首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the horizontal and vertical nocturnal cooling influence of a small park with irrigated lawn and xeric surfaces (??3?ha) within a university campus of a hot arid city. Temperature data from 0.01- to 3-m heights observed during a bicycle traverse of the campus were combined with modeled spatial temperature data simulated from a three-dimensional microclimate model (ENVI-met 3.1). A distinct park cool island, with mean observed magnitudes of 0.7?C3.6°C, was documented for both traverse and model data with larger cooling intensities measured closer to surface level. Modeled results possessed varying but generally reasonable accuracy in simulating both spatial and temporal temperature data, although some systematic errors exist. A combination of several factors, such as variations in surface thermal properties, urban geometry, building orientation, and soil moisture, was likely responsible for influencing differential urban and non-urban near-surface temperatures. A strong inversion layer up to 1?m over non-urban surfaces was detected, contrasting with near-neutral lapse rates over urban surfaces. A key factor in the spatial expansion of the park cool island was the advection of cooler park air to adjacent urban surfaces, although this effect was mostly concentrated from 0- to 1-m heights over urban surfaces that were more exposed to the atmosphere.  相似文献   

2.
Sensible heat flux data obtained from the U.S. Environmental Protection Agency's Regional Air Pollution Study in St. Louis, Missouri are presented and discussed. Large spatial variations exist in heat flux on both a land-use scale and the urban scale. Arguments based upon empirical data and sampling theory show that estimates of heat flux representative of an upwind fetch l x require a minimum observation height proportional to z 3/4. The influence of advection on the magnitude of the heat flux is also explored for both the urban and sub-urban or land-use scales. The data clearly indicate that advection can strongly modulate and even dominate the vertical heat flux above surfaces in areas which maintain large horizontal temperature gradients. The advection contribution is positive for cold air advection and negative for warm air advection, and may result from either the urban heat island or land-use mesoscale features. The depth of advective influence is directly proportional to the horizontal scale of the phenomenon and inversely proportional to horizontal temperature gradient.  相似文献   

3.
The public health implications of a warming urban environment mean that appropriate action by planners, designers and health workers will be necessary to minimise risk under future climate scenarios. Data at an appropriate spatial scale are required by user groups in order to identify key areas of vulnerability. Thermal mapping of a UK urban conurbation was carried out during the summers of 2007 and 2008 with the aim of providing high spatial resolution temperature data. The air temperature results showed an average daytime (night time) urban?Crural thermal contrast of 3°C (5°C) on summer days (nights) with ideal urban heat island (UHI) conditions. The intensity of the daytime surface temperature heat island was found to exceed 10°C. The measured data were used to derive an empirical model of spatial temperature patterns based upon characteristics of land use, distance from urban centre and building geometry. This model can be used to provide sub-kilometre resolution temperature data which are required by decision makers and can provide a mechanism for downscaling climate model output.  相似文献   

4.
The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day at city scale, cumulating more than 38 mil. EUR for the three cases considered.  相似文献   

5.
The summer climate around the Tokyo metropolitan area has been analysed on an urban scale, and the regional characteristics of the thermal energy balance of a bayside business district in the centre of Tokyo (Otemachi) have been compared with an inland residential district (Nerima), using a mesoscale meteorological model incorporating an urban canopy model. From the results of the analysis, the mechanism of diurnal change in air temperature and absolute humidity in these areas is quantitatively demonstrated, with a focus on the thermal energy balance. Moreover, effective countermeasures against urban heat-islands are considered from the viewpoint of each region’s thermal energy balance characteristics. In addition to thermal energy outflux by turbulent diffusion, advection by sea-breezes from Tokyo Bay discharges sensible heat in Otemachi. This mitigates temperature increases during the day. On the other hand, because all sea-breezes must first cross the centre of Tokyo, it has less of a cooling effect in Nerima. As a result, the air temperature during the day in Nerima is higher than that in Otemachi.  相似文献   

6.
Summary This paper deals with variability in the air temperature field of an urban area during thermal advection, associated with frontal zones, and its interaction with an urban heat island (UHI). Thermal changes experienced in Wrocław, Poland form the basis of this case study analysis. The discussion also contributes to questions concerning the definition of the UHI and ways to select UHI episodes from existing data sets. It is shown that changes in temperature generated during periods of advection are of short duration, only a few hours at most, but thermal contrasts between various parts of a city at such times are sometimes large, reaching an intensity of 5–6 K, even as large as 9 K. Thus, their intensity is comparable with that of the UHI occurring on cloudless and windless nights. The thermal influence of advection is often greater than that due to urban factors; it is only on occasions with less dynamic advection, that a concentric temperature field is formed due to the modified physical properties of the city. In the majority of cases, the thermal field is non-concentric and this is linked with the location of a frontal zone at any given time. The thermal effects of advection recorded in a data set might easily be viewed as episodes of UHI existence, especially if analysis is conducted based on the data derived from just two stations – one urban the other rural. On occasions when such ‘quasi-UHI’ occur the role of the location of the rural, reference station is also evaluated. Precise definition of the urban heat island can be of significance when conducting comparative studies of the UHI in cities located in different geographical zones and when making an urban climate synthesis.  相似文献   

7.
A long-term set of deep soil temperature data collected over a 64-year period beginning in 1889 in a rural Illinois area provide a rare opportunity to assess the natural shifts in temperatures in a pristine environment without any urban or instrument bias. Temperatures from 1901 to 1951 increased 0.4 °C, and this was 0.2 °C less than nearby values from two high quality surface temperature data sets that supposedly are without any influence of urban heat islands, shifts in station locations or instrumentation, or other changes with time. Comparison of the soil values with surface air temperatures from a nearby weather station in a growing university community revealed a heat island effect of 0.6 °C. This value is larger than the adjustment based on population that has been recommended to eliminate the urban bias in long-term temperature trends in the U.S. Collectively, the results suggest that additional efforts may be needed to eliminate the urban influence on air temperatures, beyond techniques that simply use population as the basis. Population is only an approximation of urban factors affecting surface temperatures, and the heat island influences inherent in the values from weather stations in smaller communities which have been used as control, or data assumed to be unaffected by their urban environment in the adjustment procedures, have not been adequately accounted for.  相似文献   

8.
利用2000-2010年MODIS地表温度产品影像,结合DMSP/OLS夜间灯光数据,分析了成都地区夏季城市温度场及其城市热岛变化的分布特征及其演变规律。结果表明:随着城市化加快,成都地区夏季热环境发生了较大变化,整个区域以中温区向次高温区转换为主。成都地区热岛效应昼夜变化较大:白天热岛面积不断增大,与周围卫星城热岛连成一体,2000年和2010年城市热岛对区域的增温贡献分别为0.13℃和0.29℃,变化量达0.16℃,夜间并不存在大面积强热岛区。旧城区内城市热岛面积有所增加,但不显著,城市扩展区内热岛的规模显著增大,2010年较2000年新增强热岛区域面积166.43 km2,变化幅度达54%。高城市化水平的成都市地区的日较差相对于周边低城市化水平地区明显减少。同时,城市热岛还与人口的平方根具有很好的正相关关系,成都地区非农业人口规模每增长100万人,热岛效应强度增加0.4℃。  相似文献   

9.
Weather and climate networks traditionally follow rigorous siting guidelines, with individual stations located away from frost hollows, trees or urban areas. However, the diverse nature of the UK landscape suggests that the feasibility of siting stations that are truly representative of regional climate and free from distorting local effects is increasingly difficult. Whilst the urban heat island is a well-studied phenomenon and usually accounted for, the effect of warm urban air advected downwind is rarely considered, particularly at rural stations adjacent to urban areas. Until recently, urban heat advection (UHA) was viewed as an urban boundary-layer process through the formation of an urban plume that rises above the surface as it is advected. However, these dynamic UHA effects are shown to also have an impact on surface observations. Results show a significant difference in temperatures anomalies (\(p\,< \,0.001\)) between observations taken downwind of urban and rural areas. For example, urban heat advection from small urbanized areas (\(\sim \)1\(\,\hbox {km}^{2}\)) under low cloud cover and wind speeds of 2–3\(\,\hbox {m}\,\hbox {s}^{-1}\) is found to increase mean nocturnal air temperatures by 0.6\(\,^{\circ }\hbox {C}\) at a horizontal distance of 0.5 km. Fundamentally, these UHA results highlight the importance of careful interpretation of long-term temperature data taken near small urban areas.  相似文献   

10.
Summary Remote sensing and ground measurements were used to evaluate the homogeneity of the Scots pine plantation of Hartheim and the interactions between the forest and its surroundings during HartX.Remote sensing data contribute to characterization of the Scots pine plantation of Hartheim in terms of surface properties and thermal and biological characteristics of the forest. The surroundings of the main experiment site in the forest has homogenous normalized difference vegetation index, microwave specle and brightness temperatures to all directions for at least 500 m. Local sensible heat flux estimates using satellite measured brightness temperatures andin situ measured wind and air temperatures showed good agreement.On some days during HartX the test area was influenced by advection of dry air from the northern Upper Rhine Valley. Agricultural surroundings close to the forest are influenced by breezes flowing out of the forest during radiative nights with weak large-scale motion.With 7 Figures  相似文献   

11.
在西太平洋副热带高压控制的天气背景下,2016年8月19日下午上海地区发生一次局地短时强降水过程,此次过程历时3 h、水平范围20~40 km,呈现出生命史短、局地性强的特点。基于上海地区地面自动气象站2分钟平均资料,采用仅需一层资料计算的非地转 Q 矢量分析方法,研究分析了此次局地短时强降水发生发展演变成因,结果如下:(1)地面温度场和风场叠加分析表明,上海“城市热岛”特征与长江沿岸及邻近水域的热力不均匀分布引发了江风,江风将江岸邻近水域的湿、冷空气向城市陆地输送,并与陆地上干、热空气交汇,激发产生局地短时强降水,而降水的发生,导致地面温度下降、“城市热岛”特征减弱,从而减小水陆温度差,进而减弱江风,这直接减弱了有助于降水发生发展的动、热力强迫条件,促使降水趋于衰亡结束。(2)地面 Q 矢量散度辐合场和温度露点差叠加分析表明:在降水发生发展阶段, Q 矢量散度辐合强迫产生垂直上升运动较强,而空气湿度条件相对较弱;在降水强盛阶段, Q 矢量散度辐合强度和空气湿度的强度不仅增至最强,且上升运动区与高湿区重合;在降水衰亡阶段,地面空气一直维持高湿条件而 Q 矢量散度辐合强度明显减弱。这从地面大气中垂直上升运动条件和水汽条件揭示出致使降水强度发展演变的内在因素,且二者重叠区对降水落区有较好指示意义。最后,对地面 Q 矢量散度辐合场在局地短时强降水短临预报工作中的潜在应用前景进行了有意义的讨论。   相似文献   

12.
北京地区热岛非均匀分布特征的卫星遥感-地面观测   总被引:1,自引:0,他引:1  
针对北京城市热岛的空间变化特征及其发展趋势,重点探讨了北京城市热岛总体演变趋势及其多尺度非均匀分布特征与城市建筑群面积、中高层建筑群空间布局的相关关系。采用晴空过程北京城郊地面自动气象站AWS(Automatic weather station)气温观测真值对卫星遥感云顶黑体温度TBB(Temperature of black body on the top of cloud)高分辨率场实施变分订正,解决城市热岛研究中高分辨率卫星遥感的客观性订正问题。研究结果揭示了北京城市建筑群面积及中高层建筑群布局对城市热岛群总体演变趋势、多尺度热岛群非均匀分布特征的显著影响效应。结果表明,北京晴空过程城区及近郊区多尺度热岛效应可由强、弱程度不同的热岛群"合成",北京地区热岛分布呈多尺度非均匀特征,即城区东西两侧为强热岛区,城西北园林区与古城中轴线区域为相对弱热岛区;在北京城市高速发展背景下,城郊街区热岛群的非均匀分布特征与城市建筑群布局之间存在着相关关系;城市建筑群面积及中高层建筑密集程度的差异可产生区域性强弱不同的热岛效应,这间接反映出北京城郊中高层建筑群暖气或空调排放热源的局地影响效应。上述研究结果可为城市发展有关建筑群布局与园林绿地规划设计提供科学依据。  相似文献   

13.
近15年北京夏季城市热岛特征及其演变   总被引:5,自引:1,他引:5  
李兴荣  胡非  舒文军 《气象》2006,32(8):42-46
根据北京地区20个地面气象观测台站1990-2004年7月的气温资料,分析了最近15年来北京夏季城市热岛的最新特征和变化趋势,也分析了城市热岛与气温,城郊地表温度差与地表温度,气温和地表温度间的关系。结果表明:北京夏季夜间出现了强热岛,郊区城市也出现了热岛现象,但白天城市热岛相对夜间不明显。夜间城市热岛强度呈逐年增强趋势,但白天这种趋势不明显。夜间城市热岛与气温呈正相关,气温高的年份,城市热岛强度相对也大;夜间城郊地表温差与地表温度呈正相关,地表温度越高,城郊地表温差越大;夜间,气温与地表温度呈正相关,气温越高,地表温度也高。白天,这些相关相对夜间来说不那么明显。研究成果对北京城市发展规划和高温灾害的防治有一定的科学参考价值。  相似文献   

14.
The determination of the anthropogenic impact on the thermal regime of a megalopolis is discussed. The nominal boundaries of the megalopolis thermal effects are determined taking into account orographic and landscape effects and the variability of temperature difference between the center of the city and its suburbs. It is proposed to use the data of stations located within 40-50 km from the urban agglomeration boundaries for calculating the anthropogenic component of the urban heat island. The parameters of the heat island in Moscow are determined from the measurement data on maximum and minimum daily surface air temperature in 2012-2016, and their significant seasonal and intradaily variability is revealed. It is corroborated that anthropogenic causes for the higher air temperature in Moscow as compared with suburbs during the cold season are the release and loss of heat of heating systems; in the absence of snow cover the anthropogenic effect of these sources is enhanced by the thermal radiation of the urban surface.  相似文献   

15.
This paper aims to map the thermal field in the metropolitan region of Rio de Janeiro (MARJ) considering the atmospheric characteristics and the land use that contribute to understanding the urban heat island. Three thermal maps are defined through the use of Landsat5-TM satellite images for three winter events chosen for the decades of 1980, 1990, and 2000, respectively. The results reveal a concentration of warmer cores in urban central areas as well as some local warmer areas in suburban region. Sites with lower temperatures correspond to vegetated areas which are away from the central part of the MARJ, including points of suburban areas. This work emphasizes the importance of the combined analysis of surface temperature with land use and atmospheric conditions, depicting a distinct pattern of heat islands for tropical climate.  相似文献   

16.
利用欧洲中期天气预报中心(ECMWF)提供的0.5°×0.5° ERA-Interim再分析资料,麦迪逊-威斯康星大学气象卫星研究所(CIMSS)提供的地球静止环境业务卫星(GOES-EAST)红外卫星云图和天气预报模式(WRF)的模拟结果,对2018年1月3—6日发生在北大西洋上的一个具有“T”型(T-bone)锋面结构的超强爆发性气旋进行分析。该爆发性气旋在较暖的湾流上空生成,沿海表面温度大值区向东北方向快速移动,生成后6 h内爆发性发展,24 h中心气压降低48.7 hPa。高空槽加深、涡度平流加强和低层较强的大气斜压性为气旋快速发展提供了有利的环流背景场。由于气旋发展迅速,低层相对涡度急剧增大,低压中心南部来自西北方向的干冷空气随气旋式环流快速向东推进,与东南暖湿气流汇合,锋生作用较强。较暖的洋面对西北冷空气的加热作用使得交汇的冷、暖空气温度梯度较小。减弱东移的冷锋与暖锋逐渐形成近似垂直的“T”型结构。用Zwack-Okossi方程诊断分析表明,非绝热加热、温度平流和正涡度平流是该爆发性气旋发展的主要影响因子。气旋初始爆发阶段,西北冷空气进入温暖的洋面,海洋对上层大气感热输送和潜热释放较强,非绝热加热对气旋快速发展有较大贡献。气旋进一步发展,“T”型锋面结构显著,温度平流净贡献较大,对气旋的发展和维持起重要作用。   相似文献   

17.
Urban-rural difference of land cover is the key determinant of urban heat island (UHI). In order to evaluate the impact of land cover data on the simulation of UHI, a comparative study between up-to-date CORINE land cover (CLC) and Urban Atlas (UA) with fine resolution (100 and 10 m) and old US Geological Survey (USGS) data with coarse resolution (30 s) was conducted using the Weather Research and Forecasting model (WRF) coupled with bulk approach of Noah-LSM for Berlin. The comparison between old data and new data partly reveals the effect of urbanization on UHI and the historical evolution of UHI, while the comparison between different resolution data reveals the impact of resolution of land cover on the simulation of UHI. Given the high heterogeneity of urban surface and the fine-resolution land cover data, the mosaic approach was implemented in this study to calculate the sub-grid variability in land cover compositions. Results showed that the simulations using UA and CLC data perform better than that using USGS data for both air and land surface temperatures. USGS-based simulation underestimates the temperature, especially in rural areas. The longitudinal variations of both temperature and land surface temperature show good agreement with urban fraction for all the three simulations. To better study the comprehensive characteristic of UHI over Berlin, the UHI curves (UHIC) are developed for all the three simulations based on the relationship between temperature and urban fraction. CLC- and UA-based simulations show smoother UHICs than USGS-based simulation. The simulation with old USGS data obviously underestimates the extent of UHI, while the up-to-date CLC and UA data better reflect the real urbanization and simulate the spatial distribution of UHI more accurately. However, the intensity of UHI simulated by CLC and UA data is not higher than that simulated by USGS data. The simulated air temperature is not dominated by the land cover as much as the land surface temperature, as air temperature is also affected by air advection.  相似文献   

18.
利用Landsat卫星数据分别反演了2005年和2014年临沂市的地表温度和不透水层指数,分析了城市化进程对临沂市热岛效应的影响。结果表明,2005年临沂市表现为中等强度的热岛效应,2014年表现为强热岛效应。利用地面站点资料统计分析来看,2005~2014年,临沂市热岛强度总体呈波动增加的趋势,冬季最强,春秋季次之,夏季较弱。分析城市化因子发现,城市经济、人口、用电消耗、城市房屋面积增量等多个因素对城市热岛强度变化的影响,其相关系数分别为0.86、0.82、0.67、0.81,其中房屋面积增量与热岛强度增强密切相关。从不透水层指数分布图的动态变化来看,也说明了城市化进程中城镇建筑和硬化的路面的增多导致了热岛强度的增强。  相似文献   

19.
In the present study, we examine the dynamics of a sea-breeze front and the urban heat island interacting with the heavily urbanized city of Athens. For this reason, simulations were performed with a modified version of the PSU/NCAR Mesoscale Model (MM5), whereby urban features are considered, and the model results were compared with surface routine meteorological data. An unrealistic run was also performed, where the city of Athens was replaced by dry cropland and pasture surface, as in the surrounding area. A delay in the sea-breeze front was found during daytime, together with frictional retardation concerning its penetration, as well as inland displacement of the heat island as the air moved over the city of Athens. During nighttime, the wind speed increased over the lower atmosphere in the city centre due to the enhanced urban heat island.  相似文献   

20.
利用昆明、北京两座城市内建筑物为研究对象, 对其不同朝向外墙壁面、屋顶面表面温度及壁面近旁气温进行了观测, 分析了建筑物外墙壁面表面温度及其近旁气温的垂直分布以及壁面、屋顶对周围大气的热力效应特征, 并对两座城市内建筑物的热力状况进行了比较分析。研究表明:建筑物表面温度受太阳辐射的影响要比近旁气温大得多, 一般说来, 壁面昼间是热源, 夜间是热汇; 受研究对象所在的大区域气候、人类活动等影响, 建筑物外表面的热力效应有许多异同; 建筑物屋顶面与近旁空气间的平均热通量基本为正值, 呈现较强的热源效应, 其热力效应强度与太阳辐射呈现正相关; 城市建筑物的外表面 (壁面、屋顶面) 已成为城市区域内有别于城市地面, 且对城市立体气候的形成具有不可忽视影响的热力作用面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号