首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

2.
Gut contents of three small (<6 mm) species of munnopsid asellote isopod crustaceans (Echinozone arctica, Ilyarachna bergendali and I. torleivi) from bathyal depths in the Nordic Seas were examined. The species feed mainly on benthic foraminifers, and their gut contents reflect the functional capability of the mouthparts in partitioning the food. Fragments of small and fragile calcareous foraminifer protozoans and small hard agglutinating foraminifers were most important in the guts of Echinozone arctica, which has rounded mandibular molar process, suited for crunching the foraminifers. Dark- and light-gray stercomata (foraminifer fecal pellets) from soft agglutinating foraminifers were most important in the guts of Ilyarachna bergendali, whose molar process has a wide crunching cusp and a sharp cutting edge. The gut contents of Ilyarachna torleivi were similar to the contents of I. bergendali, but differed somewhat from those of E. arctica. The results indicate that foraminiferivory may be common among small munnopsid asellote isopods and that the isopods may specialize in certain foraminifer species or genera. The strength of the foraminifer test may be an important aid against predation. This study indicates that small, yet poorly known, soft-shelled and agglutinating foraminifers with a low nutritional value may be important as food for deep-water isopods and that foraminifers may be an important link between phytodetritus and the macrofauna.  相似文献   

3.
Habitat variability is one of the factors influencing species richness within estuarine systems, and a loss of habitat can result in a restructuring of the estuarine ichthyofaunal assemblage, particularly if these conditions persist over long time periods. The potential effects of the loss of extensive submerged macrophyte beds (Ruppia cirrhosa and Potamogeton pectinatus) on an estuarine fish assemblage were investigated through an analysis of a long-term seine net catch dataset from the temporarily open/closed East Kleinemonde Estuary, South Africa. Catch data for a 12-year period, encompassing six years of macrophyte presence and six years of macrophyte senescence, indicated that the loss of this habitat did not influence species richness but changes in the relative abundance of certain species were evident. A shift in dominance from vegetation-associated species to those associated with sandy environments (e.g. members of the family Mugilidae) was observed. However, species wholly dependent on macrophytes such as the critically endangered estuarine pipefish Syngnathus watermeyeri were only recorded during years when macrophyte beds were present, while vegetation-associated species such as the sparid Rhabdosargus holubi persisted at lower levels of relative abundance. The reduced abundance of all vegetation-associated fish species during years of macrophyte senescence was probably reflective of declining food resources resulting from the loss of macrophyte beds and/or increased vulnerability to predation. Submerged beds of aquatic plants are therefore important habitats within temporarily open/closed estuaries, South Africa’s dominant estuary type.  相似文献   

4.
The fitness of parasitic organisms is strongly driven by their ability to infect potential hosts. Although transmission to a host organism is a key component to the parasitic lifestyle, surviving and reproducing within a host poses additional challenges. Cymothoa excisa is a parasitic isopod that infects Atlantic croaker, Micropogonias undulatus, along the Texas coast and has evolved mechanisms to successfully survive and reproduce within its host. Cymothoa excisa is known to exhibit sex‐change strategies but limited information exists on morphological changes, reproductive output and the timing at which sex change becomes optimal. This study collected Atlantic croaker during a 22‐month survey period and identified parasite prevalence and intensity in the host fish population. Infection rates were constant throughout the year at 19.88% and intensity increased through the season up to a maximum of four parasites. Following collection, isopod morphological parameters were quantified for each life stage (including female, transitional, male and juvenile), identifying shape and size transitions through ontogeny and sex change. Transitional C. excisa isopods only occurred when only one isopod was present in a fish, suggesting that isopods change sex from male to female if they are the first to recruit to an uninfected host. As isopods transition to females they have a large increase in size, legs, and pleotelson (which influence fecundity and anchoring ability), whereas the gonopod, eyes and uropod show a reduction (which are no longer needed for swimming and finding hosts). Data suggest that C. excisa sex change is related to the timing of infection and brood size increases with female size and host size. Therefore, it would be advantageous to be the first isopod to infect a host, as it could change into a female and increase reproductive potential. We discuss hypotheses that could explain the mating behavior of parasitic isopods.  相似文献   

5.
The littoral zone of Swartvlei, an estuarine lake on the southern Cape coast, was characterized by extensive beds of submerged aquatic macrophytes. May 1979 marked the beginning of a regression phase which lasted more than three years. The senescence of the Potamogeton pectinatus and charophyte beds resulted in a 60% decline in primary production, a 74% slump in littoral invertebrate biomass and a 54% decline in the abundance of the fishes Monodactylus falciformis (Lacepede) and Rhabdosargus holubi (Steindachner) associated with the macrophytes. Gravimetric and calorific analyses of their food revealed that invertebrates and filamentous algae from the littoral zone were of major importance. The two fish species consumed approximately 2% of the primary production during the Potamogeton canopy phase and 3% during the Potamogeton senescent phase. Invertebrate consumption declined from 33 mg m?2 day?1 during the canopy phase to 8 mg m?2 day?1 during the senescent phase. The disappearance of the Potamogeton and charophyte beds also resulted in a decrease in the condition of both species but the effect was indirect and related mainly to the collapse of invertebrate stocks associated with the plants.  相似文献   

6.
The importance of macrophytes as food sources for estuarine nekton is unclear. Previous carbon isotope investigations in the macrophyte-dominated, freshwater-deprived Kariega Estuary showed that the bivalveSolen cylindraceusdid not utilize the dominant estuarine macrophytes found within the estuary as a primary food source. This finding prompted questions as to what the nekton of this estuary utilize as primary energy sources. δ13C analyses of the principal autochthonous and allochthonous primary carbon sources, as well as the dominant invertebrate and fish species, indicate that there are two main carbon pathways within the Kariega Estuary. The littoral community, which incorporates the majority of crustaceans, gobies, mullet and a sparid, utilizes δ13C enriched primary food sources namelySpartina maritima,Zosteracapensis and epiphytes. The channel fauna, which includes the zooplankton, zooplanktivorous and piscivorous fish, utilizes a primary food source depleted in δ13C, which is most likely a mixture of phytoplankton, terrestrial plant debris and C4macrophyte detritus. The C3saltmarsh macrophytesSarcocornia perennisandChenolea diffusa, as well as benthic microalgae, appear to be less important as primary food sources to the nekton of the Kariega Estuary.  相似文献   

7.
Fisheries managers are increasingly promoting catch-and-release (C&R) to manage recreationally angled fish stocks. Despite this, there is a scarcity of information on the effects of C&R on estuarine-dependent species. Cape stumpnose Rhabdosargus holubi dominates the recreational fisheries catch and provides an important source of food for subsistence fishers in some temperate South African estuaries. The health and survival of R. holubi exposed to a C&R event was investigated by examining their physiological stress response (blood glucose and lactate), reflex impairment (reflex action mortality predictors [RAMP]) and short-term (12-hour) survival. Fish were captured and exposed to one of three air-exposure treatments: 0 s, 30 s or 90 s. Stress and health were measured either immediately (immediate) or one hour after (delayed) the C&R event. There was no significant difference in blood glucose between air-exposure treatments, but there was a significant difference between the mean immediate and delayed glucose levels within each treatment (F(2,143) = 81.8, p < 0.01). In contrast, blood lactate level was significantly higher in the 90-s treatment (p < 0.05). Immediate blood lactate levels were significantly lower than the delayed samples for each treatment (F = 4.29, p = 0.02; n = 169). Although all fish exhibited at least one reflex impairment, the RAMP score was significantly higher in the 90-s air-exposure treatment (H(2,86) = 9.73, p = 0.007). Also, RAMP scores were significantly lower in the delayed samples (p < 0.01). Although short-term mortality was relatively low (2.3%) for this species, it was highest in the 90-s treatment (7%). These results suggest that physiological stress is higher when R. holubi are exposed to longer periods of air exposure and that the physiological stress of fish subject to a C&R event is best measured after a delay.  相似文献   

8.
Twenty-one juvenile Cape stumpnose Rhabdosargus holubi (140–190 mm fork length) were tagged with internal acoustic transmitters in the lower, middle and upper reaches of the Kowie Estuary, South Africa. The movements of each fish were continually monitored from October 2014 to February 2015 using 22 stationary data-logging acoustic receivers situated at approximately equidistant intervals along the length of the estuary (21 km). Juvenile R. holubi spent the greatest proportion of time within the estuarine environment (83%), with the sea (16%) and riverine (1%) environments used to a much lesser extent. Within the estuarine environment, tagged individuals showed high levels of residency and fidelity to their capture and release sites; however, the degree of residency was dependent on the position of the release site, with batches in the upper and lower reaches exhibiting different space-use patterns. When larger juvenile R. holubi migrated back to the sea for the next phase of their life cycle, they generally did not return to the estuarine environment, thus indicating a permanent ontogenetic shift in habitat use with the onset of sexual maturity. This contribution to our understanding of the ecology of a ubiquitous estuarine fish further highlights the importance of estuarine habitats as nursery areas that require effective management.  相似文献   

9.
We analyzed recent food web and fish stock changes in the central Chile marine ecosystem, comparing the roles of jumbo squid (Dosidicus gigas) as predator, the environment, and fishing. To accomplish this we used food web modeling and the Ecopath with Ecosim software (EwE). The principal fish stocks have experienced wide decadal fluctuations in the past 30 years, including stock collapses of horse mackerel (Trachurus murphyi) and hake (Merluccius gayi), and there was a large influx of jumbo squid during the mid-2000s. We used two EwE models representing the food web off central Chile to test the hypothesis that predation by jumbo squid has been significant in explaining the dynamics of the main fishing resources and other species in the study area. Results indicate that predation by jumbo squid on fish stocks is lower than that of other predators (e.g. hake) and the fishery. Long-term fluctuations (1978–2004) in the biomass of the main fish stocks (as well as other components of the food web) seem to be related to fishing and to variation in primary production, rather than to predation by jumbo squid alone. Jumbo squid seems to play a role as predator rather than prey in the system, but its impacts are low when compared with the impacts of other predators and fishing. Therefore, we conclude that jumbo squid predation on its prey was not the primary force behind the collapse of important fish stocks off central Chile. Future efforts should be directed to better understanding factors that trigger sudden increases in jumbo squid abundance off central Chile, as well as modeling its trophic impacts.  相似文献   

10.
Recruitment of early life stages into estuaries is an integral part of the life cycle of many marine fish species. Although estuaries are naturally environmentally dynamic, they also are subject to anthropogenic disturbances, including land use and climate change, which may affect recruitment. Rhabdosargus holubi is an endemic marine-spawning species predominantly associated with freshwater-rich estuaries which serve as nursery areas for postflexion larvae and juveniles. This study assessed the effect of environmental variables on the dynamics of recruitment of R. holubi larvae and juveniles into the Swartkops and Sundays estuaries, South Africa. Over a period of two years, fyke nets were set at each estuary mouth to monitor movement into the estuaries at each tidal phase over a 24 h cycle during two sampling sessions per season. Rhabdosargus holubi larvae recruited into estuaries primarily in summer and autumn and during the ebb tide at night, while juvenile movements showed no pattern. Salinity, turbidity and temperature were significantly important factors affecting R. holubi recruitment, with pH having no significant effect. Turbidity and salinity are affected by rainfall and freshwater abstraction which may thus influence recruitment. Rhabdosargus holubi is dependent on estuaries, so a combination of future changes in turbidity, salinity and temperature due to predicted climate change may place populations at risk.  相似文献   

11.
Epibenthic fishes were collected with daytime beam trawl tows (n = 1713) in three shallow (<10 m) habitats of submerged aquatic vegetation (SAV), Zostera marina (eelgrass), Laminaria longicruris (kelp), Phyllophora sp. (algae), and unvegetated sandy/mud areas. We divided the Maine coast into three broad zones based upon geological features and sampled over five consecutive years; during April–November 2000 in the mid coast, in 2001 and 2002 along the south coast and in 2003 and 2004 along the eastern Maine coast. We quantified habitat use by eight economically important fish species (Gadus morhua, Microgadus tomcod, Pollachius virens, Urophycis chuss, Urophycis tenuis, Osmerus mordax, Tautogolabrus adspersus, and Pseudopleuronectes americanus) and 10 other common epibenthic species (n = 18 571). We identified the physical and biological variables most important in discriminating between habitats with and without individual fish species. Logistic regression models based on nearshore habitat characteristics were developed to predict the distribution of these species along the three zones representing broad geological regions of the Maine coast. Logistic regression models correctly classified individual fish species 58.7–97.1% of the time based on the temporal and physical habitat variables (month, temperature, salinity, and depth) and the presence–absence of submerged aquatic vegetation (Zostera, Laminaria, or Phyllophora). Overall fish presence and economically important fish presence were correctly classified 61.1–79.8% and 66.0–73.6% of the time, respectively. The Maine shallow water fish community was composed primarily of young-of-the-year and juvenile fishes with all habitats functioning as facultative nursery areas. Presence of most fish species was positively associated with Zostera, Laminaria, and to a lesser extent, Phyllophora. This study provides direct evidence of shallow waters of the Gulf of Maine as critical facultative nursery habitat for juvenile G. morhua, M. tomcod, P. virens, U. tenuis, U. chuss, T. adspersus, O. mordax and P. americanus, and many ecologically important species.  相似文献   

12.
Spatial patterns and seasonal fluctuations of intertidal peracarids from Tarifa Island, Strait of Gibraltar, were studied over a two-year period (December 2005–December 2007). A total of 25,749 individuals were collected, comprising 46 species. Amphipods were best represented in the total number of species (32) and individuals (89% of numerical abundance) followed by isopods (12 species and 11% abundance) and tanaids (2 species and 1%). The highest number of species was registered in intermediate levels (1–1.5 m) dominated by Corallina elongata, although the highest abundances of peracarids were associated to seaweeds of lower levels (0–1 m) such as Gelidium corneum, Osmundea pinnatifida, Valonia utricularis and a turf of Caulacanthus ustulatus. The most abundant peracarids, Hyale stebbingi, H. schmidti, H. perieri, Stenothoe monoculoides, Caprella penantis, C. grandimana, Dynamene edwardsii and Ischyromene lacazei, were present throughout the whole year during 2006 and 2007. The highest peracarid densities were measured in April–August coinciding with the highest development of seaweeds, just before the maximum values of water temperature measured at the end of summer. Multivariate analyses confirmed a clear zonation of algae and associated peracarids in a vertical gradient, which was maintained stable during the two-year study. Several physical and biological factors may regulate such patterns of peracarid abundance and future experimental studies are necessary to explore the importance of factors such as competition, predation or weather conditions.  相似文献   

13.
Abstract

Stomach contents of Gobiomorphus cotidianus,Retropinna retropinna, Gambusia affinis, and Anguilla australis were compared between two shallow lakes in the lower Waikato River basin, to examine the relationship between turbidity and diet. Lake Waahi and the south arm of Lake Whangape had been turbid (20–40 g suspended solids (SS) m?3) and devoid of submerged macrophytes since the late 1970s and early 1980s, respectively. The main basin of Lake Whangape had been generally clearer (5 g SS m?3) with dense beds of submerged macrophytes, but at the time of sampling (1987) water clarity had deteriorated (> c. 10 g SS m3) and submerged macrophytes had declined. The mysid Tenagomysis chiltoni was an important prey for all species of fish from turbid water bodies but was less important in stomachs of fish in the main basin of Lake Whangape. Apparently, mysids were not an important prey in Lake Waahi before it became turbid. Chironomid larvae and pupae dominated the diets of small fish in the main basin of Lake Whangape. Fish and mysids were the most important prey of shortfinned eels in both lakes, with mysids most important in Lake Waahi. High mysid densities in the turbid water bodies provide an alternative food resource apparently compensating for those lost by fish when water clarity declined and submerged macrophytes collapsed.  相似文献   

14.
Rhabdosargus holubi is a small (maximum weight=2.4?kg) yet important fishery species in the estuaries of the south-east coast of South Africa. Little is known of its biology and specifically its growth rate, which is essential for sustainable management of the fishery. We examined and counted the opaque zones in the sectioned otoliths of 134 R. holubi to determine its age and growth parameters. The otoliths from two recaptured fish marked with oxytetracycline confirmed that one opaque zone was deposited annually. The species reached a maximum age of 18 years and growth was adequately described by a von Bertalanffy growth function of the form: Lt = 358.1 (1 – e?0.24(t+0.77)) mm fork length. There were no significant differences between any of the male and female growth parameters (likelihood ratio test: p = 0.3). The growth was slow (omega index: ω = 86.56); however, despite this, the unique life history of R. holubi may provide a degree of resilience to heavy fishing pressure in estuaries.  相似文献   

15.
The feasibility of mangrove leaves as a full diet for sesarmid crabs has been questioned for decades. Since these leaves are nitrogen-poor, sesarmids probably obtain nitrogen from other sources to sustain growth. The aim of this study was to assess the food partitioning of the sesarmid species Neoepisesarma versicolor with emphasis on nitrogen allocation. The preference for animal tissue when crabs were pre-fed diets of different nitrogen content was determined in the laboratory. Furthermore, the possible in situ diet composition of N. versicolor was established from carbon and nitrogen stable isotope signature (δ13C and δ15N) of freshly caught individuals and their potential food sources, using a concentration-dependent mixing model. N. versicolor showed significantly higher feeding preferences for fish meat when pre-fed leaf material without than with access to meat, indicating that this crab species can meet its nitrogen demand by ingesting animal tissue. The stable isotope mixing model based on in situ materials suggests that the diet of N. versicolor consists of ∼60% leaves in terms of biomass, leaving ∼40% for other sources such as animal tissue and benthic microorganisms. The biomass contribution from animal tissues, in form of e.g. other crustaceans and fish carcasses, was found to account for ∼15%. Despite the relative low biomass fraction, animal food sources may contribute with up to half of the nitrogen in the diet of N. versicolor. The quantity of ingested sediment most likely exceeds that of animal tissues. However, due to the low concentration of assimilable microalgae and other microorganism, we propose that sediment associated sources are less important as a nitrogen source for N. versicolor than hitherto presumed.  相似文献   

16.
The trophic role of the hyperiid amphipod Themisto gaudichaudii in the southern Patagonian shelf food web was assessed from the analysis of stomach contents of the local fish assemblage. A total of 461 trawl samples were collected during seven seasonal cruises. A total of 17 out of 38 fish species were found to ingest T. gaudichaudii. This amphipod was a main prey item in five of these species, showing high values of alimentary index: Seriolella porosa (99.9%), Macruronus magellanicus (68.8%), Micromesistius australis (59.1%), Patagonotothen ramsayi (48.6%), and Merluccius hubbsi (10.9%). The contribution of T. gaudichaudii, in weight, to their summer diet was 60%, on average. This contribution was minimal in winter and maximal in summer. Fisheries studies have indicated that these five species, mainly M. magellanicus, account for almost 85% of the fish biomass in the area. Although the remaining 15% did not feed heavily on T. gaudichaudii, they are known to prey on the main hyperiid predators. Our study shows that T. gaudichaudii contributes greatly, both directly and indirectly, to supporting the fish community. We thus proposed that T. gaudichaudii plays a key role as a “wasp-waist” species in the sub-Antarctic region, similar to that of krill in Antarctic waters, channeling the energy flow and enabling a short and efficient food chain.  相似文献   

17.
The invasion of Mont-Saint-Michel Bay salt marshes (France) by a grass species (Elymus athericus) has led to important changes in vegetation cover, which is likely to modify the habitat for many invertebrates. Some of them constitute the main food items for several fish species, such as young sea bass (Dicentrarchus labrax) and sand goby (Pomatoschistus minutus), that feed in salt marsh creeks during high tides. As a result, fish nursery functions of salt marshes could be modified by the E. athericus invasion. In order to test this hypothesis, gut contents of the two most abundant fish species (sea bass and sand goby) were compared before and after E. athericus invasion in the same salt marsh creek and using the same methodology. The accessibility and availability of the main food item, the semi-terrestrial amphipod Orchestia gammarella, were estimated and compared between invaded (dominated by E. athericus) and original areas (dominated by Atriplex portulacoides). Gut content analysis showed a significantly greater percentage of fish leaving with empty guts from E. athericus areas than from A. portulacoides areas. The sea bass diet composition study showed a major shift in the relative importance of the main food items: before E. athericus invasion, diets were dominated by the semi-terrestrial species O. gammarella, whereas after the E. athericus invasion they were dominated by a marine mysid Neomysis integer. The same trend was found for sand gobies, with a shift of the main food item from O. gammarella before invasion to the polychaete Hediste diversicolor after invasion. These trophic changes may be explained by the lower accessibility and availability of O. gammarella in invaded communities than in natural ones. The E. athericus invasion, observed throughout northern Europe, is thus likely to disturb trophic function of natural salt marshes for fish. This preliminary study of the E. athericus invasion is also an illustration that invasive species are an urgent problem in conservation biology.  相似文献   

18.
The trophic relationships of decapod crustaceans on Le Danois bank (NE of Iberian Peninsula, NE Atlantic Ocean) were studied within the framework of the multidisciplinary project ECOMARG during two surveys, one in October 2003 and the other in April 2004. The diets of eleven species of decapods were analyzed and, within a rather continuous gradient of food source exploitation, 3 trophic groups were identified: (1) plankton feeders, comprising the shrimps Acanthephyra pelagica, Sergia robusta, and Pasiphaea tarda, which preyed on meso-bathypelagic taxa such as euphausiids and calanoids; (2) benthos feeders, comprising the crangonids Pontophilus norvegicus and Pontophilus spinosus, the crab Geryon trispinosus and the shrimp Aristeus antennatus; and (3) an intermediate group, including the rest of species, with mixed diets that included detritus. Among the third group, anomurans (Munida tenuimana, Pagurus alatus, and Parapagurus pilosimanus) consumed phytoplanktonic detritus in April, suggesting a link with peaks of surface Chl a occurring between March and April in the study area. Gut pigment and isotopic (δ13C/δ15N correlations) analyses revealed that assemblages inhabiting the top of the bank (455–612 m) and the inner basin (642–1048 m, close to the Lastres canyon head) had different food sources, with species inhabiting the deepest region exhibiting a stronger dependence on marine snow derivatives. These results are consistent with the higher proportion of mud and sediment organic matter (OM) content in the inner basin (82.2% pellites; 6.3% OM at 1028 m) compared to the top of the Le Danois bank (only 13.9% pellites; 2.8% OM at 485 m), which is a hydrodynamically more active zone. Exploitation of different food sources is also consistent with differences in the trophic level of species, inferred from stable δ15N isotope analyses, which yield values ranging from 6.88‰ for the hermit crab P. alatus to 13.52‰ for the crangonid shrimp P. norvegicus. Stomach fullness was higher in April 2004 than in October 2003, both between and within species of the dominant decapods, including detritus feeders (M. tenuimana) and benthos feeders (e.g. G. trispinosus, P. norvegicus). Most species exhibited a parallel increase in their density in April 2004, with a significant positive correlation between density and stomach fullness. This increase coincides with a peak of surface Chl a concentration occurring in March–April.  相似文献   

19.
Stable carbon and nitrogen isotopes were used to assess site fidelity of Solea solea and Solea senegalensis juveniles, to investigate food web interactions and to determine the dominant nutrient pathways in two nursery areas in the Tagus estuary, Portugal. Samples of water from the main sources and from the nursery areas and respective saltmarsh creeks were collected for isotope analysis, as well as sediment, benthic microalgae, saltmarsh halophytes, S. solea, S. senegalensis and its main prey, Nereis diversicolor, Scrobicularia plana and Corophium spp. While site fidelity was high in 0-group juveniles, it was lower for 1-group juveniles, possibly due to an increase in mobility and energy demands with increasing size. Analysis of the food web revealed a complex net of relations. Particulate organic matter from the freshwater sources, from each nursery's waters and saltmarsh creeks presented similar isotopic composition. Sediment isotopic composition and saltmarsh halophytes also did not differentiate the two areas. All components of the food web from the benthic microalgae upwards were isotopically different between the nursery areas. These components were always more enriched in δ13C and δ15N at the lower nursery area than at the nursery located upstream, appearing as if there were two parallel trophic chains with little trophic interaction between each other. A mixture of carbon and nitrogen sources is probably being incorporated into the food web. The lower nursery area is more dependent upon an isotopically enriched energy pathway, composed of marine particulate organic matter, marine benthic microalgae and detritus of the C4 saltmarsh halophyte Spartina maritima. The two nursery areas present a different level of dependence upon the freshwater and marine energy pathways, due to hydrological features, which should be taken into account for S. solea and S. senegalensis fisheries and habitat management.  相似文献   

20.
The response of benthic organisms to organic carbon fluxes in a continental margin region was studied by investigating the diet of the suprabenthic isopod Munnopsurus atlanticus, which is well represented on the southern margin of the Cap-Ferret Canyon (Bay of Biscay). The grain-size distribution, foraminiferal assemblages, particulate organic carbon and pigments found in the sediment and in the gut of the isopods were analyzed. These results suggest that M. atlanticus feeds on benthic agglutinated foraminifers which are in a high “nourishment state” and represent a link between primary and secondary producers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号