-year mugilids in such an impacted ecosystem. Fishes were sampled monthly with a conical net and a beach seine in salinities ranging from 31 to 104. Samples were identified to the species level. For the smallest individuals (<20 mm SL) a PCR–RFLP technique, developed on the mitochondrial 16S ribosomal RNA region, was used for identification. A total of 8438 juveniles belonging to six of the eight species of mugilids known for the tropical Eastern Atlantic were collected: Mugil bananensis, Mugil cephalus, Mugil curema, Liza dumerili, Liza falcipinnis and Liza grandisquamis. One species, L. dumerili, represented 89% of the total catch. Length–frequency distributions revealed that M. cephalus and L. dumerili preferentially recruited during the dry season whereas the recruitment of M. curema, M. bananensis and L. falcipinnis generally occurred during the wet season. Minimal size at recruitment ranged from 9 to 19 mm SL depending on the species, the smallest size being that of L. dumerili. Despite the general salinity increase in the estuary, most parts of the Sine Saloum were suitable for the juveniles. Only the hypersaline area in the uppermost part of the estuary presented very low fish abundance for all species. According to the species, small recruits (12–20 mm SL) were collected at salinities up to 47–78, suggesting that osmoregulatory capacities had been gained early during ontogenesis, possibly resulting from an adaptation of these populations to changing environmental conditions.  相似文献   

9.
This study has analysed for the first time fish composition and assemblage structures of three small macrotidal estuaries of the Eastern English Channel (EEC) and has explored the influences of 19 biotic and abiotic variables on the fish assemblages. Fish from Canche, Authie and Somme estuaries were collected during spring (June 2006 and May 2007) and autumn (September 2006) along the estuarine gradients using a 1.5 m beam trawl. Using identical sampling protocols, the study also analysed and compared for the first time taxonomic and functional aspects of the fish assemblages in 15 estuaries located along the Atlantic and English Channel coasts. SIMPER analysis showed high similarities in fish assemblages in the three EEC estuaries and during either spring or autumn periods. However, intra-estuary similarities were relatively low, indicating that fish assemblage structures (species richnesses or abundances) were more variable within the estuary (salinity gradient) than between estuaries and/or seasons (spring vs autumn). Although numerous environmental variables were included in the study, only 47% of the variability observed in the fish distribution was explained. Fish spatial variations in the EEC estuaries are mostly driven by abiotic variables as opposed to biological interactions. As indicated by CCA, salinity and muddy sediments were the two most important factors structuring the fish assemblages. The macrobenthos being very abundant in the EEC estuaries (580–1121 ind. m−2), the availability of potential prey is probably not a limiting factor in the utilization of estuaries by fish. Contrary to the majority of French estuaries dominated by estuarine species (ES), the fish assemblages of the EEC estuaries are clearly dominated by marine migrant (MM) species (65% on average) with high abundance of juveniles (mostly young-of-the-year). Cluster and SIMPROF's analyses distinguished the functional structure of the 15 estuarine fish assemblages into different clusters. The three EEC estuaries form a similar group with the largest French estuaries (Seine, Loire and Gironde). The latters were characterized by higher MM/ES ratio compared to the other French estuaries. Freshwater flow and tidal range were the main factors associated with this group of estuaries. The results of the present study do not indicate that anthropogenic impacts (chemical contamination) on estuaries affect their ecological functioning as described by the fish ecological guilds. It is suggested that the guild approach may not be useful to provide valuable information on the ecological status of estuaries.  相似文献   

10.
We conducted studies of phytoplankton and hydrological variables in a semi-enclosed bay in northern China to understand the spatial–temporal variability and relationship between these variables. Samples were collected during seven cruises in Jiaozhou Bay from November 2003 to October 2004, and were analyzed for temperature, nutrients and phytoplankton pigments. Pigments from eight possible phytoplankton classes (Diatoms, Dinoflagellates, Chlorophyceae, Prasinophyceae, Chrysophyceae, Haptophyceae, Cryptophyceae and Caynophyceae) were detected in surface water by high performance liquid chromatography (HPLC). Phytoplankton pigment and nutrient concentrations in Jiaozhou Bay were spatially and temporally variable, and most of them were highest in the northern and eastern parts of the sampling regions in spring (May) and summer (August), close to areas of shellfish culturing, river estuaries, dense population and high industrialization, reflecting human activities. Chlorophyll a was recorded in all samples, with an annual mean concentration of 1.892 μg L−1, and fucoxanthin was the most abundant accessory pigment, with a mean concentration of 0.791 μg L−1. The highest concentrations of chlorophyll a (15.299 μg L−1) and fucoxanthin (9.417 μg L−1) were observed in May 2004 at the station close to the Qingdao Xiaogang Ferry, indicating a spring bloom of Diatoms in this area. Although chlorophyll a and other biomarker pigments showed significant correlations, none of them showed strong correlations with temperature and nutrients, suggesting an apparent de-coupling between the pigments and these hydrological variables. The nutrient composition and phytoplankton community composition of Jiaozhou Bay have changed significantly in the past several decades, reflecting the increasing nutrient concentrations and decline of phytoplankton cell abundance. The unchanged total chlorophyll a levels indicated that smaller species have filled the niche vacated by the larger species in Jiaozhou Bay, as revealed by our biomarker pigment analysis.  相似文献   

11.
Determining the nursery habitat of fishes that have moved from estuarine nursery habitats is difficult. The elemental fingerprints of otoliths of three species of sparids were determined to investigate their utility as a natural tag of the nursery habitat. Juvenile Pagrus auratus (snapper), Rhabdosargus sarba (tarwhine) and Acanthopagrus australis (bream) were collected from two sites in each of 15, six and three estuaries, respectively, and their otoliths analysed by solution-based inductively coupled plasma-mass spectrometry. Significant differences in otolith chemistry were found for all three species of juveniles collected from different estuaries. The same patterns among estuaries were not seen for all species, although it was not possible to sample the same sites within an estuary for all species. For bream, significant differences in otolith chemistry were found among all three estuaries, whereas for tarwhine the six estuaries were separated into three groups. For snapper, a number of estuaries could be separated, but there was some overlap for other estuaries. All three species were collected from the same site within one estuary and their otoliths analysed. Significant differences were found among species, but the implication of this finding remains unclear as the three species show differences in microhabitat use and may also differ in age. Because the elemental fingerprints of juveniles vary among estuaries or groups of estuaries, the nursery or recruitment estuary of adult fish could now be determined by analysing the juvenile region of adult otoliths. Thus, connectivity between estuaries and open coastal populations could be determined. Such information will have major implications for fisheries management because it will provide information on the distance that fish have moved from their recruitment estuary and the number of estuaries that contribute to each adult population.  相似文献   

12.
Connectivity between estuarine fish nurseries and coastal adult habitats can be affected by variations in juvenile growth and survival. Condition indices are renowned proxies of juvenile nutritional status and growth rates and are valuable tools to assess habitat quality. Biochemical (RNA:DNA ratio) and morphometric (Fulton's condition factor K) condition indices were determined in juveniles of Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax collected in putative nursery areas of nine estuaries along the Portuguese coast (Minho, Douro, Ria de Aveiro, Mondego, Tejo, Sado, Mira, Ria Formosa and Guadiana) in the Spring and Summer of two consecutive years (2005 and 2006) with distinct climatic characteristics. Individual condition showed significant variation amongst species. The combined use of both condition indices highlighted the low correlation between them and that RNA:DNA had a higher sensitivity. RNA:DNA varied between years but overall the site relative patterns in condition were maintained from one year to the other. Higher RNA:DNA values were found in Spring than in Summer in most species. Intra-estuarine variation also occurred in several cases. Species specific trends in the variability of condition amongst estuaries were highlighted. Some estuaries had higher juvenile condition for more than one species but results did not reveal an identical trend for all species and sites, hindering the hypotheses of one estuarine nursery promoting superior growth for all present species. Significant correlations were found between condition indices, juvenile densities and environmental variables (water temperature, salinity and depth) in the estuarine nurseries. These influenced juvenile nutritional condition and growth, contributing to the variability in estuarine nursery habitat quality. Management and conservation wise, interest in multi-species approaches is reinforced as assessments based on a single species may not reflect the overall nursery habitat quality.  相似文献   

13.
This study was conducted as an initial investigation of 'differential response' in one of the main sentinel organisms used for monitoring programmes in United Kingdom estuaries, the flounder Platichthys flesus. It has been hypothesised that monitoring using species with a wide geographical spread and limited migration, such as flounder, might result in the comparison of different genetic stocks and certainly of populations with differing early life stage contaminant exposure histories. Furthermore, it is probable that these pre-exposure and genetic differences could manifest themselves in an ability to respond differently to contaminant exposure, so-called 'differential response'. It is important that the extent and nature of this response is understood, if we want to be able to fully interpret the monitoring data from such programmes. During this study, flounder were collected from four separate sources; wild caught fish from the estuaries of the Rivers Alde, Mersey and Tyne, and farmed flounder from Port Erin Farm, Isle of Man. Under controlled laboratory conditions, groups of fish from each source were exposed to water-borne concentrations of the synthetic oestrogen ethynylestradiol (EE2) at a nominal concentration of 50 ng/l. Plasma was taken from each male fish after 6 and 10 days exposure and analysed for the presence of vitellogenin (VTG) using an ELISA technique. Significant levels of VTG induction were evident in fish from all sources after both 6 and 10 days exposure. Flounder from the Mersey were the only fish with significantly elevated initial background levels of VTG (day 0) and this appeared to be reflected in that these specimens showed the highest induction response after day 6. However, after day 10, fish from all other sites had a slightly higher mean VTG than those from the Mersey which showed significantly (p < 0.05) lower mean plasma VTG. It is suggested that other differential responses may have been masked by the use of a high dose of EE2 which produced maximum induction in nearly all fish. The findings of the study are discussed in terms of implications for further research into the differential response issue and how the initial plasma VTG figures contribute to a time-series from the Mersey, Tyne and Alde estuaries.  相似文献   

14.
Multivariate principal components analysis and cluster analysis were performed on data representing presence or absence of 498 species of juvenile and adult fish species in twenty-four coastal marine systems (bays, coastal lagoons, estuaries and coastal zones) distributed from southeast to southern Brazil. Five groups of coastal systems were identified based on fish assemblage similarity: estuaries and bays of the southeast area; an estuary of the southern area; coastal lagoons; rocky coastal zones; and the continental platform. Species assemblages for each zone were identified and used as surrogate habitat indicators to compare and contrast the groups. Stepwise multiple regression of environmental and physical variables as predictors of the number of species indicated that only ‘ area ’ was included in the model as the most important variable explaining the variation of the number of species in these data sets. The total number of fish species increased as surface area increased.  相似文献   

15.
The knowledge of juvenile fish growth in extreme environmental conditions is a key to the understanding of adaptive responses and to the relevant management of natural populations. The juvenile growth of an extreme euryhaline tilapia species, Sarotherodon melanotheron (Cichlidae), was examined across a salinity gradient (20–118) in several West African estuarine ecosystems. Juveniles were collected during the reproduction period of two consecutive years (2003 and 2004) in six locations in the Saloum (Senegal) and Gambia estuaries. Age and growth were estimated using daily otolith microincrements. For each individual, otolith growth rates showed three different stages (slow, fast, decreasing): around 4 ± 0.5 μm d−1 during the first five days, 9 ± 0.5 μm d−1 during the next 15 days and 4 ± 0.50 μm d−1 at 60 days. Growth modelling and model comparisons were objectively made within an information theory framework using the multi-model inference from five growth models (linear, power, Gompertz, von Bertalanffy, and logistic). The combination of both the model adjustment inspection and the information theory model selection procedure allowed identification of the final set of models, including the less parameterised ones. The estimated growth rates were variable across spatial scales but not across temporal scales (except for one location), following exactly the salinity gradient with growth decrease towards the hypersaline conditions. The salinity gradient was closely related to all measured variables (condition factor, mean age, multi-model absolute growth rate) demonstrating the strong effect of hypersaline environmental conditions—induced by climate changes—on fish populations at an early stage.  相似文献   

16.
Estuarine marshes are known as suitable nursery areas for many marine migrant fishes, such as flounder. The potential nursery value of such habitats was investigated in the Venice lagoon, by using growth and production of 0-group flounder as indicators. Size–frequency distribution analysis was performed on fish samples collected fortnightly, from March 2004 to June 2005, in two marsh sites, Dese and Tessera, differing in their origin and environmental conditions. Samples were mostly composed of juvenile individuals, belonging to 0- and 1-group cohorts (the latter being present in Tessera only). A higher total production, either annual or monthly, and faster growth of 0-group flounder was observed in Dese, associated to a higher ecological performance of 0-group individuals in this site, as indicated by the higher P:B ratio values. Dese is a site located in a marsh complex characterized by the relevant influence of a nearby river, and the observed higher potential nursery value of this marsh area with respect to the other is discussed in the light of the higher trophic status and other environmental conditions in this site. The production results were also compared to those from other estuarine environments commonly acknowledged as important nurseries for European flounder.  相似文献   

17.
Temporarily open/closed estuaries typically open to the sea due to freshwater inflow coupled with storm surge events. In September 2008, in the absence of freshwater inflow, the mouth of the East Kleinemonde Estuary breached in response to a storm surge. The mouth of the estuary closed the following day at a high level. Marine overwash events following the breach introduced large volumes of saline water into the estuary and raised the water level by 0.07–0.33 m. Salinity was significantly higher in the 15 month closed phase after the breach (31 ± 0.9) compared to 21.9 ± 0.9 in the closed brackish phase before the breach. The historical average salinity for the estuary during a closed period is 23–25. The increase in salinity has reduced submerged macrophytes Ruppia cirrhosa and Chara vulgaris cover by 38.1%. Macroalgal cover of species such as Dictyota dichotoma, Caulacanthus ustulatus, Codium tenue and Ulva spp. have increased by 7.9%. The saline high water levels have also significantly reduced supratidal salt marsh cover by 15.2%, and reed and sedge cover by 19.7%. Loss of these habitats may result in bank destabilisation and erosion. This is the first record of an extended saline period in the 15 years the estuary has been monitored. Sea level rise in association with climate change, together with localised freshwater inflow reduction is likely to result in an increase in marine overwash events. The frequency and duration of closed saline periods are likely to increase in this type of estuary. A loss of submerged macrophytes may have significant impacts on faunal composition and abundance and on the subsequent functioning of temporarily open/closed estuaries. This has serious ecological implications since these estuaries represent 70% of the different types of estuaries found in South Africa.  相似文献   

18.
The fish assemblage structure was analyzed along an estuarine gradient of a small macrotidal estuary (the Canche, France). Fishes were collected every two months between May 2006 and July 2007 from 12 sampling stations using a 1.5-m beam trawl with a 5 mm mesh size in the cod end. To complement this information, sampling was also performed using 15-m fyke nets (8 mm mesh size in the cod end). For each sample, abiotic (temperature, salinity, pH, oxygen, turbidity, river flow, wind speed and depth) and biotic (macro crustacean species abundances) were recorded. Throughout the study, 28 fish species belonging to 20 families were collected. Fish catches were dominated by juveniles, especially Young-Of-the-Year (YOY) for the majority of the species. According to the Index of Relative Importance (IRI), common goby Pomatoschistus microps, flounder Platichtys flesus, sprat Sprattus sprattus, sea-bass Dicentrarchus labrax and plaice Pleuronectes platessa were the most abundant species, together accounting for 99.2% of the total IRI. Estuarine residents (ER = 66.2%) and marine juvenile migrants species (MJ = 31.4%) were the most important ecological guilds. The structure of the fish assemblage and its relationship to environmental variables was examined using multivariate techniques. Cluster and non-metric multidimensional scaling (nMDS) analysis defined six distinct groups in the Canche estuary, which are discriminated by specific species (SIMPER). Spatio-temporal variations in fish assemblage structure reflect the density peaks of the most abundant species. Spearman rank correlations and canonical correspondence analysis (CCA) showed that among the ten environmental variables examined, temperature, salinity and Crangon crangon (a potential predator for YOY fish or prey for older ones) are the three most important factors influencing fish species richness and abundances. Our observations reinforce the idea that certain fish species may have different life history styles in different geographic areas. The present study highlights the necessity of a better knowledge of the connectivity between estuaries and adjacent marine areas. The Canche constitutes an important ecosystem for fishes and as it is subject to little anthropogenic disturbance; its ichthyofauna can be viewed as a reference or normal assemblage for small temperate macrotidal estuaries.  相似文献   

19.
The characteristics of the fish faunas in nearshore, shallow (<1.2 m) waters of the basins of estuaries along the same coastline, but which were open to the ocean for varying periods, have been determined and compared. The fish faunas of the permanently-open Oyster Harbour, the seasonally-open Broke, Irwin and Wilson inlets and the normally-closed Wellstead Estuary on the south coast of Western Australia were sampled by seine net seasonally for 2 years. Irrespective of the frequency and duration that the estuary mouth was open, the ichthyofauna of each estuary was numerically dominated by three atherinid species and three gobiid species (92.9–99.7%), each of which completes its life cycle within these estuaries. The ichthyofaunal compositions of each estuary differed significantly, however, from that of each other estuary. These differences were largely attributable to the relative abundances of the above six species varying between estuaries, which, in turn, reflected differences in such factors as estuary mouth status, macrophyte cover and salinity. For example, Favonigobius lateralis and Leptatherina presbyteroides, which are also represented by marine populations, were most abundant in the permanently-open estuary (Oyster Harbour), which, in terms of substrate and salinity, most closely resembled the nearshore marine environment. In contrast, Leptatherina wallacei made its greatest contribution in the only estuary to exhibit a protracted period of greatly reduced salinities, which is consistent with its distribution in permanently-open estuaries on the lower west coast of Australia, while Atherinosoma elongata and Pseudogobius olorum were particularly numerous in estuaries containing dense stands of the seagrass Ruppia megacarpa. Marine species made the greatest contribution to species richness in the permanently-open estuary and least in the normally-closed estuary. Species richness was greatest in summer and least in winter in each estuary, but differed markedly between years only in Wilson Inlet. Density of fishes was greatest in the most eutrophic estuary (Wellstead Estuary) and least in the most oligotrophic estuary (Broke Inlet) and only underwent marked seasonal variations in Wilson Inlet and Wellstead Estuary, in which densities fell to their minima in winter. Ichthyofaunal composition varied between years in the Broke and Wilson inlets and Wellstead Estuary, in which there was little or no connection with the ocean in one of those years. Species composition underwent progressive seasonal changes throughout the year in Wellstead Estuary, due to the abundance of certain species peaking at different times of the year.  相似文献   

20.
Analysing the estuarine use patterns of juveniles of marine migrant fish species is vital for identifying important sites for juveniles as well as the basic environmental features that characterize these sites for different species. This is a key aspect towards understanding nursery function. Various estuarine systems along the Portuguese coast (Minho, Douro, Ria de Aveiro, Mondego, Tejo, Sado, Mira, Ria Formosa and Guadiana) were sampled during Spring and Summer 2005 and 2006. Juveniles of commercially important marine fish species Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax, predominantly 0-group individuals, were amongst the most abundant species and had distinct patterns of estuarine use as well as conspicuous associations with several environmental features. Juvenile occurrence and density varied amongst estuaries and sites within them, and differed with species. Sites with consistently high juvenile densities were identified as important juvenile sites (i.e. putative nursery grounds). Through generalized linear models (GLM), intra-estuarine variation in occurrence and density of each of the individual species was largely explained by environmental variables (temperature; salinity; depth; percentage of mud in the sediment; presence of seagrass; importance of intertidal areas; relative distance to estuary mouth; macrozoobenthos densities; and latitude). Decisive environmental factors defining important sites for juveniles varied depending on the system as a result of different environmental gradients, though there were common dominant features for each species regardless of the estuary considered. Analysed environmental variables in the GLM also accounted for inter-estuarine variation in species' occurrence and density. In several estuaries, the identified important juvenile sites were used by many of these species simultaneously and may be of increased value to both management and conservation. Overall, the variability in site features amongst estuaries highlighted the tolerance of these species to different available environmental conditions and provided fundamental information for future spatially explicit modelling of their distribution. This should ultimately enable the prediction of species response to habitat alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号