首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 509 毫秒
1.
Deep Crustal Electrical Signatures of Eastern Dharwar Craton, India   总被引:1,自引:0,他引:1  
Wide band magnetotelluric (MT) investigations were carried out along a profile from Kavali in the east to Anantapur towards west across the Eastern Ghat Granulite Terrain (EGGT), Eastern Dhanvar Craton (EDC) and a Proterozoic Cuddapah Basin. This 300 km long profile was covered with 20 stations at an interval of 12–18 km. The MT data is subjected to robust processing, decomposition and static shift correction before deriving a 2-D model. The model shows a resistive crust (−10,000–30,000 ohm-m) to a depth of 8–10 km towards west of the Cuddapah basin. The mid crust is less resistive (about 500 ohm-m) and the lower crust with a slight increase in resistivity (about 1,500 ohm-m) in the depth range of 20–22 km. The resistivity picture to the east of the Cuddapah basin also showed a different deep crustal structure. The resistivity of upper crust is about 5,000 ohm-m and about 200 ohm-m for mid and lower crust. The sediment resistivity of Cuddapah basin is of the order of 15–20 ohm-m. MT model has shown good correlation with results from other geophysical studies like deep seismic sounding (DSS), gravity and magnetics. The results indicate that the lower crustal layers are of intermediate type showing hydrous composition in Eastern Dhanvar Craton.  相似文献   

2.
Four magnetotelluric soundings were carried out in 1993 in the region of the Copahue active volcano located at the border between Chile and Argentina (37°45′S, 71°18′W). Three soundings were located inside the caldera of the ancient stratovolcano (east of Copahue) and the fourth outside it. The soundings inside the caldera were situated at about 6, 11, and 14 km from the volcano. Digital data were obtained covering the range of periods from 1 sec to 10,000 sec using induction coils and a flux-gate magnetometer to obtain the magnetic data and Cu-SO4Cu electrodes for electric field measurements. The apparent resistivity curves corresponding to principal directions were analyzed in conjunction with the geological background in order to eliminate distortion — which is very important in this hot volcanic region. Then, 1D modellings were performed using the “normal” curves — i.e., curves without distortions. Using the apparent resistivity curves with distortions, 2D modelling was also performed along a profile perpendicular to the regional tectonic trend suggested by MT soundings into the caldera. Results show low resistivity values of about 3-15 Ωm between 9 km to 20 km depth in the crust, suggesting high temperatures, with minimum values of about 700°C with partially melted zones in the upper crust between 9 km to 20 km depth under the caldera. The presence of a possible sulphide-carbonaceous layer (SC layer) in the upper basement could play an important role in lowering the electrical resistivities because of its high electronic conductivity.  相似文献   

3.
Electromagnetic experiments were conducted in 1995 as part of a multidisciplinary research project to investigate the deep structure of the Chyulu Hills volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM) and broadband (120–0.0001 Hz) magnetotelluric (MT) soundings were made at eight stations along a seismic survey line and the data were processed using standard techniques. The TEM data provided effective correction for static shifts in MT data. The MT data were inverted for the structure in the upper 20 km of the crust using a 2-D inversion scheme and a variety of starting models. The resulting 2-D models show interesting features but the wide spacing between the MT stations limited model resolution to a large extent. These models suggest that there are significant differences in the physical state of the crust between the northern and southern parts of the Chyulu Hills volcanic field. North of the Chyulu Hills, the resistivity structure consists of a 10–12-km-thick resistive (up to 4000 Ω m) upper crustal layer, ca. 10-km-thick mid-crustal layer of moderate resistivity (50 Ω m), and a conductive substratum. The resistive upper crustal unit is considerably thinner over the main ridge (where it is ca. 2 km thick) and further south (where it may be up to 5 km thick). Below this cover unit, steep zones of low resistivity (0.01–10 Ω m) occur underneath the main ridge and at its NW and SE margins (near survey positions 100 and 150–210 km on seismic line F of Novak et al. [Novak, O., Prodehl, C., Jacob, A.W.B., Okoth, W., 1997. Crustal structure of the southern flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B., Prodehl, C. (Eds.), Structure and Dynamic Processes in the Lithosphere of the Afro-Arabian Rift System. Tectonophysics, vol. 278, 171–186]). These conductors appear to be best developed in upper crustal (1–8 km) and middle crustal (9–18 km) zones in the areas affected by volcanism. The low-resistivity anomalies are interpreted as possible magmatic features and may be related to the low-velocity zones recently detected at greater depth in the same geographic locations. The MT results, thus, provide a necessary upper crustal constraint on the anomalous zone in Chyulu Hills, and we suggest that MT is a logical compliment to seismics for the exploration of the deep crust in this volcanic-covered basement terrain. A detailed 3-D field study is recommended to gain a better understanding of the deep structure of the volcanic field.  相似文献   

4.
With a view towards understanding the evolutionary history of the complex South Indian shield, several geological and geophysical studies have been carried out. Recent geophysical studies include magnetotelluric (MT), deep seismic sounding (DSS), gravity, magnetic and deep resistivity soundings (DRS). In the present study, MT results along 140 km Andiyur-Turaiyur east-west profile is presented. The data are subjected to Groom-Bailey decomposition and static shift correction before deriving a 2-D model. The 2-D modeling results have shown that the upper crust (up to about 15 km) towards western part of the profile have exhibited high resistive character of about 40, 000 ohm-m as compared to the eastern part (less than 5, 000 ohm-m). The mid-lower crust has shown a decrease in resistivity in western part of the profile, the order of resistivity being 2, 000 ohm-m. An anomalous steep conductive feature (less than 100 ohm-m) is observed near Sankari at mid-lower crustal depths (>20 km) towards middle part of the profile. This feature is spatially correlatable with the well-known Moyar-Bhavani Shear Zone (MBSZ). The features obtained in the present study are consistent with earlier MT studies in this region and correlatable with other geophysical studies. DSS studies near the study region gave an evidence for differing crustal structure on either side of MBSZ. Variation in geoelectric character along the profile both in the upper crust and mid-lower crust indicate a block structure in the SGT with shear zones acting as boundaries. The new evidence in the form of distinct geoelectric structure and also variation in seismic structure indicate a continent-continent collision zone in this region and plays an important role for the Gondwana reconstruction models of South Indian shield.  相似文献   

5.
Thirty magnetotelluric soundings were made along two NW–SE profiles to the north and south of Oaxaca City in southern Mexico. The profiles crossed the N–S Oaxaca Fault and the Oaxaca-Juarez terrane boundary defined by the Juarez mylonitic complex. Dimensionality analysis of the MT data showed that the subsurface resistivity structure is 2D or 3D. The Oaxaca and correlative Guichicovi terranes consist of ca. 1–1.4 Ga granulitic continental crust overlain by Phanerozoic sedimentary rocks, characterized by high and low resistivities, respectively. The Juarez terrane consists of oceanic Mesozoic metavolcanic and metasedimentary rocks, characterized by a low to medium resistivity layer, that is approximately 10 km thick. The Oaxaca Fault is a Cenozoic aged, normal fault that reactivated the dextral and thrust Juarez mylonitic complex north of Oaxaca City: its location south of Oaxaca City is uncertain. In the southern profile, the MT data show a ca. 20–50 km wide, west-dipping, relatively low resistivity zone material that extends through the entire crust. This is inferred to be the Juarez terrane bounded on either side by the ca. 1–1.4 Ga granulites. The Oaxaca Fault is imaged only by a major electrical resistivity discontinuity (low to the west, high to the east) along both the western border of the Juarez mylonitic complex (northern profile) and the San Miguel de la Cal mountains (southern profile) suggesting continuity.  相似文献   

6.
The natural-field magnetotelluric (MT) method has proven very useful for mapping the geothermal fields as resistivity sections. The depth of investigation of the MT method is sufficiently large to penetrate deep into the upper crust. MT soundings along two transects across Mahallat geothermal field in Iran were carried out to determine the crustal structure in the region. The selected MT profiles in the region cross over the hydrothermally altered zones and different geological structures. Data were acquired along two profiles crossing the Mahallat hot springs with a total of 28 MT stations in a frequency range of 8,000 to 0.008 Hz. Spacing between stations was kept 500 m for a good resolution. We have used the code MT2DInvMATLAB for inversion using the method of finite elements for forward modeling. Apparent resistivity and phase data of transverse electric (TE), transverse magnetic (TM), and TE + TM modes along each profile were modeled. The geothermal fluid reservoir is resolved at 1,000 to 3,000 m depth and the geothermal resource is estimated to be located at 7,000 m or deeper.  相似文献   

7.
The electrical structure of the Slave craton   总被引:4,自引:0,他引:4  
The Slave craton in northwestern Canada, a relatively small Archean craton (600×400 km), is ideal as a natural laboratory for investigating the formation and evolution of Mesoarchean and Neoarchean sub-continental lithospheric mantle (SCLM). Excellent outcrop and the discovery of economic diamondiferous kimberlite pipes in the centre of the craton during the early 1990s have led to an unparalleled amount of geoscientific information becoming available.

Over the last 5 years deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique, as part of a variety of programs to study the craton and determine its regional-scale electrical structure. Two of the four types of surveys involved novel MT data acquisition; one through frozen lakes along ice roads during winter, and the second using ocean-bottom MT instrumentation deployed from float planes.

The primary initial objective of the MT surveys was to determine the geometry of the topography of the lithosphere–asthenosphere boundary (LAB) across the Slave craton. However, the MT responses revealed, completely serendipitously, a remarkable anomaly in electrical conductivity in the SCLM of the central Slave craton. This Central Slave Mantle Conductor (CSMC) anomaly is modelled as a localized region of low resistivity (10–15 Ω m) beginning at depths of 80–120 km and striking NE–SW. Where precisely located, it is spatially coincident with the Eocene-aged kimberlite field in the central part of the craton (the so-called “Corridor of Hope”), and also with a geochemically defined ultra-depleted harzburgitic layer interpreted as oceanic or arc-related lithosphere emplaced during early tectonism. The CSMC lies wholly within the NE–SW striking central zone defined by Grütter et al. [Grütter, H.S., Apter, D.B., Kong, J., 1999. Crust–mantle coupling; evidence from mantle-derived xenocrystic garnets. Contributed paper at: The 7th International Kimberlite Conference Proceeding, J.B. Dawson Volume, 1, 307–313] on the basis of garnet geochemistry (G10 vs. G9) populations.

Deep-probing MT data from the lake bottom instruments infer that the conductor has a total depth-integrated conductivity (conductance) of the order of 2000 Siemens, which, given an internal resistivity of 10–15 Ω m, implies a thickness of 20–30 km. Below the CSMC the electrical resistivity of the lithosphere increases by a factor of 3–5 to values of around 50 Ω m. This change occurs at depths consistent with the graphite–diamond transition, which is taken as consistent with a carbon interpretation for the CSMC.

Preliminary three-dimensional MT modelling supports the NE–SW striking geometry for the conductor, and also suggests a NW dip. This geometry is taken as implying that the tectonic processes that emplaced this geophysical–geochemical body are likely related to the subduction of a craton of unknown provenance from the SE (present-day coordinates) during 2630–2620 Ma. It suggests that the lithospheric stacking model of Helmstaedt and Schulze [Helmstaedt, H.H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Ross, J. (Ed.), Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin, and Emplacement. Geological Society of Australia Special Publication, vol. 14, 358–368] is likely correct for the formation of the Slave's current SCLM.  相似文献   


8.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


9.
With the super-wide band magnetotelluric sounding data of the Jilong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004,we obtained the strike direction of each MT station by strike analysis,then traced profiles that were perpendicular to the main strike direction,and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models,we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 ?·m. The depth of its bottom surface is about 15-20 km generally,but the bottom surface of resistive layer is deeper in the middle of these two profiles. At line 900,it is about 30 km deep,and even at line 800,it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km,and a conductive layer is beneath it with resistivity even less than 5 ?·m. This conductive layer is composed of individual conductive bodies,and at the south of the Yalung Tsangpo suture,the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However,at the north of the Yalung Tsangpo suture,the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively,the conductive bodies of line 900 are thinner than those of line 800,and the depth of the bottom surface of line 900 is also shallower. At last,after analyzing the effect factors to the resistivity of rocks,it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick,hot,flabby,and waxy.  相似文献   

10.
The magnetotelluric (MT) method was used to image the crust and upper mantle beneath the Delamerian and Lachlan orogens in western Victoria, Australia. During the Cambrian time period, this region changed from being the extended passive margin of Proterozoic Australia into an Andean-style convergent margin that progressively began to accrete younger oceanic terranes. Several broadband MT transects, which were collected in stages along coincident deep (full crust imaging) seismic reflection lines, have now been combined to create a continuous 500 km east–west transect over the Delamerian–Lachlan transition region in the Stawell Zone. We present the electrical resistivity structure of the lithosphere using both 3D and 2D inversion methods. Additionally, 1D inversions of long-period AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) MT data on a 55 km regionally spaced grid were used to provide starting constraints for the 3D inversion of the 2D profile. The Delamerian to Lachlan Orogen transition region coincides with the Mortlake Discontinuity, which marks an isotopic discontinuity in Cenozoic basalts, with higher strontium isotope enrichment ratios in the Lachlan Orogen relative to the Delamerian Orogen. Phase tensor ellipses of the MT data reveal a distinct change in electrical resistivity structure near the location of the Mortlake Discontinuity, and results of 3D and 2D inversions along the MT profile image a more conductive lower crust and upper mantle beneath the Lachlan Orogen than the Delamerian Orogen. Increased conductivity is commonly ascribed to mantle enrichment and thus supports the notion that the isotope enrichment of the Cenozoic basalts at least partially reflects an enriched mantle source rather than crustal contamination. Fault slivers of the lower crust from the more conductive Lachlan region expose Cambrian boninites and island arc andesites indicative of subduction, a process that can enrich the mantle isotopically, and also electrically, by introducing carbon (graphite) and water (hydrogen).  相似文献   

11.
Lower crustal xenoliths recovered from Eocene to Cambrian kimberlites in the central and southern Slave craton are dominated by mafic granulites (garnet, clinopyroxene, plagioclase±orthopyroxene), with subordinate metatonalite and peraluminous felsic granulites. Geothermobarometry indicates metamorphic conditions of 650–800 °C at pressures of 0.9–1.1 GPa. The metamorphic conditions are consistent with temperatures expected for the lower crust of high-temperature low-pressure (HT-LP) metamorphic belts characteristic of Neoarchean metamorphism in the Slave craton. U–Pb geochronology of zircon, rutile and titanite demonstrate a complex history in the lower crust. Mesoarchean protoliths occur beneath the central Slave supporting models of an east-dipping boundary between Mesoarchean crust in the western and Neoarchean crust in the eastern Slave. At least, two episodes of igneous and metamorphic zircon growth occurred in the interval 2.64–2.58 Ga that correlate with the age of plutonism and metamorphism in the upper crust, indicating magmatic addition to the lower crust and metamorphic reworking during this period. In addition, discrete periods of younger zircon growth at ca. 2.56–2.55 and 2.51 Ga occurred 20–70 my after the cessation of ca. 2.60–2.58 Ga regional HT-LP metamorphism and granitic magmatism in the upper crust. This pattern of younger metamorphic events in the deep crust is characteristic of the Slave as well as other Archean cratons (e.g., Superior). The high temperature of the lower crust immediately following amalgamation of the craton, coupled with evidence for continued metamorphic zircon growth for >70 my after ‘stabilization’ of the upper crust, is difficult to reconcile with a thick (200 km), cool lithospheric mantle root beneath the craton prior to this event. We suggest that thick tectosphere developed synchronously or after these events, most likely by imbrication of mantle beneath the craton at or after ca. 2.6 Ga. The minimum age for establishing a cratonic like geotherm is given by lower crustal rutile ages of ca. 1.8 Ga in the southern Slave. Transient heating and possible magmatic additions to the lower crust continued through the Proterozoic, with possible additional growth of the tectosphere.  相似文献   

12.
We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings reside in three east–west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass, and Secret Pass latitudes). One short cross-line was also taken to assess an east–west structure to the north of the northern profile. Model resistivity cross-sections were derived from the MT data using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity–thickness product) from east to west. These increases are attributed to graphitization caused by Elko–Sevier era compressional shear deformation and possibly by intrusive heating. The resistive crystalline central massifs adjoin the host stratigraphy across crustal-scale, steeply dipping fault zones. The zones provide pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. Resistive core complex crust appears steeply bounded under the middle of the neighboring grabens and not to deepen at a shallow angle to arbitrary distances to the west. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated regionally for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes nucleate. An east–west oriented conductor in the crystalline upper crust spans the East Humboldt Range and northern Ruby Mountains. The conductor may be related to nearby graphitic metasediments, with possible alteration by middle Tertiary magmatism. Lower crustal resistivity everywhere under the profiles is low and appears quasi one-dimensional. It is consistent with a low rock porosity (<1 vol.%) containing hypersaline brines and possible water-undersaturated crustal melts, residual to the mostly Miocene regional extension. The resistivity expression of the southern Carlin Trend (CT) in the Pinon Range is not a simple lineament but rather a family of structures attributed to Eocene intrusion, stratal deformation, and alteration/graphitization. Substantial reactivation or overprinting by core complex uplift or Basin–Range extensional events seems likely. We concur with others that the Carlin Trend may result in part from overlap of the large Eocene Northeast Nevada Volcanic Field with Precambrian–Paleozoic deep-water clastic source rocks thickening abruptly to the west of the Pinon Range, and projecting to the north–northwest.  相似文献   

13.
New conventional and sensitive high-resolution ion microprobe zircon U-Pb dating has led to a new understanding of the subdivision and evolution of the Amazon Craton during Precambrian time, with major improvements and changes made to the previous Rb-Sr based model. The interpretation of U-Pb and Sm-Nd isotopic data identifies eight main Precambrian tectonic provinces in the Craton, with ages ranging from 3.1 to 0.99 Ga. Some of the provinces were generated by accretional, arc-related processes (Carajás, Transamazonic, Tapajós-Parima and Rondônia-Juruena) and others by recycling of continental crust (Central Amazon, Rio Negro and Sunsas). The exposed Archean crust is restricted to the east (Carajás and south Amapá in Brazil) and north (Imataca in Venezuela) of the craton, indicating that the Amazon Craton is largely a Proterozoic crust. The Carajás-Imataca (3.10–2.53 Ga) and Transamazonian (2.25–2.00 Ga) Provinces are composed predominantly of granite-greenstone terranes. The Tapajós-Parima (2.10–1.87 Ga) and Rondônia-Juruena (1.75–1.47 Ga) Provinces represent new crust added as orogenic belts, while the Rio Negro (1.86–1.52 Ga) and Sunsas (1.33–0.99 Ga) Provinces originated mainly by magmatic-tectonic recycling of the above two orogenic belts. The only zone with a prominent northeast trend is the poorly known K'Mudku Shear Belt, characterized by a 1.20 Ga shear zone which deforms the rocks of at least three different provinces (Rio Negro, Tapajós-Parima and Transamazonic). The Central Amazon Province comprises mostly Orosirian volcano-plutonic rocks (Uatumã Magmatism) and is a terrane in which the exposed crustal structure and deformation are pluton-related. The Sm-Nd TDM model ages and Nd suggest that the Central Amazon Province was generated by the partial melting of Archean continental crust (Carajás Province?), perhaps related to underplating that began at the end of the Tapajós-Parima Orogeny (1.88–1.86 Ga).  相似文献   

14.
A geoelectromagnetic research was carried out in the Santa Cruz region (Santiago Island, Cabo Verde) during June 2004. The survey comprised MT soundings and VLF profiles. The main purpose of the MT profile, carried out across three important valleys associated with freshwater aquifers, was to study the tectonic structures correlated to seawater infiltration. The VLF method was used inside of the valleys for investigating shallow structures related to the aquifer contamination by seawater.Numerical modelling shows that the ocean effect is not important for MT data collected at periods shorter than 1 s. The MT data were inverted using a two-dimensional approach, to obtain the sub-superficial electrical conductivity distribution. The VLF data were processed applying the Karous–Hjelt filters to obtain the equivalent current distribution and inverted using 2-D approach. The results obtained in one of the most important valleys show anomalous current concentration/low resistivity (<20 Ω m) areas at depths greater than 40 m that may correspond to an increase in seawater content.The MT data modelling show that the deep zones beneath the valley are strongly fractured representing good pathways for seawater circulation. The depth of the conductive zones increases from south to north, suggesting a northward decreasing of the seawater infiltration effect. This observation correlates very well with in situ geochemical observations.  相似文献   

15.
The Qinling–Dabie–Sulu belt is the world's largest ultrahigh pressure (UHP) metamorphic belt. The UHP metamorphism is well dated at 220–245 Ma in the Dabie–Sulu belt but at 507 Ma in the Qinling belt. The Tongbaishan is located between the Qinling orogenic belt to the west and the Dabie–Sulu UHP metamorphic belt to the east. It is the key area for studying the tectonic relation between the Qinling and Dabie–Sulu belts and the diachronous UHP metamorphism. The Jigongshan granitic pluton (t=128 Ma) with a total area of 1200 km2, composed of monzogranite, was mostly emplaced into the Tongbai complex, an exposed basement in the Tongbaishan. The Jigongshan granites have SiO2=69.85–72.35%, K2O/Na2O=0.87–1.13, A/CNK=0.91–1.03, Rb/Sr=0.14–0.25 and Th/U=3.3–12. Their REE compositions show strongly fractionated patterns with (La/Yb)N=14–58 and Eu*/Eu=0.79–1.05. The granites are characterized by low radiogenic Pb isotopic composition. The present-day whole-rock Pb isotopic ratios are 206Pb/204Pb=16.707–17.055, 207Pb/204Pb=15.239–15.326 and 208Pb/204Pb=37.587–37.853, which are similar to that of the continental lower crust. Their Nd(t) values range from −16 to −20, and depleted-mantle Nd model ages (TDM) from 1.8 to 2.2 Ga. The above evidence indicates that the magma of the Jigongshan granites was derived from the partial melting of the continental crust. The Pb and Nd isotopic compositions of the Jigongshan granites resemble those of the Dabie core complex in the Dabieshan but are distinct from those of the Tongbai complex in the Tongbaishan. Thus, the Dabie core complex would be the magma source of the Jigongshan granites. The result implies that the Dabie core complex is extended to the west and constitutes the unexposed basement underlaying the Tongbai complex in the Tongbaishan.  相似文献   

16.
The Linzizong volcanic succession (~ 65–45 Ma) and the coeval batholiths (~ 60−40 Ma) of andesitic to rhyolitic composition represent a magmatic response to the India–Asia continental collision that began at ~ 70–65 Ma and ended at ~ 45–40 Ma with convergence continuing to present. These syncollisional felsic magmatic rocks are widely distributed along much of the > 1500 km long Gangdese Belt immediately north of the India–Asia suture (Yarlung–Zangbo) in southern Tibet. Our study of the Linzizong volcanic rocks from the Linzhou Basin (near Lhasa) suggests that syncollisional felsic magmatism may in fact account for much of the net contribution to continental crust growth. These volcanic rocks show a first-order temporal change from the andesitic lower Dianzhong Formation (64.4–60.6 Ma), to the dacitic middle Nianbo Formation (~ 54 Ma), and to the rhyolitic upper Pana Formation (48.7–43.9 Ma). The three formations show no systematic but overlapping Nd–Sr isotope variations. The isotopically depleted samples with εNd(t) > 0 indicate that their primary sources are of mantle origin. The best source candidate in the broad context of Tethyan ocean closing and India–Asia collision is the remaining part of the Tethyan ocean crust. This ocean crust melts when reaching its hydrous solidus during and soon after the collision in the amphibolite facies, producing andesitic melts parental to the Linzizong volcanic succession (and the coeval batholiths) with inherited mantle isotopic signatures. Ilmenite as a residual phase (plus the effect of residual amphibole) of amphibolite melting accounts for the depletion of Nb, Ta and Ti in the melt. The effect of ocean crust alteration plus involvement of mature crustal materials (e.g., recycled terrigeneous sediments) enhances the abundances of Ba, Rb, Th, U, K and Pb in the melt, thus giving the rocks an “arc-like” geochemical signature. Residual amphibole that possesses super-chondritic Nb/Ta ratio explains the sub-chondritic Nb/Ta ratio in the melt; residual plagioclase explains the slightly depleted, not enriched, Sr (and Eu) in the melt, typical of continental crust. These observations and reasoning plus the remarkable compositional similarity between the andesitic lower Dianzhong Formation and the model bulk continental crust corroborates our proposal that continental collision zones may be sites of net crustal growth (juvenile crust) through process of syncollisional felsic magmatism. While these interpretations are reasonable in terms of straightforward petrology, geochemistry and tectonics, they require further testing.  相似文献   

17.
Surface and deep-sea core sediments and two sets of standards were measured by three different techniques — Galai Cis-1 laser system, Coulter Counter TA II, and Micromeritics SediGraph 5000D — in order to compare the Galai results with the other two. The differences between the three types of measuring device turned out to be greater in sediments than in standards, and were attributed to the physical properties, shape, density and composition of the particles (complexity of the matrix). Comparison of moment statistics showed that the Galai determines coarser grain sizes than the Coulter and finer than the SediGraph, particularly as regards analysis of surface sediments. The relationships between Galai and SediGraph were estimated using analysis of variation/residuals within individual intervals. The analysis showed a higher variability of residuals for the coarser fractions (8–16 μm and 16–32 μm) with respect to the finer (2–4 μm and 4–8 μm) fractions. The <2 μm SediGraph fraction, with a cut-off at 0.49 μm, showed good correspondence with the <2.5 μm Galai analysis.  相似文献   

18.
In 1976, the Institute of Physics of the Earth and the Institute of Oceanology, the U.S.S.R. Academy of Sciences, carried out deep seismic soundings in the Barents Sea along a profile 700 km long northeast of Murmansk. A system of reversed and overlapping traveltime curves from 200 to 400 km long has been obtained. The wave correlation was effected by several independent approaches, which identified on the records the refracted and reflected waves from boundaries in the Earth's crust and the upper mantle. Different methods were applied for the solution of the inverse problem: the isochrone method, the intercept-time method, and the iteration method.The use of these different methods gives an indication of the general applicability of the interpretation and of the most reliable elements in the seismic model.All the interpretations and representations of the section positively establish an essentially horizontal inhomogeneity of the Earth's crust in the Barents Sea. On the whole the structure is similar to that of deep sedimentary basins of the East European platform. The thickness of the sedimentary layer varies from 8 to 17 km, the average crustal thickness is about 35–40 km; the velocities in the upper part of the consolidated crust are 5.8–6.4 km/s; in the lower crust they are 6.8–7.0 km/s and higher.  相似文献   

19.
In this work we report 207Pb/206Pb LA-ICPMS ages of 152 detrital zircons from lower greenschist facies quartzites from Proterozoic basin successions of the southern border of the São Francisco Craton, southern Minas Gerais State, Brazil. These are the intracratonic São João del Rei basin, the intraplate continental margin Andrelândia basin, and the Serra do Ouro Grosso sequence, developed on a crystalline basement older than 1.8 Ga, and deformed and metamorphosed during the Brasiliano Orogeny, ca. 0.59–0.50 Ga. The data constrain both the ages of the sources and the interval of sedimentation. The detrital zircons of the Serra do Ouro Grosso sequence were derived predominantly from the erosion of a Neoarchean crust, 2.5–2.8 Ga old, with only one grain showing a Paleoproterozoic age (2, 245±83 Ma) older than the Transamazonian event. Zircons extracted from a shelf quartzite of the lowermost sequence of the São João del Rei basin indicate derivation from the 1.8–2.2 Ga Transamazonian crust, with subordinate contribution from the 2.5–2.9 Ga Archean crust. The 1, 809±41 Ma age is interpreted as the maximum limit for sedimentation in this basin. The results confirm the regional correlation with the Espinhaço Rift successions. The zircons extracted from an autochthonous quartzite of the Andrelândia sequence yielded ages in the 1.0–2.2 Ga range, with a modal class at 1.2–1.3 Ga. Only two of the forty analyzed zircons yield Archean ages. The youngest zircon yields 1, 086±85 Ma. The zircons from the allochthonous quartzite yield ages between 1.0–2.7 Ga, with a modal class at 2.1–2.2 Ga. Only five of 45 analyzed grains yield Archean ages. The youngest zircon has an age of 1, 047±77 Ma. The results indicate that the detrital sediments deposited during the second marine flooding event of the Andrelândia sedimentation were mainly derived from the erosion of Mesoproterozoic and Paleoproterozic rocks. The 1, 047±77 Ma age is interpreted as the maximum depositional age for the described association.  相似文献   

20.
One of the major tectonic problems in Europe concerns the southwest margin of the East European Platform in the region of the so-called Polish-Danish trough. In general, this margin is assumed to be the Tornquist-Teisseyre (T-T) Line, running approximately from northwest to southeast in this part of Europe. Determination of deep crustal structure of the contact zone between the Precambrian Platform and the Palaeozoic Platform was the main aim of the deep seismic sounding (DSS) programme in Poland in 1965–1982.Deep seismic soundings of the Earth's crust have been made in the T-T Line zone along nine profiles with a total length of about 2600 km. The results of deep seismic soundings have shown that the crust in the marginal zone of the East European Platform has highly anomalous properties. The width of this zone ranges from 50 km in northwest Poland to about 90 km in southeast Poland. The crustal thickness of the Palaeozoic Platform in Poland is 30–35 km, and of the Precambrian Platform 42–47 km, while in the T-T tectonic zone it varies from 50 to 55 km. Above the Moho boundary, in the T-T zone, at a depth of 40–45 km, there is a seismic discontinuity with P-wave velocities of 7.5–7.7 km/s. Boundary velocities, mean velocities and stratification of the Earth's crust vary distinctly along the T-T zone. There are also observed high gravimetric and magnetic anomalies in the T-T zone. The T-T tectonic zone determined in this manner is a deep tectonic trough with rift properties.The deep fractures delineating the T-T tectonic zone are of fundamental importance for the localization of the plate edge of the Precambrian Platform of eastern Europe. In the light of DSS results, the northeastern margin of the T-T tectonic zone is a former plate boundary of the East European Platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号