首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Certain petrological features of oceanic volcanic and plutonic rocks are not completely consistent with previously proposed models of crystal fractionation or magma mixing. For example, Sr is often higher in the differentiated basalts of a suite of aphyric rocks than in the relatively primitive basalts even though the differentiated basalts have apparently been produced by crystallization of large amounts of plagioclase with olivine and clinopyroxene. Additionally, oceanic basalts and gabbroic rocks often contain plagioclase crystals in excess of the appropriate cotectic proportions. Certain differentiated oceanic basaltic glasses and aphyric rocks crystallize plagioclase as the liquidus mineral, which would seem inconsistent with the strongly cotectic nature of the olivine + plagioclase + liquid surface.It is proposed here that plagioclase in mid-ocean ridge magma chambers separates from the basaltic liquid that it crystallizes in at a slower rate than does co-crystallizing olivine or pyroxene. Magma mixing in which a portion of the plagioclase remains suspended in the liquid during crystallization results in much more complex liquid lines of descent in mixed magmas and appears to resolve the apparent discrepancies noted above.  相似文献   

2.
Rabaul caldera is a large volcanic depression at the north-east tip of New Britain, Papua New Guinea. The lavas range in composition from basalt to rhyolite and have a calc-alkalic affinity but also display features typical of tholeiites, including moderate absolute iron enrichment in flows cropping out around the caldera. The basalts contain phenocrysts of plagioclase and clinopyroxene with less abundant olivine and titanomagnetite. In the basaltic andesites olivine is rare, while orthopyroxene and titanomagnetite are common along with plagioclase and clinopyroxene. Orthopyroxene is also found mantling olivine in some of the basalts while in both rock types pigeonitic augite is a fairly common constituent of the groundmass. Plagioclase in both basalt and basaltic andesite often exhibits sieve texture and analysis of the glass blebs show them to be of similar composition to the bulk rock. Phenocrystic clinopyroxene is a diopsidic augite in both basalt and basaltic andesite. Al2O3 content of the clinopyroxene is moderately high (4%) and often shows considerable variation in any one grain. Calculations show that the microphenocrysts probably crystallised near the surface, while phenocrysts crystallised at around 7 kb (21 km). Neither the basalts nor the basaltic andesites would have been in equilibrium at any geologically reasonable P and T with quartz eclogite. Equilibration between mantle peridotite and a. typical Rabaul basaltic liquid could have occurred around 35 kb and 1270 °C. A basaltic andesite liquid yields a temperature of 1263 °C and a pressure of 28 kb for equilibration with mantle peridotite.Partial melting of sufficient volumes of mantle peridotite at these P's and T's requires about 15% H2O, but there is no evidence that these magmas ever contained large amounts of water. It is proposed that the Rabaul magmas were initially generated by partial melting of subducted lithosphere and subsequently modified by minor partial melting as they passed through the overlying mantle peridotite.  相似文献   

3.
The origin of island arc high-alumina basalts   总被引:5,自引:1,他引:5  
A detailed examination of the hypothesis that high-alumina basalts (HAB) in island arcs are primary magmas derived by 50–60% partial melting of subducted ocean crust eclogite shows that this model is unlikely to be viable. Evidence suggests that the overwhelming majority of arc HAB are porphyritic lavas, enriched in Al2O3 either by protracted prior crystallization of olivine and clinopyroxene, or by plagioclase phenocryst accumulation in magmas of basaltic andesite to dacite composition. Experimentally-determined phase relationships of such plagioclase-enriched (non-liquid) compositions have little bearing on the petrogenesis of arc magmas, and do not rule out the possibility that arc HAB can be derived by fractionation of more primitive arc lavas. Although models invoking eclogite-melting can match typical arc HAB REE patterns, calculations indicate that the Ni and Cr contents of proposed Aleutian primary HAB are many times lower than such models predict. In contrast, Ni vs Sc and Cr vs Sc trends for arc HAB are readily explained by olivine (+Cr-sp) and clinopyroxene-dominated fractionation from more primitive arc magmas. GENMIX major element modelling of several HAB compositions as partial melts of MORB eclogite, using appropriate experimentally (26–34 kb)-determined garnet and omphacite compositions yields exceptionally poor matches, especially for CaO, Na2O, MgO and Al2O3. These mismatches are easily explained if the HAB are plagioclase-accumulative. Groundmasses of arc HAB are shown to vary from basaltic andesite to dacite in composition. Crystal fractionation driving liquid compositions toward dacite involves important plagioclase separation, resulting in development of significant negative Eu anomalies in more evolved lavas. Plagioclase accumulation in such evolved liquids tends to diminish or eliminate negative Eu anomalies. Therefore, the absence of positive Eu anomaly in a plagioclase-phyric HAB does not indicate that plagioclase has not accumulated in that lava. In addition, we show that plagioclase phenocrysts in arc HAB are not in equilibrium with the liquids in which they were carried (groundmass). Exceptional volumes of picrite and olivine basalt occur in the Solomons and Vanuatu arcs; the presence in lavas from these and other arcs (Aleutian, Tonga) of olivine phenocrysts to Fo94, finds no ready explanation in the primary eclogite-derived HAB model. We suggest that most lavas in intra-oceanic arcs are derived from parental magmas with >10% MgO; fractionation of olivine (+Cr-sp) and clinopyroxene drives liquids to basalt compositions with <7% MgO, but plagioclase nucleation is delayed by their low but significant (<1%?) H2O contents. Thus evolved liquid compositions in the basaltic andesite—andesite range may achieve relatively high Al2O3 contents (<17.5%). The majority of arc basalts, however, have Al2O3 contents in excess of 18%, reflecting plagioclase accumulation. We give new experimental data to show that HAB liquids may be generated by anhydrous, low-degree (<10%) partial melting of peridotite at P<18 kb. Relative to arc HAB, these experimental melts have notably higher Mg#(69–72) and are in equilibrium with olivine Fo87–89. Only further detailed trace element modelling will show if they might be parental magmas for some arc HAB.  相似文献   

4.
We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10–20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C–1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than 12 kbar.  相似文献   

5.
Basalts dredged from the south wall of a fracture zone transecting the southern Mid-Atlantic Ridge (SMAR) at 54° S are unusual in that they include a suite of highly olivine phyric basalts, sampled along with more normal sparsely plagioclase phyric basalts, and a highly plagioclase phyric basalt. Four basalt types (olivine phyric, sparsely plagioclase phyric, evolved sparsely plagioclase phyric and highly plagioclase phyric) are readily distinguished on the basis of petrography, mineralogy and bulk composition. They range from primitive to evolved, with the olivine phyric basalts having elevated MgO (up to 15.5%) and the plagioclase phyric basalt having elevated Al2O3 (19.3%) and CaO (13.1%) contents. Compositional variations are extremely consistant, with the olivine phyric basalts and the sparsely plagioclase phyric basalts defining coherent linear trends. On the basis of the ratios and covariation of the incompatible trace elements Zr, Nb, Y and Ba, distinct parental magmas for each basalt type are required. An investigation of Fe-Mg and Mg-Ni distribution coefficients between olivine and magma indicates that olivines from the olivine phyric basalts are on average too forsteritic and too Ni poor to have crystallized in a magma corresponding to the host bulk rock composition. This implies that these basalts are enriched in xenocrystic olivine. Olivines from the other basalt types are mostly of equilibrium composition, although there are some exceptions. Petrogenetic models for the formation of the different basalt types are quantitatively evaluated in terms of fractional crystallization/crystal accumulation processes. These indicate that (1) the olivine phyric basalts are the products of olivine and minor Cr-spinel accumulation and do not represent analogues of primary magma, or a liquid fractionation trend; (2) that the sparsely plagioclase phyric basalts were formed by polybaric fractional crystallization of olivine, plagioclase and clinopyroxene; and (3) that the evolved sparsely plagioclase phyric basalts are not readily related to one another. The single highly plagioclase phyric basalt is unrelated to the other basalt types and is cumulus enriched in plagioclase.The different basalt types are unrelated to one another and document the presence of at least four distinct magma types erupted in close proximity at this ridge/transform intersection on the southern end of the Mid-Atlantic Ridge.  相似文献   

6.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

7.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

8.
Phase relations of natural aphyric high-alumina basalts and their intrusive equivalents were determined through rock-melting experiments at 2 kb, H2O-saturated with fO2 buffered at NNO. Experimental liquids are low-MgO high-alumina basalt or basaltic andesite, and most are saturated with olivine, calcic plagioclase, and either high-calcium pyroxene or hornblende (±magnetite). Cr-spinel or magnetite appear near the liquidus of wet high-alumina basalts because H2O lowers the appearance temperature of crystalline silicates but has a lesser effect on spinel. As a consequence, experimental liquids follow calcalkaline differentiation trends. Hornblende stability is sensitive to the Na2O content of the bulk composition as well as to H2O content, with the result that hornblende can form as a near liquidus mineral in wet sodic basalts, but does not appear until liquids reach andesitic compositions in moderate Na2O basalts. Therefore, the absence of hornblende in basalts with low-to-moderate Na2O contents is not evidence that those basalts are nearly dry. Very calcic plagioclase (>An90) forms from basaltic melts with high H2O contents but cannot form from dry melts with normal are Na2O and CaO abundances. The presence of anorthite-rich plagioclase in high-alumina basalts indicates high magmatic H2O contents. In sum, moderate pressure H2O-saturated phase relations show that magmatic H2O leads to the early crystallization of spinel, produces calcic plagioclase, and reduces the total proportion of plagioclase in the crystallizing assemblage, thereby promoting the development of the calc-alkaline differentiation trend.  相似文献   

9.
Tholeiite basalts from 60° N to 65° N on the Mid-Atlantic Ridge were melted and recrystallized at atmospheric pressure in a CO2-H2 gas mixture. Seven basalts are from the Langjokull-Thingvellir volcanic zone and the Reykjanes Peninsula of Iceland and nine are from the Reykjanes Ridge. The crystallization sequence in both Iceland and Reykjanes Ridge basalts with (Total Fe as FeO)/(Total Fe as FeO+ MgO) [F/F + M] less than 0.6 is olivine, plagioclase, clinopyroxene. Chromian spinel crystallizes before plagioclase in one Iceland and one Reykjanes Ridge basalt with F/F+M less than 0.57. Chemical differences of the two groups of basalts (lower SiO2 and higher alkalis in Iceland basalts) can not simply be a result of low pressure fractional crystallization. Liquidus temperatures of the seven Iceland basalts decreases from 1,230° C to 1,170° C as the F/F+M of the rock increases from 0.52 to 0.70. The liquidus temperatures of the Reykjanes Ridge basalts are about 10° C lower than those of the Iceland basalts for the same F/F+M value. The profile of measured liquidus temperatures from 65° N on Iceland to 60° N on the Reykjanes Ridge has a minimum value at 63.2° N on the Reykjanes Ridge just south of Iceland. Model calculations of the pressure of phenocryst crystallization indicate that olivine and plagioclase in Langjokull basalts could have equilibrated between 2.0 and 6.2 kb (200 to 620 MPa). Phenocryst assemblages in Reykjanes Ridge basalts at 60° N could have crystallized together at greater than 2 kb (200 MPa) and probably less than 8 kb (800 MPa). A minimum in the equilibrium pressure of phenocryst crystallization occurs between 62.9° and 64° N and coincides with the minimum in the experimentally determined liquidus temperatures. The more extensive fractionation at low pressure in this area could be related to the shift of the Mid-Atlantic Ridge axis along the leaky transform fault from the Reykjanes Ridge to the Thingvellir volcanic zone.  相似文献   

10.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

11.
An olivine basalt, a tonalite (andesite), a granite (rhyolite), and a red clay (pelagic sediment) were reacted, with known quantities of water in sealed noble metal capsules, in a piston-cylinder apparatus at 30 kb pressure. For the pelagic sediment, with H2O+=7.8% and no additional water, the liquidus temperature is 1240°C, the primary phases are garnet and kyanite. The subsolidus phase assemblage is phengite mica+garnet+clinopyroxene+coesite+kyanite. With 5 wt.% water added, the liquidus temperatures and primary phases for the calc-alkaline rocks are 1280°-1180°-1080°, garnet+clinopyroxene, garnet, and quartz respectively. Garnet and clinopyroxene occur throughout the melting interval of the olivine tholeiite for all water contents. Garnet is joined by clinopyroxene 80° below the andesite plus 5% H2O liquidus, quartz is joined by clinopyroxene 180° below the rhyolite plus 5% H2O liquidus. The subsolidus phase assemblage is garnet+clinopyroxene+coesite+minor kyanite for all the calc-alkaline compositions. We conclude that calc-alkaline andesites and rhyolites are not equilibrium partial melting pruducts of subducted oceanic crust consisting of olivine tholeiite basalt and siliceous sediments. Partial melting in subduction zones produces broadly acid and intermediate liquids, but these liquids lie off the calc-alkaline basalt-andesite-rhyolite join and must undergo modification at lower pressures to produce calcalkaline magmas erupted in overlying island arcs.  相似文献   

12.
In southwestern China, several large magmatic Fe–Ti–V oxide ore deposits are hosted by gabbroic intrusions associated with the Emeishan flood basalts. The Panzhihua gabbroic intrusion, a little deformed sill that contains a large titanomagnetite deposit at its base, concordantly intrudes late-Proterozoic dolostones. Mineralogical and chemical studies of the contact aureole in the footwall dolostones demonstrate that the metamorphism was largely isochemical but released large quantities of CO2 as the rocks were converted to marble and skarns during intrusion of the gabbroic magma. Petrological modelling of the crystallization of the intrusion, using H2O-poor Emeishan basalt as parent magma, shows that under normal conditions, Fe–Ti oxides crystallize at a late stage, after the crystallization of abundant olivine, clinopyroxene and plagioclase. In order for titanomagnetite to separate efficiently to form the ore deposit, this mineral must have crystallized earlier and close to the liquidus. We propose that CO2-rich fluids released during decarbonatization of sedimentary floor rocks passed up through the magma. Redox equilibria calculations show that when magma with the composition of Emeishan basalt is fluxed by a CO2-rich gas phase, its equilibrium oxygen fugacity (fO2) increases from the fayalite–magnetite–quartz buffer (FMQ) to FMQ + 1.5. From experimental constraints on magnetite saturation in basaltic magma under controlled fO2, such an oxidizing event would allow magnetite to crystallize near to the liquidus, leading to the formation of the deposit.  相似文献   

13.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

14.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

15.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

16.
The importance of Cl in basalt petrogenesis has been recognized, yet constraints on its effect on liquidus crystallization of basalts are scarce. In order to quantify the role of Cl in basaltic systems, we have experimentally determined near-liquidus phase relations of a synthetic Fe–Mg-rich basalt, doped with 0.0–2.5 wt% dissolved Cl, at 0.7, 1.1, and 1.5 GPa. Results have been parameterized and compared with previous data from literature. The effect of Cl on mineral chemistry and liquidus depression is dependent on the starting basaltic composition. The liquidus depression measured for a SiO2-rich, Al2O3-poor basalt is smaller than that observed for a basaltic melt depleted in silica and enriched in FeOT and Al2O3. The effect of Cl on depression of the olivine–orthopyroxene–liquid multiple saturation pressure does not seem to vary with the starting composition of the basaltic liquid. This suggests that Cl may significantly promote the generation of silica-poor, Fe–Al-rich magmas in the Earth, Mars, and the Moon.  相似文献   

17.
Anhydrous P-T phase relations, including phase compositions and modes, are reported from 10–31 kbar for a near-primary high-alumina basalt from the South Sandwich Islands in the Scotia Arc. The water content of natural subduction-related basalt is probably <0.5 wt.% and thus, these results are relevant to the generation of primary basaltic magmas in subduction zones. At high pressures (>27 kbar) garnet is the liquidus phase followed by clinopyroxene, then quartz/coesite at lower temperatures. At intermediate pressures (17–27 kbar), clinopyroxene is the liquidus phase followed by either garnet, quartz, plagioclase, then orthopyroxene or plagioclase, quartz, garnet, then orthopyroxene depending on the pressure within this interval. At all lower pressures, plagioclase is the liquidus phase followed at much lower temperatures (100° C at 5 kbar) by clinopyroxene. The absence of olivine from the liquidus suggests that the composition studied here could not have been derived from a more mafic parent by olivine fractionation at any pressure investigated, and supports the interpretation that it is primary. If so, these results also preclude an origin for this melt by partial melting of olivine-rich mantle periddotite and suggest instead that it was generated by partial melting of the descending slab (quartz eclogite) leaving clinopyroxene, garnet, or both in the residue. The generally flat REE patterns for low-K series subduction related basalts argue against any significant role for garnet, however, and it is thus concluded that the composition studied here was extracted at 20–27 kbar after sufficiently high degrees of partial melting (50%) to totally consume garnet in the eclogite source. Melting experiments on three MORB composition, although not conclusive, are in agreement with this mechanism. Results at 30 kbar support an origin for tonalite/trondhjemite series rocks by lower degrees of melting (15–30%), leaving both garnet and clinopyroxene in the residue.  相似文献   

18.
The petrogenesis of Apollo 14 high-Al basaltic melts was studied using crystal stratigraphy, which involves textural (crystal size distributions — CSDs) and chemical analyses (electron microprobe and laser ablation inductively coupled plasma mass spectrometry). The samples studied here include pristine basalt 14072 and basaltic clasts from breccia 14321, and impact-generated crystalline samples 14073, 14276 and 14310. Plagioclase was the focus of this study because of its relatively high modal abundances and because it was on the liquidus for much of the melt cooling histories. Plagioclase crystals were analyzed (core-to-rim compositions where possible) to test and refine petrogenetic models based upon whole-rock compositions (Groups A, B, and C designations) and to investigate basalt 14072 and impact-melt crystallization. Textural studies have shown that each basalt group has distinctive plagioclase CSDs, which are in turn distinctive from those of the impact melts. Evolution of the individual basaltic melts was studied by comparing the equilibrium-melt compositions (calculated from plagioclase compositions using relevant partition coefficients) to fractional crystallization (FC) and assimilation and fractional crystallization (AFC) models. Petrogenetic modeling of trace elements in Group A basalts revealed that petrogenesis continued beyond 40% total crystallization required to model whole-rock compositions, and that there were open-system processes that affected the magma during plagioclase crystallization. Petrogenetic modeling of pristine high-Al basalts (14072 and Groups A, B and C) using trace elements shows that the equilibrium-melt compositions do not fall on a single AFC or FC trajectory. This is consistent with fluctuating degrees of assimilation (i.e., variable r-values) and/or variable assimilant compositions during petrogenesis. Petrogenetic modeling reveals that the impact melts experienced only closed-system fractional crystallization. This work demonstrates the importance of crystal stratigraphy in revealing the intricacies of lunar basalt petrogenesis.  相似文献   

19.
The genesis of basaltic magmas   总被引:29,自引:2,他引:29  
This paper reports the results of a detailed experimental investigation of fractionation of natural basaltic compositions under conditions of high pressure and high temperature. A single stage, piston-cylinder apparatus has been used in the pressure range up to 27 kb and at temperatures up to 1500° C to study the melting behaviour of several basaltic compositions. The compositions chosen are olivine-rich (20% or more normative olivine) and include olivine tholeiite (12% normative hypersthene), olivine basalt (1% normative hypersthene) alkali olivine basalt (2% normative nepheline) and picrite (3% normative hypersthene). The liquidus phases of the olivine tholeiite and olivine basalt are olivine at 1 Atmosphere, 4.5 kb and 9 kb, orthopyroxene at 13.5 and 18 kb, clinopyroxene at 22.5 kb and garnet at 27 kb. In the alkali olivine basalt composition, the liquidus phases are olivine at 1 Atmosphere and 9 kb, orthopyroxene with clinopyroxene at 13.5 kb, clinopyroxene at 18 kb and garnet at 27 kb. The sequence of appearance of phases below the liquidus has also been studied in detail. The electron probe micro-analyser has been used to make partial quantitative analyses of olivines, orthopyroxenes, clinopyroxenes and garnets which have crystallized at high pressure.These experimental and analytical results are used to determine the directions of fractionation of basaltic magmas during crystallization over a wide range of pressures. At pressures corresponding to depths of 35–70 km separation of aluminous enstatite from olivine tholeiite magma produces a direct fractionation trend from olivine tholeiites through olivine basalts to alkali olivine basalts. Co-precipitation of sub-calcic, aluminous clinopyroxene with the orthopyroxene in the more undersaturated compositions of this sequence produces derivative liquids of basanite type. Magmas of alkali olivine basalt and basanite type represent the lower temperature liquids derived by approximately 30% crystallization of olivine-rich tholeiite at 35–70 km depth. At depths of about 30 km, fractionation of olivine-rich tholeiite with separation of both olivine and low-alumina enstatite, joined at lower temperatures by sub-calcic clinopyroxene, leads to derivative liquids with relatively constant SiO2 (48 to 50%) increasingly high Al2O3 (15–17%) contents and retaining olivine + hypersthene normative chemistry (5–15% normative olivine). These have the composition of typical high-alumina olivine tholeiites. The effects of low pressure fractionation may be superimposed on magma compositions derived from various depths within the mantle. These lead to divergence of the alkali olivine basalt and tholeiitic series but convergence of both the low-alumina and high-alumina tholeiites towards quartz tholeiite derivative liquids.The general problem of derivation of basaltic magmas from a mantle of peridotitic composition is discussed in some detail. Magmas are considered to be a consequence of partial melting but the composition of a magma is determined not by the depth of partial melting but by the depth at which magma segregation from residual crystals occurs. Magma generation from parental peridotite (pyrolite) at depths up to 100 km involves liquid-crystal equilibria between basaltic liquids and olivine + aluminous pyroxenes and does not involve garnet. At 35–70 km depth, basaltic liquids segregating from a pyrolite mantle will be of alkali olivine basalt type with about 20% partial melting but with increasing degrees of partial melting, liquids will change to olivine-rich tholeiite type with about 30% melting. If the depth of magma segregation is about 30 km, then magmas produced by 20–25% partial melting will be of high-alumina olivine tholeiite type, similar to the oceanic tholeiites occurring on the sea floor along the mid-oceanic ridges.Hypotheses of magma fractionation and generation by partial melting are considered in relation to the abundances and ratios of trace elements and in relation to isotopic abundance data on natural basalts. It is shown that there is a group of elements (including K, Ti, P, U, Th, Ba, Rb, Sr, Cs, Zr, Hf and the rare-earth elements) which show enrichment factors in alkali olivine basalts and in some tholeiites, which are inconsistent with simple crystal fractionation relationships between the magma types. This group of elements has been called incompatible elements referring to their inability to substitute to any appreciable extent in the major minerals of the upper mantle (olivine, aluminous pyroxenes). Because of the lack of temperature contrast between magma and wall-rock for a body of magma near to its depth of segregation in the mantle, cooling of the magma involves complementary processes of reaction with the wall-rook, including selective melting and extraction of the lowest melting fraction. The incompatible elements are probably highly concentrated in the lowest melting fraction of the pyrolite. The production of large overall enrichments in incompatible elements in a magma by reaction with and highly selective sampling of large volumes of mantle wall-rock during slow ascent of a magma is considered to be a normal, complementary process to crystal fractionation in the mantle. This process has been called wall-rock reaction. Magma generation in the mantle is rarely a simple, closed-system partial melting process and the isotopic abundances and incompatible element abundances of a basalt as observed at the earth's surface may be largely determined by the degree of reaction with the mantle or lower crustal wall-rocks and bear little relation to the abundances and ratios of the original parental mantle material (pyrolite).Occurrences of cognate xenoliths and xenocrysts in basalts are considered in relation to the experimental data on liquid-crystal equilibria at high pressure. It is inferred that the lherzolite nodules largely represent residual material after extraction of alkali olivine basalt from mantle pyrolite or pyrolite which has been selectively depleted in incompatible elements by wall-rock reaction processes. Lherzolite nodules included in tholeiitic magmas would melt to a relatively large extent and disintegrate, but would have a largely refractory character if included in alkali olivine basalt magma. Other examples of xenocrystal material in basalts are shown to be probable liquidus crystals or accumulates at high pressure from basaltic magma and provide a useful link between the experimental study and natural processes.  相似文献   

20.
Klyuchevskoy volcano, in Kamchatka’s subduction zone, is one of the most active arc volcanoes in the world and contains some of the highest δ18O values for olivines and basalts. We present an oxygen isotope and melt inclusion study of olivine phenocrysts in conjunction with major and trace element analyses of 14C- and tephrochronologically-dated tephra layers and lavas spanning the eruptive history of Klyuchevskoy. Whole-rock and groundmass analyses of tephra layers and lava samples demonstrate that both high-Mg (7–12.5 wt% MgO) and high-Al (17–19 wt% Al2O3, 3–6.5 wt% MgO) basalt and basaltic andesite erupted coevally from the central vent and flank cones. Individual and bulk olivine δ18O range from normal MORB values of 5.1‰ to values as high as 7.6‰. Likewise, tephra and lava matrix glass have high-δ18O values of 5.8–8.1‰. High-Al basalts dominate volumetrically in Klyuchevskoy’s volcanic record and are mostly high in δ18O. High-δ18O olivines and more normal-δ18O olivines occur in both high-Mg and high-Al samples. Most olivines in either high-Al or high-Mg basalts are not in oxygen isotopic equilibrium with their host glasses, and Δ18Oolivine–glass values are out of equilibrium by up to 1.5‰. Olivines are also out of Fe–Mg equilibrium with the host glasses, but to a lesser extent. Water concentrations in olivine-hosted melt inclusions from five tephra samples range from 0.4 to 7.1 wt%. Melt inclusion CO2 concentrations vary from below detection (<50 ppm) to 1,900 ppm. These values indicate depths of crystallization up to ~17 km (5 kbar). The variable H2O and CO2 concentrations likely reflect crystallization of olivine and entrapment of inclusions in ascending and degassing magma. Oxygen isotope and Fe–Mg disequilibria together with melt inclusion data indicate that olivine was mixed and recycled between high-Al and high-Mg basaltic melts and cumulates, and Fe–Mg and δ18O re-equilibration processes were incomplete. Major and trace elements in the variably high-δ18O olivines suggest a peridotite source for the parental magmas. Voluminous, highest in the world with respect to δ18O, and hydrous basic volcanism in Klyuchevskoy and other Central Kamchatka depression volcanoes is explained by a model in which the ascending primitive melts that resulted from the hydrous melt fluxing of mantle wedge peridotite, interacted with the shallow high-δ18O lithospheric mantle that had been extensively hydrated during earlier times when it was part of the Kamchatka forearc. Following accretion of the Eastern Peninsula terrains several million years ago, a trench jump eastward caused the old forearc mantle to be beneath the presently active arc. Variable interaction of ascending flux-melting-derived melts with this older, high-δ18O lithospheric mantle has produced mafic parental magmas with a spectrum of δ18O values. Differentiation of the higher δ18O parental magmas has created the volumetrically dominant high-Al basalt series. Both basalt types incessantly rise and mix between themselves and with variable in δ18O cumulates within dynamic Klyuchevskoy magma plumbing system, causing biannual eruptions and heterogeneous magma products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号