首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
Extracellular enzyme activities were compared among surface water, bottom water, and sediments of the Delaware Estuary using six fluorescently labeled, structurally distinct polysaccharides to determine the effects of suspended sediment transport on water column hydrolytic activities. Potential hydrolysis rates in surface waters were also measured for the nearby shelf. Samples were taken in December 2006, 6 months after a major flood event in the Delaware Basin that was followed by high freshwater run-off throughout the fall of 2006. All substrates were hydrolyzed in sediments and in the water column, including two (pullulan and fucoidan) that previously were not hydrolyzed in surface waters of the Delaware estuary. At the time of sampling, total particulate matter (TPM) in surface waters at the lower bay, bay mouth, and shelf ranged between 31 mg l−1 and 48 mg l−1 and were 2 to 20 times higher than previously reported. The presence of easily resuspended sediments at the lower bay and bay mouth indicated enhanced suspended sediment transport in the estuary prior to our sampling. Bottom water hydrolysis rates at the two sites affected by sediment resuspension were generally higher than those in surface waters from the same site. Most notably, fucoidan and pullulan hydrolysis rates in bay mouth bottom waters were 22.6 and 6.2 nM monomer h−1, respectively, and thus three and five times higher than surface water rates. Our data suggest that enhanced mixing processes between the sediment and the overlying water broadened the spectrum of water column hydrolases activity, improving the efficiency of enzymatic degradation of high molecular weight organic matter in the water with consequences for organic matter cycling in the Delaware estuary.  相似文献   

2.
Gas hydrates are common within near-seafloor sediments immediately surrounding fluid and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas hydrates within sediments away from the vents is poorly documented, yet critical for gas hydrate assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits.  相似文献   

3.
The activities and substrate specificities of extracellular enzymes in natural systems are not well understood, despite their critical role in microbial remineralization of organic carbon. These enzymes initiate organic carbon degradation by selectively hydrolyzing high molecular weight substrates to lower molecular weight products which can be transported into cells. A set of single- and dual-labeled fluorescent polysaccharides was synthesized and characterized to explore a variety of approaches for measuring enzymatic hydrolysis of biopolymers via photophysical techniques, focusing particularly on rapid and robust optical techniques which are amenable to field measurements in remote locales. A shotgun-labeling approach yielded dual-labeled probes that exhibited substantial donor fluorophore quenching. The photophysical response of these probes to hydrolysis via purified enzymes was investigated in the lab, and fluorescence polarization proved to be a rapid and reliable technique for monitoring probe hydrolysis. Initial field results were also obtained from hydrolysis experiments in sediment porewaters. Because polarization measurements are rapid and simple, this approach could be used to follow the extracellular enzymatic hydrolysis of a wide range of biopolymers which fuel microbial metabolism.  相似文献   

4.
Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa may influence the macrofaunal community structure beyond the edges of the reef. This study represents the first assessment of L. pertusa-associated sediment communities in the GOM and provides baseline data that can help define the role of transition zones, from deep reefs to soft sediments, in shaping macrofaunal community structure and maintaining biodiversity; this information can help guide future conservation and management activities.  相似文献   

5.
Near-surface sediment geoacoustic and physical properties were measured in gas-rich, muddy sediments of Eckernförde Bay, Baltic Sea, and in hard-packed, sandy sediments of the northeastern Gulf of Mexico. Values of compressional and shear wave velocity are much lower in muddy compared to sandy sediments. The spatial and temporal variability of sediment physical and geoacoustic properties and, as a consequence, the scattering and propagation of high-frequency acoustic waves are primarily related to the presence and absence of free methane gas bubbles at the muddy site and to the abundance and distribution of shell material on sandy sediments.  相似文献   

6.
Active petroleum vents and slicks have been identified in the deep water of the northern Gulf of Mexico using numerous techniques. The occurrence and distribution of these petroleum vents are strongly influenced by the local geological framework—especially the presence of vertical migration pathways into shallow sediments. Oil and gas vents may be more useful for establishing the existence of petroleum generation on a regional scale and for evaluating the gross properties of oil migrating in the subsurface than for appraising the exploration value of individual prospects. Knowledge about petroleum venting in the deepwater Gulf of Mexico has proven to be an important element of the successful exploration activities there.  相似文献   

7.
C. Arnosti   《Marine Chemistry》2004,92(1-4):263
The observation that a fraction of organic matter produced in marine systems evades the concerted efforts of microbial communities and is buried in sediments suggests that there are ‘speed bumps’ in carbon degradation pathways that impede microbially driven remineralization processes. The initial step in degradation of macromolecules, extracellular enzymatic hydrolysis, is often stated to be ‘the’ rate-limiting step in carbon remineralization. Experimental investigations described here, however, demonstrate that at least in certain cases, microbes produce extracellular enzymes on time scales of hours to tens of hours in response to substrate addition, and hydrolysis is extremely rapid. If enzymatic hydrolysis can be rapid, what factors slow or stop organic matter degradation? A lack of the correct inducer to initiate enzyme production, and/or a lack of the correct organism to produce the required enzyme, may result in a complete lack of hydrolysis in certain environments—a barricade, rather than a speed bump. Preliminary evidence supporting this hypothesis includes a comparison of polysaccharide hydrolysis in seawater and sediments, which demonstrates that the spectrum of enzymes active in seawater and sediments are fundamentally different. Furthermore, a survey of enzyme activities in surface waters from a range of locations suggests that pelagic microbial communities also differ widely in their abilities to express specific extracellular enzymes. Trans-membrane transport through porins is yet another potential location of structure-related selectivity.Our efforts to identify speed bumps and barricades are hampered by our inability to structurally characterize in sufficient detail the macromolecular structures present in marine systems. Furthermore, assessments of organic matter ‘quality’ from a chemical perspective do not necessarily accurately reflect the availability of organic carbon to microbial communities. For these communities, in fact, ‘quality’ may be a variable, which depends on the enzymatic and uptake capabilities of community members. To begin to assess substrate structure and quality from a microbial perspective, we will have to combine specific knowledge of macromolecular structures with detailed investigations of the enzymatic and transport capabilities of heterotrophic marine microbes.  相似文献   

8.
Sediment samples were selected from 28 sites across the deep (212–3527 m) northern Gulf of Mexico (GOM) as part of the Deep Gulf of Mexico Benthos (DGoMB) program, and analyzed for geochemical parameters related to organic carbon (OC) distribution and characteristics. The results of this study indicate that the OC content of sediments in the deep northern GOM is controlled by several factors; including water depth, overlying water productivity, sediment carbonate content, sediment oxygen exposure time, OC sources, and regional influences. The best correlation between sediment OC content, on a CaCO3-free basis, and other parameters examined was an inverse correlation of OC with water depth. The OC/SA ratio had a wide range of values and, along with variable sources of sedimentary OC, indicated that the organism-available concentration of metabolizable organic matter may not be simply related to sedimentary OC content. This was perhaps reflected in the observation that benthic macrofaunal and meiofaunal biomass abundances were well correlated with sedimentary OC, but the abundance of bacteria in sediments was not.  相似文献   

9.
The concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace elements were determined for surface (top 2 cm) sediment samples collected during the deep Gulf of Mexico benthos (DGoMB) study .These elements and compounds are known to be toxic to organisms at high concentrations and may affect biological communities. There is no indication of major anthropogenic input of the elements Be, Co, Cr, Fe, Si, Tl, V, K, Mg, Ca, Sr and Zn, based on normalization to Al. The concentrations of these metals in the sediment are a function of the relative amounts of trace-metal-rich Mississippi River-derived silicate material and trace-metal-poor plankton-derived carbonate. This is not true for the elements Ba, Ni, Pb, Cd, As, Cu and Mn, whose concentrations show considerable scatter when normalized to Al and a general enrichment. On a normalized basis, Mn is enriched 5–10 fold, Cu and Ni 2–3 fold and Pb 2 fold over Mississippi River-derived material. These enrichments are likely the result of remobilization of metals from depths in the sediment column where reducing conditions exist. The Ba concentrations at selected sites are higher than those of average clay-rich sediments, but are typical of sediments from near oil well platforms in the northern Gulf of Mexico. In the case of Ba, it seems likely that the enrichments, as high as a factor of 10, are due to disposal of oil well drilling mud. The Ba-enriched samples are from the three shallowest water sites in the Mississippi Trough (sites MT1, 2 and 3) and from site C1 and WC5. All are in an area of intense petroleum exploration and development. PAH concentrations are also elevated at MT1, MT3 and C1. The total PAH concentration ranged from not detected (ND) to 1033 ng/g with a mean of 140 ng/g. Even at the sites most enriched in PAHs and trace elements, the concentrations are not at the levels expected to adversely affect the biota. However, these predicted non-effects are based on research using mostly near-shore estuarine species, not on the indigenous species at the sampling sites.  相似文献   

10.
Sedimentation rates were determined for the northern Gulf of Mexico margin sediments at water depths ranging from 770 to 3560 m, using radiocarbon determinations of organic matter. Resulting sedimentation rates ranged from 3 to 15 cm/kyr, decreasing with increasing water depth. These rates agree with long-term sedimentation rates estimated previously using stratigraphic methods, and with estimates of sediment delivery rates by the Mississippi River to the northern Gulf of Mexico, but are generally higher by 1–2 orders of magnitude than those estimated by 210Pbxs methods. Near-surface slope sediments from 2737 m water depth in the Mississippi River fan were much older than the rest. They had minimum 14C ages of 16–27 kyr and δ13C values ranging from −24‰ to −26.5‰, indicating a terrestrial origin of organic matter. The sediments from this site were thus likely deposited by episodic mass wasting of slope sediment through the canyon, delineating the previously suggested main pathway of sediment and clay movement to abyssal Gulf sediments.  相似文献   

11.
The extent to which marine organic matter is associated with surfaces and the consequences of such associations for organic matter remineralization are the focus of considerable attention. Since extracellular enzymes operating outside microbial cells are required to hydrolyze organic macromolecules to sizes sufficiently small for substrate uptake, the effects of surface interactions–on enzymes as well as on substrates–for hydrolytic activity also require investigation. We used a simplified laboratory system consisting of a free (dissolved) polysaccharide (pullulan) and the same polysaccharide tethered to agarose beads to restrict mobility, plus the corresponding free enzyme (pullulanase) and the same enzyme sorbed to montmorillonite (Mte), to investigate systematically the consequences of surface associations of enzymes and of substrates on hydrolytic activity. Changes in substrate molecular weight were monitored with time to measure the course of enzymatic hydrolysis. Although hydrolysis of free substrate was nearly complete after 2 min incubation with the free enzymes, the sorbed enzymes also effectively hydrolyzed free substrate, and the data suggest that they retained activity longer in solution compared to the free enzymes. Sorbed enzymes progressively hydrolyzed the free substrate from > 50 kD to lower molecular weights during a 24 h incubation, with a final product distribution on average showing only 1.4% and 10.3% of substrate still in the > 50 kD and 10 kD size classes, while 46.6%, 29.3%, and 12.5% of substrate was in the 4 kD, monomer, and free tag size classes, respectively. This product distribution was very similar to that of the free substrate/free enzyme experiment. Tethering the substrate to agarose beads led to lower substrate release (2–3% of total substrate after 98 h incubation) into solution compared to the free substrate case. For tethered substrates, the state of the enzyme (free or sorbed) measurably affected the molecular weight distribution of the hydrolysis products, with free enzymes producing a higher fraction of high molecular weight hydrolysis products (28.7 ± 5.4% of substrate > 50 kD at the end of the incubation) compared to sorbed enzymes (11.6 ± 2.8% of substrate > 50 kD at the end of the incubation.) Tethered substrates were also hydrolyzed in a sediment slurry from surface sediments from Cape Lookout Bight, North Carolina; 0.1% of total substrate was released by enzymes naturally present in 1 cm3 of sediment after 144 h incubation, demonstrating that the enzymes naturally present in marine sediments are also capable of accessing tethered substrates. These investigations suggest that surface associations of enzymes in marine systems may extend the active lifetime of such enzymes, providing an opportunity for hydrolysis over longer periods of time and producing a different size spectrum of hydrolysis products relative to free enzymes. Furthermore, in well-mixed systems, surface-associated enzymes can hydrolyze substrates whose mobility is restricted, highlighting the importance of processes such as resuspension and bioturbation on organic matter remineralization.  相似文献   

12.
Stable isotope ratios (δ13C) of total organic carbon were measured in surface sediments from the continental margins of the northern and western Gulf of Mexico, the north coast of Alaska and the Niger Delta. Gulf of Mexico outer-shelf isotope ratios were in the same range as has been reported for Atlantic coastal shelf sediments, ?21.5 to ?20‰. Off large rivers including the Mississippi, Niger and Atchafalaya (Louisiana), δ13C values increased from terrigenous-influenced (around ?24‰) to typically marine (~?20‰) within a few tens of kilometers from shore. This change was accompanied by a decrease in the amount of woody terrigenous plant remains in the sediment. Alaskan continental margin samples from the cold Beaufort Sea had isotopically more negative carbon (?25.5 to ?22.6‰) than did warmer-water sediments. The data indicate that the bulk of organic carbon in Recent sediments from nearshore to outer continental shelves is marine derived.  相似文献   

13.
Northern Gulf of Mexico continental slope   总被引:1,自引:0,他引:1  
The hummocky continental slope in the northwestern Gulf of Mexico is the result of active salt tectonism and accompanying faulting. Fluid and gassy hydrocarbons rise through the sediment column and along faults causing the formation of gas hydrates, gassy sediments, mud volcanoes and mounds, chemosynthetic communities and authigenic carbonates, reefs, and hardgrounds. Salt activity coupled with processes associated with relative sea level fluctuations create a feedback relationship resulting in the above-mentioned phenomena as well as others such as seafloor erosion at great water depths.  相似文献   

14.
Quantitative collections of tubeworm- and mussel-associated communities were obtained from 3 cold seep sites in the deep Gulf of Mexico: in Atwater Valley at 1890 m depth, in Alaminos Canyon at 2200 m depth, and from the Florida Escarpment at 3300 m depth. A total of 50 taxa of macro- and megafauna were collected including 2 species of siboglinid tubeworms and 3 species of bathymodiolin mussels. In general, the highest degree of similarity was between communities collected from the same site. Most of the dominant families at the well-characterized upper Louisiana slope seep sites of the Gulf of Mexico were present at the deep sites as well; however, there was little overlap at the species level between the upper and lower slope communities. One major difference in community structure between the upper and lower slope seeps was the dominance of the ophiuroid Ophioctenella acies in the deeper communities. The transition between upper and lower slope communities appears to occur between 1300 and 1700 m based on the number of shared species with the Barbados seeps at either end of this depth range. Seep communities of the deep Gulf of Mexico were more similar to the Barbados Accretionary Prism seep communities than they were to either the upper slope Gulf of Mexico or Blake Ridge communities based on numbers of shared species and Bray–Curtis similarity values among sites. The presence of shared species among these sites suggests that there is ongoing or recent exchange among these areas. An analysis of bathymodioline mussel phylogeography that includes new collections from the west coast of Africa is presented. This analysis also suggests recent exchange across the Atlantic equatorial belt from the Gulf of Mexico to the seeps of the West Nigerian margin.  相似文献   

15.
Gas hydrates accumulate on the Gulf of Mexico seafloor around hydrocarbon seeps in waters sufficiently deep to provide adequate pressure/temperature combinations. High microbial activities occur around the hydrate accumulations. To understand apparent catalytic effects of bioproducts on hydrate formation, the mechanism of sII hydrate nucleation in unconsolidated porous media was investigated in our laboratory. Because smectite clays interacting with biopolymers had been shown to promote laboratory hydrates by decreasing induction times, increasing formation rates and altering morphology, these materials commonly found in near-surface sediments were selected for study as possible nucleating agents. Dynamic light scattering (DLS) with a helium–neon laser was used to measure particle diameters down to about 2 nm. Scanning electron microscopy (SEM) was utilized to verify particle sizes and to give additional information on biopolymer–clay associations. This paper presents evidence that nanometer-sized particles of mineral–bioproduct associations of about 80 nm–450 nm diameter may act as nucleation sites for hydrate crystal initiations in sediments and then remain dispersed throughout the accumulated hydrate mass. Emulsan biopolymer was shown by SEM to apparently unfold and associate with the smectite (nontronite) in a backbone arrangement and to give multiple hydrate nucleation sites along a linear network. SEM and DLS measurements were in agreement on particle sizes and shapes. X-ray diffraction suggested that biopolymer intercalates the smectite interlayer, probably driven by clay associations with biopolymer hydrophilic groups. It is hypothesized that hydrocarbon gases attach to biopolymer hydrophobic fatty-acid branches protruding from clay interlayers and subsequently facilitate hydrate structure formation by interacting with nearby water associated with the hydrophilic segments of the biopolymer.  相似文献   

16.
To trace offshore surface low-salinity water (LSW) in the northeastern Gulf of Mexico, a proxy was developed using the surface water beam attenuation coefficient (c p), and salinity matched with synchronous Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data from three annual summer cruises (July 1998–August 2000) using a two-step empirical approach. First, a relationship between in-situ salinity and c p was obtained. Second, in-situ c p was matched with SeaWiFS radiance ratios of all available blue-to-green wavelengths. Finally, satellite-derived surface salinity was determined directly by combining the two empirical relationships, providing a robust estimate over a range of salinities (26–36). This significantly improves the limited spatial and temporal resolution of surface salinity distribution obtained by shipboard sampling. The resulting correlation is best explained as mixing between low-salinity plume waters and normal salinity Gulf waters. The empirical relationships were used to map satellite-derived salinity using the average of SeaWiFS images during each summer cruise. As expected for summer, spatial patterns of LSW plumes with high c p, particulate matter (PM), particulate organic carbon (POC), and chlorophyll-a (Chl-a) were connected to the mouth of the Mississippi River Delta and extended to the east-southeast. Normal salinity Gulf water with lower c p, PM, POC, and Chl-a was confined to the shelf and upper slope in the eastern part of the study area, outside the plumes. This proxy approach can be applied throughout the region of shipboard sampling for more detailed coverage and analysis.  相似文献   

17.
Planktic foraminiferal (PF) flux and faunal composition from three sediment trap time series of 2002–2004 in the northeastern Atlantic show pronounced year-to-year variations despite similar sea surface temperature (SST). The averaged fauna of the in 2002/2003 is dominated by the species Globigerinita glutinata, whereas in 2003/2004 the averaged fauna is dominated by Globigerinoides ruber. We show that PF species respond primarily to productivity, triggered by the seasonal dynamics of vertical stratification of the upper water column. Multivariate statistical analysis reveals three distinct species groups, linked to bulk particle flux, to chlorophyll concentrations and to summer/fall oligotrophy with high SST and stratification. We speculate that the distinct nutrition strategies of strictly asymbiontic, facultatively symbiontic, and symbiontic species may play a key role in explaining their abundances and temporal succession. Advection of water masses within the Azores Current and species expatriation result in a highly diverse PF assemblage. The Azores Frontal Zone may have influenced the trap site in 2002, indicated by subsurface water cooling, by highest PF flux and high flux of the deep-dwelling species Globorotalia scitula. Similarity analyses with core top samples from the global ocean including 746 sites from the Atlantic suggest that the trap faunas have only poor analogs in the surface sediments. These differences have to be taken into account when estimating past oceanic properties from sediment PF data in the eastern subtropical North Atlantic.  相似文献   

18.
During cruises 71-A-12 and 73-A-3 of the R/V “Alaminos” eighty-six samples of suspended matter at eleven near-bottom stations in the Gulf of Mexico and northwestern Caribbean Sea were collected, and simultaneously, values for light scattering were measured. Selected samples of the suspended matter were analyzed for particulate aluminum, silicon, iron, calcium, magnesium, organic carbon and inorganic carbon. The results indicate that a permanent but highly variable near-bottom nepheloid layer exists in the Gulf of Mexico but not in the northwestern Caribbean Sea. Average total-suspended loads in the Gulf of Mexico nepheloid layer are two times higher than in the clear water above the nepheloid layer.Since there is a significant increase in the alumino-silicate fraction and a corresponding decrease in the organic fraction of the suspended matter in the nepheloid layer relative to the overlying water, it appears that sediments are the most probable source of the increased concentrations of suspended matter in the nepheloid layer. This hypothesis is supported by X-ray diffraction analyses on the nepheloid material collected at one station which show the same mineral assemblages as the underlying sediments.Time studies over periods of one week and one and one-half years showed large total-suspended-matter variations which indicate that non steady-state processes, primarily vertical eddy diffusion and possibly advection, are controlling the distribution of suspended matter in the nepheloid layer.  相似文献   

19.
This study investigates the benthic microbial responses to organic matter (OM) variations in quantity and sources in two shallow water bays (Fortaleza and Ubatuba Bays) on the SE coast of Brazil on six occasions during the year. The pelagic and benthic compartments of the bays were evaluated by: (i) nutrients and chlorophyll a (Chl a) in the water column; (ii) quantity and sources of OM in the sediment (Chl a, total organic carbon and total nitrogen and lipid biomarker composition); and (iii) microbial biomass in sediments as an indicator of active benthic response. Although there were changes in water‐column nutrients during the year, Chl a was fairly constant, suggesting a regular supply of microalgae‐derived OM to the sea bottom. Based on the composition of lipid biomarkers in sediments, OM sources were classified as mostly marine and with high contributions of labile (microalgae‐derived) OM. Labile OM composition varied from diatoms in the summer to phytoflagellates in the winter and tended to accumulate in areas protected by physical disturbances in one of the bays. Microbial biomass followed this trend and was 160% higher in protected than in exposed areas. This study suggests that the coupling between labile OM and benthic microbial biomass occurs primarily in protected areas, irrespective of the time of the year. Since meio‐ and macrofaunal assemblages depend upon secondary microbial production within the sediments, this coupling may have an important role for the benthic food‐web.  相似文献   

20.
Methane seeps occur at depths extending to over 7000 m along the world's continental margins, but there is little information about the infaunal communities inhabiting sediments of seeps deeper than 3000 m. Biological sampling was carried out off Unimak Island (3200–3300 m) and Kodiak Island (4500 m) on the Aleutian margin, Pacific Ocean and along the Florida Escarpment (3300 m) in the Gulf of Mexico to investigate the community structure and nutrition of macrofauna at these sites. We addressed whether there are characteristic infaunal communities common to the deep‐water seeps or to the specific habitats (clam beds, pogonophoran fields, and microbial mats) studied here, and ask how these differ from background communities or from shallow‐seep settings sampled previously. We also investigated, using stable isotopic signatures, the utilization of chemosynthetically fixed and methane‐derived organic matter by macrofauna from different regions and habitats. Within seep sites, macrofaunal densities were the greatest in the Florida microbial mats (20,961 ± 11,618 ind·m−2), the lowest in the Florida pogonophoran fields (926 ± 132 ind·m−2), and intermediate in the Unimak and Kodiak seep habitats. Seep macrofaunal densities differed from those in nearby non‐seep sediments only in Florida mat habitats, where a single, abundant species of hesionid polychaete comprised 70% of the macrofauna. Annelids were the dominant taxon (>60%) at all sites and habitats except in Florida background sediments (33%) and Unimak pogonophoran fields (27%). Macrofaunal diversity (H′) was lower at the Florida than the Alaska seeps, with a trend toward reduced richness in clam bed relative to pogonophoran field or non‐seep sediments. Community composition differences between seep and non‐seep sediments were evident in each region except for the Unimak margin, but pogonophoran and clam bed macrofaunal communities did not differ from one another in Alaska. Seep δ13C and δ15N signatures were lighter for seep than non‐seep macrofauna in all regions, indicating use of chemosynthetically derived carbon. The lightest δ13C values (average of species’ means) were observed at the Florida escarpment (−42.8‰). We estimated that on average animal tissues had up to 55% methane‐derived carbon in Florida mats, 31–44% in Florida clam beds and Kodiak clam beds and pogonophoran fields, and 9–23% in Unimak seep habitats. However, some taxa such as hesionid and capitellid polychaetes exhibited tremendous intraspecific δ13C variation (>30‰) between patch types. Overall we found few characteristic communities or features common to the three deep‐water seeps (>3000 m), but common properties across habitats (mat, clam bed, pogonophorans), independent of location or water depth. In general, macrofaunal densities were lower (except at Florida microbial mats), community structure was similar, and reliance on chemosynthesis was greater than observed in shallower seeps off California and Oregon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号