首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suprasolidus phase relations at pressures from 8 to 30 kb andtemperatures from 950 to 1380C have been determined experimentallyfor a glassy armalcolite–phlogopite lamproite from thechilled margin of a medium–grained lamproite from SmokyButte, Montana: The armalcolite-phlogopite lamproite has microphenocrystsof olivine in a groundmass of phlogopite, sanidine, armalcolite,clinopyroxene, chromite, priderite, apatite, and abundant glass.The lamproite is SiO2-rich and has high F/H2O relative to lamproitesthat have been investigated in previous experimental studies.Our data show that with decreasing temperature from the liquidusat pressures above 12 kb, melt coexists successively with:olivine; orthopyroxene + clinopyroxene; orthopyroxene + clinopyroxene+ phlogopite; clinopyroxene +phlogopite; and clinopyroxene +orthopyroxene + K-richterite. Below 12 kb, the assemblage successionis: olivine; olivine + clinopyroxene; olivine + clinopyroxene+ phlogopite; and olivine +clinopyroxene + phlogopite + armalcolite.The main difference from the natural paragenesis is that therock does not contain any orthopyroxene—a feature thatis rather remarkable inasmuch as it has 16% normative hypersthene—andthe rock differs also in that it contains sanidine and priderite.In the experiments, sanidine is observed only as ghostlike domainsin some of the glass and appears to have formed during quenching. The solid phases crystallized experimentally are generally compositionallysimilar to the minerals in the rock. These similarities andthe experimental phase relations support the concept of a rapidinitial magma ascent with only a small temperature drop andcrystallization of olivine, but not of orthopyroxene. At lowerpressures, less than 12 kb, it appears that the magma ascendedmore slowly with a larger temperature drop suggested by thesimilarity of the experimentally determined sequence of assemblagesto the paragenesis of the rock. No quasi-invariant multiphase-saturation point was found suchas might be indicative of pressure and temperature conditionsfor formation of the lamproite magma by eutectic-type partialmelting of a mantle source. The occurrence of olivine, orthopyroxene,and clinopyroxene near the liquidus, and the high proportionof normative hypersthene in the melt suggest that lherzoliteor harzburgite was probable in the magma source rock. The highSiO2 and MgO contents of the Smoky Butte lamproites may indicatethat orthopyroxene was a source mineral even though it did notcrystallize under near-surface conditions. The curve definingthe appearance of phlogopite appears at progressively lowertemperatures from the liquidus as pressure increases, so itwould appear that either phlogopite was not the mantle K-reservoir,or it was entirely consumed during the partial melting process.The composition of the near-liquidus glass in the experimentsis likely to be the composition of the bulk rock less the verysmall amounts of olivine + clinopyroxene + orthopyroxene crystallizedwithin a few degrees below the liquidus. From the inferred compositionof this glass, anhydrous phlogopite is a potential mineral.The principal variable that determines whether phlogopite crystallizesas a near-liquidus mineral is F/H2O; low values of this ratiopromote the presence of phlogopite as a near-liquidus mineralwhereas high values deter its crystallization. The common practiceof adding H2O but not F in experiments to compensate for degassingmay obscure the role of phlogopite in the evolution of lamproitemagmas.  相似文献   

2.
Titaniferous chromite (up to 8 wt% TiO2) and magnesian ilmenite (up to 10 wt% MgO) coexist at the base of the differentiated tholeiitic Mount Ayliff Intrusion in the Karoo Province of southern Africa, suggesting that the original magma was TiO2-rich. Picritic lavas with 3% TiO2 from the Lebombo monocline of the Karoo Province also contain microphenocrysts of magnesian ilmenite (up to 6 wt% mgO) and armalcolite (up to 7 wt% MgO). These oxide mineral associations and compositions are atypical of tholeiitic magmas, in which chromite usually has less than 1 wt% TiO2, ilmenite less than 3 wt% MgO and armalcolite is rarely a primary mineral. Experiments have been conducted at one atmosphere pressure on a range of compositions to determine the effect of TiO2 on the crystallization and composition of chromite, ilmenite and armalcolite. The results indicate that increasing the TiO2 content of picritic magmas increases the TiO2 content of the spinel, mainly at the expense of Al2O3, whereas Cr2O3 is not affected. Spinel compositions in the Mount Ayliff Intrusion (with over 45 wt% Cr2O3, less than 10 wt% Al2O3 and 8 wt% TiO2) were duplicated in experiments on a picrite at temperatures of about 1,200°C at the Ni/NiO buffer. Increasing fO2 from fayalite-magnetite-quartz to Ni/NiO buffer is shown to increase the crystallization temperature of armalcolite and to decrease that of ilmenite. The total FeO content of the liquid has little influence on the crystallization temperature of these phases. The TiO2 content of the liquid, when either ilmenite or armalcolite crystallizes, varies inversely with SiO2 content. The MgO content of the liquid at which ilmenite or armalcolite crystallizes depends upon the TiO2 content of the starting composition, with naturally occurring and experimetally determined saturation being demonstrated for liquids with 5 wt% MgO and 5.5 wt% TiO2. The partition coefficent for MgO between armalcolite or ilmenite and liquid is about 1.5. Observed magnesian armalcolite and ilmenite compositions in picrite lavas (both minerals) and in the Mount Ayliff Intrusion (ilmenite only) are consistent with crystallization from a TiO2-rich magma with approximately 5 wt% MgO. The Fe 2 3+ TiO5 component of armalcolite in the picrite lavas matches those formed experimentally at temperatures of 1,150–1,110°C and fO2 of the Ni/NiO to Ni/NiO+1 log unit. Similarities also exist between the compositions of chromite, ilmenite and armalcolite and liquid fraction-ation trends of some Hawaiian high-TiO2 lavas and the experimental studies presented here.  相似文献   

3.
A phase of Mesozoic extension associated with the terminationof continental collision at the southern margin of the AldanShield produced ultrabasic lamproites in a discontinuous belt500 km long and 150 km wide. The lamproites, locally poorlydiamondiferous, were emplaced as dykes, sills and pipes. AllAldan lamproites have primitive chemical characteristics (e.g.MgO up to 22·7 wt %) and are ultrapotassic (K2O up to8·3 wt %) and peralkaline with K2O + Na2O/Al2O3 in therange 0·6–1·16. A distinctive feature ofthese rocks is their low TiO2 content (0·5–1·4wt %). Aldan lamproites are moderately light rare earth element(LREE) enriched with (La/Yb)N ranging from 10 to 47. Heavy rareearth element (HREE) abundances are lower than for all otherlamproites by up to a factor of five. Therefore, the combinedmajor and trace element characteristics of the Aldan samplesare not typical of other lamproite occurrences. Large ion lithophileelement concentrations are high (100–800 x Primitive Mantle)but the high field strength elements (HFSE; Nb, Ta, Ti) plusTh and U display unusually low concentrations for rocks of thistype. The style of trace element enrichment recorded by theAldan Shield lamproites is comparable with that of subduction-relatedmagmatism. The Aldan lamproites have among the most extremeinitial isotopic ratios yet recorded from mantle-derived magmas;Ndi = –10·3 to –22·3, 87Sr/86Sri =0·7055–0·7079, Hfi = –7·6 to–29·4 and 206Pb/204Pbi = 16·6–17·4.When interpreted in terms of multi-stage Pb isotope evolution,the Pb isotope data require fractionation from a Bulk Earthreservoir at 3·0 Ga and subsequent evolution with second-stageµ values between 6·4 and 8·0. The inferredArchaean age of the lamproite source is consistent with Nd andHf model ages, which range from 1·5 to 3·0 Ga.Aldan lamproites have Hf values that range from +3 to –7.Trace element and Sr–Nd–Pb–Hf isotopic ratiosshow coherent variations that suggest that Archaean source enrichmentproduced the negative Hf as a result of metasomatism by slab-derivedhydrous melts that left rutile–garnet-bearing residua.We conclude that relatively large degrees of partial meltingproduced the lamproites (>5%), which explains the preservationof the isotope–trace element correlations and the lowREE contents. Although high-quality trace element data (e.g.HFSE) are not available for most lamproites, it appears thatmany of their source regions contain a component of recycledoceanic crust, possibly including subducted sediment. The sourcesof the Aldan and many other lamproites are distinct from oceanisland basalt mantle sources. This suggests that the long-termstorage of trace element enriched lamproite sources occurredin the sub-continental lithospheric mantle and not at depthwithin the convecting asthenosphere. KEY WORDS: potassic volcanism; isotope geochemistry; fluid enrichment  相似文献   

4.
The Fish Canyon Tuff, Colorado, forms one of the largest (3000km3 known silicic eruptions in Earth history. The tuff is ahomogeneous quartz latite consisting of 40% phenocrysts (plagioclase,sanidine, biotite, hornblende, quartz, magnetite, apatite, sphene,and ilmenite) in equilibrium with a highly evolved rhyoliticmelt now represented by the matrix glass. Melt inclusions trappedin hornblende and quartz phenocrysts are identical to the newlyanalyzed matrix glass composition indicating that hornblendeand quartz crystallized from a highly evolved magma that subsequentlyexperienced little change. This study presents experimentalphase equilibrium data which are used to deduce the conditions(P, T, fO2, fH2O, etc.) in the Fish Canyon magma chamber priorto eruption. These new data indicate that sanidine and quartzare not liquidus phases until 780?C temperatures are achieved,consistent with Fe-Ti oxide geothermometry which implies thatthe magmatic temperature prior to eruption was 760?30?C. NaturalFe-Ti oxide pairs also suggest that log fO2 was -12.4 (intermediatebetween the Ni-NiO and MnO-Mn3O4 oxygen buffers) in the magmachamber. This fO2.102 is supported by the experimentally determinedvariations in hornblende and melt Mg-numbers as functions offO2 A new geobarometer based on the aluminum content of hornblendesin equilibrium with the magmatic assemblage hornblende, biotite,plagioclase, quartz, sanidine, sphene, ilmenite or magnetite,and melt is calibrated experimentally, and yields pressuresaccurate to ?0.5 kb. Total pressure in the Fish Canyon magmachamber is inferred to have been 2.4 kb (equivalent to a depthof 7.9 km) based on the Al-content of natural Fish Canyon hornblendesand this new calibration. This depth is much shallower thanhas been proposed previously for the Fish Canyon Tuff. Variationsin experimental glass (melt) composition indicate that the magmawas water-undersaturated prior to eruption. XH2O in the fluidphase that may have coexisted with the Fish Canyon magma isestimated to have been 0.5 by comparing the An-content of naturalplagioclases to experimental plagioclases synthesized at differentXH2O and Ptotals. This ratio corresponds to about 5 wt.% waterin the melt at depth. The matrix glass chemistry is reproducedexperimentally under these conditions: 760?C, 2.4 kb, XH2O=0.5,and log fo2=NNO+2 log units. The fugacity of SO2 (91 b) is calculatedfrom the coexistence of pyrrhotite and magnetite. Maximum CO2fugacity (2520 b) is inferred assuming the magma was volatilesaturated at 2.4 kb.  相似文献   

5.
Widespread penecontemporaneous igneous activity affected NWRussia (the Kola Peninsula and adjoining areas to the SE aroundArkhangelsk) during the Late Devonian (360–380 Ma). Magmatismvaries from tholeiitic basalts, erupted in the axial regionsof former Middle Proterozoic (Riphean) rifts, to strongly alkalinerock-types on and marginal to Archaean cratons. NNE of Arkhangelskkimberlites, olivine lamproites and alkaline picrites were emplaced;all these rock-types are diamondiferous to varying extents.Higher TiO2 (and also total Fe) distinguish predominantly mica-poorEastern Group kimberlites (TiO2 = 2·4–3·1wt %) and spatially associated alkaline picrites (TiO2 = 3·2–3·7wt %) from nearby micaceous Western Group kimberlites (TiO2= 0·8–1·1 wt %). Each rock-type also hasdistinctive rare earth element (REE) patterns, and  相似文献   

6.
Stability Relations of the Ferruginous Biotite, Annite   总被引:12,自引:0,他引:12  
Annite, KFe3AISi3O10(OH)2 a member of the iron biotites andthe ferrous analogue of phlogopite, has been synthesized andits phase relations have been determined as functions of temperature,fugacity of oxygen (fo2), and total pressure (PtotalPH2O+PH2).A method for controlling fo2at high total pressures is described,and data for the ‘oxygen buffers’ used are given.Buffers range from quartz+iron+fayalite assemblages (low fo2)to magnetite-hematite assemblages (high fo2). Optical propertiesand unit-cell dimensions of synthetic annites depend on theconditions of synthesis. By recalculating published analyses of natural iron-rich biotitesit can be shown that one cannot assume a constant hydrogen contentfor such biotites. Oxidation may have occurred by drying at115?C. Octahedral occupancy therefore cannot be calculated fromsuch data. Phase relations of annite are presented in 2,070 and 1,035 barsections. Depending on fo2-T values annite was found to decomposeto one of the following assemblages: hematite+ sanidine, magnetite+sanidine,fayalite+leucite+kalsilite, iron+sanidine. All decompositionsare dehydration and redox reactions and are sensitive to changesin fH20 and fo2 (or fH20 and fH2). At 2, 070 bars total pressureannite+magnetite+sanidine can coexist between 425?C and 825?C, depending upon the magnitude of fo2. In the presence of quartz the stability field of annite is morerestricted. Phase equilibria in the system KAlSiO4–SiO2–Fe–O2–H2have been summarized schematically. Wherever possible, thermodynamic extrapolations are made totest the internal consistency of the data. Enthalpies of formationare calculated for both annite and phlogopite. Ranges of fo2values in nature as well as mechanisms for changes in fo2 areinvestigated. It is useful to distinguish between assemblageswhich are internally buffered with respect to fo2changes andthose which are not buffered. The applications of individualreactions involving annite to specific geologic problems arediscussed with respect to igneous, metamorphic, and sedimentaryrocks.  相似文献   

7.
Major and trace element, Sr–Nd–Pb isotope and mineralchemical data are presented for newly discovered ultrapotassiclavas in the Tangra Yumco–Xuruco graben in southern Tibet.The ultrapotassic lavas are characterized by high MgO, K2O andTiO2, low Al2O3 and Na2O contents, and also have high molarK2O/Al2O3, molar (K2O + Na2O)/Al2O3 and K2O/Na2O ratios. Theirhigh abundances of incompatible trace elements such as largeion lithophile elements (LILE) and light rare earth elements(LREE) reach the extreme levels typical of lamproites. The lamproitesshow highly radiogenic 87Sr/86Sr (0· 7166–0·7363) and unradiogenic 143Nd/144Nd (0· 511796–0·511962), low 206Pb/204Pb (18· 459–18· 931),and elevated radiogenic 207Pb/204Pb (15· 6732–15·841) and 208Pb/204Pb (39· 557–40· 058) ratios.On the basis of their geochemical and isotopic systematics,the lamproites in south Tibet have a distinct magma source thatcan be differentiated from the sources of potassic lavas inthe east Lhasa and Qiangtang blocks. Their high Nb/Ta ratios(17· 10–19· 84), extremely high Th/U ratios(5· 70–13· 74) and distinctive isotope compositionsare compatible with a veined mantle source consisting of partialmelts of subducted Tethyan oceanic sediments and sub-continentallithospheric depleted mantle. Identification of the lamproitesand the delineation of their mantle source provide new evidencerelevant for models of the uplift and extension of the Tibetanplateau following the Indo-Asia collision. Metasomatism by partialmelts from isotopically evolved, old sediment subducted on theyoung Tethyan slab is an alternative explanation for PrecambrianNd and Pb model ages. In this model, differences in isotopiccomposition along-strike are attributed to differences in thetype of sediment being subducted, thus obviating the need formultiple metasomatic events over hundreds of million years.The distribution of lamproites, restricted within a north–south-trendinggraben, indicates that the initiation of east–west extensionin south Tibet started at 25 Ma. KEY WORDS: lamproites; subducted oceanic sediment; Tibetan active continental collision belt  相似文献   

8.
Pelitic xenoliths derived from amphibolite grade basement rocksoccur within a Pleistocene, trachytic, pyroclastic unit of theWehr volcano, East Eifel, West Germany: With increasing temperatureand/or prolonged heating at high temperature, quartz-plagioclaseand micaceous layers of the xenoliths have undergone meltingto form buchites and thermal reconstitution by dehydration reactions,melting and crystallization to form restites respectively. Thexenoliths provide detailed evidence of melting, high temperaturedecomposition of minerals, nucleation and growth of new phasesand P-T-fo2 conditions of contact metamorphism of basement rocksby the Wehr magma. Melting begins at quartz-oligoclase (An17·3Ab82·3Or0·4-An20·0Ab78·1Or1·9)grain boundaries in quartz-plagioclase rich layers and the amountof melting is controlled by H2O and alkalis released duringdehydroxylation/oxidation of associated micas. Initially, glasscompositions are heterogeneous, but with increasing degreesof melting they become more homogeneous and are similar to S-typegranitic minimum melts with SiO2 between 71 and 77 wt. per cent;A/(CNK) ratios of 1·2–1·4; Na2O < 2·95and normative corundum contents of 1·9–4·0per cent. Near micas plagioclase melts by preferential dissolutionof the NaAlSi3O8 component accompanied by a simultaneous increasein CaAl2Si2O8 (up to 20 mol. per cent An higher than the bulkplagioclase composition) at the melting edge. With increasingtemperature the end product of fractional melting is the formationand persistence of refractory bytownite (An78–80) in thosexenoliths where extensive melting has taken place. Initial stage decomposition of muscovite involves dehydroxylation(H2O and alkali loss). At higher temperatures muscovite breaksdown to mullite, sillimanite, corundum, sanidine and a peraluminousmelt. Mullite (40–43 mol. per cent SiO2) and sillimanite(49 mol. per cent SiO2) are Fe2O3 and TiO2 rich (up to 6·1–0·84and 3·6–0·24 wt. per cent respectively).Al-rich mullite (up to 77 wt. per cent Al2O3) occurs with corundumwhich has high Fe2O3 and TiO2 (up to 6·9 and 2·1wt. per cent respectively). Annealing at high temperatures andreducing conditions results in the exsolution of mullite fromsillimanite and ilmenite from corundum. Glass resulting fromthe melting of muscovite in the presence of quartz is peraluminous(A/(CNK) = 1·3) with SiO2 contents of 66–69 percent and normative corundum of 4 per cent. Sanidine (An1·9Ab26·0Or72·1-An1·3Ab15·9Or82·9)crystallized from the melt. Dehydroxylation and oxidation of biotite results in a decreaseof K2O from 8·6 to less than 1 wt. per cent and oxidetotals (less H2O + contents) from 96·5 to 88·6,exsolution of Al-magnetite, and a decrease in the Fe/(Fe + Mg)ratio from 0·41 to 0·17. Partial melting of biotitein the presence of quartz/plagioclase to pleonaste, Al-Ti magnetite,sanidine(An2·0Ab34·9Or63·1) and melt takesplace at higher temperatures. Glass in the vicinity of meltedbiotite is pale brown and highly peraluminous (A/CNK = 2·1)with up to 6 wt. per cent MgO+FeO(total iroq) and up to 10 percent normative corundum. Near liquidus biotite with higher Al2O3and TiO2 than partially melted biotite crystallized from themelt. Ti-rich biotites (up to 6 wt. per cent TiO2) occur withinthe restite layers of thermally reconstituted xenoliths. Meltingof Ti-rich biotite and sillimanite in contact with the siliceousmelt of the buchite parts of xenoliths resulted in the formationof cordierite (100 Mg/(Mg+Fe+Mn) = 76·5–69·4),Al-Ti magnetite and sanidine, and development of cordierite/quartzintergrowths into the buchite melt. Growth of sanidine enclosedrelic Ca-plagioclase to form patchy intergrowths in the restitelayers. Cordierite (100 Mg/(Mg+Fe+Mn) = 64–69), quartz,sillimanite, mullite, magnetite and ilmenite, crystallized fromthe peraluminous buchite melt. Green-brown spinels of the pleonaste-magnetite series have awide compositional variation of (mol. per cent) FeAl2O4—66·6–45·0;MgAl2O4—53·0–18·7; Fe3O4—6·9–28·1;MnAl2O4—1·2–1·5; Fe2TiO4—0·6–6·2.Rims are generally enriched in the Fe3O4 component as a resultof oxidation. Compositions of ilmenite and magnetite (single,homogeneous and composite grains) are highly variable and resultfrom varying degrees of high temperature oxidation that is associatedwith dehydroxylation of micas and melting. Oxidation mainlyresults in increasing Fe3+, Al and decreasing Ti4+, Fe2+ inilmenite, and increasing Fe2+, Ti4+ and decreasing Fe3+ in associatedmagnetite. A higher degree of oxidation is reached with exsolutionof rutile from ilmenite and formation of titanhematite and withexsolution of pleonaste from magnetite. Ti-Al rich magnetite(5·1–7·5 and 8·5–13·5wt. per cent respectively) and ilmenite crystallized from meltsin buchitic parts of the xenoliths. Chemical and mineralogic evidence indicates that even with extensivemelting the primary compositions of individual layers in thexenoliths remained unmodified. Apparently the xenoliths didnot remain long enough at high temperatures for desilicationand enrichment in Al2O3, TiO2, FeO, Fe2O3, and MgO that resultsby removal of a ‘granitic’ melt, and/or by interactionwith the magma, to occur. T °C-fo2 values calculated from unoxidized magnetite/ilmenitegive temperatures ranging from 615–710°C for contactmetamorphism and the beginning of melting, and between 873 and1054°C for the crystallization of oxides and mullite/sillimanitefrom high temperature peraluminous melts. fo2 values of metamorphismand melting were between the Ni-NiO and Fe2O3-Fe3O4 buffer curves.The relative abundance of xenolith types, geophysical evidenceand contact metamorphic mineralogy indicates that the xenolithswere derived from depths corresponding to between 2–3kb Pload = Pfluid. The xenoliths were erupted during the latestphreatomagmatic eruption from the Wehr volcano which resultedin vesiculation of melts in partially molten xenoliths causingfragmentation and disorientation of solid restite layers.  相似文献   

9.
Suprasolidus phase relations at pressures from 4 to 7 GPa andtemperatures from 1000 to 1700C have been determined experimentallyfor a sanidine phlogopite lamproite from North Table Mountain,Leucite Hills, Wyoming. The lamproite is silica rich and hasbeen postulated to be representative of the magmas which wereparental to the Leucite Hills volcanic field. Near-liquidusphases above 5 GPa are pyrope-rich garnet and jadeite-rich pyroxene.Below 5 GPa, jadeite-poor pyroxene is the only near-liquidusphase. Near-solidus assemblages consist of clinopyroxene, titanianpotassium richterite and titanian phlogopite with either potassiumtitanian silicate above 5 GPa or potassium feldspar below 5GPa. The potassium titanian silicate is a newly recognized high-pressurephase ranging in composition from K4Ti2Si7O20 to K4TiSi8O20.It coexists with coesite at pressures above 6 GPa at 1100–1400C.A previously unrecognized K-Ba-phosphate is a common near-solidusphase. The phase relationships are interpreted to suggest thatlamproites cannot be derived by the partial melting of simplelherzolitic sources. However, it is proposed that sanidine phlogopitelamproites an derived by high degrees of partial melting ofancient metasomatic veins within a harzburgitic–lherzoliticlithospheric substrate mantle. The veins are considered to consistof phlogopite, K–Ti-richterite, K–Ba-phosphate andK–Ti-silicates. KEY WORDS: lamproilte; experimental petrology; upper mantle *Corresponding author  相似文献   

10.
A cluster of lamproite dykes are located 1 km west of Vattikod village at the NW margin of the Cuddapah basin, Eastern Dharwar craton, southern India, during the pursuit for locating primary diamond source rocks by adapting multifarious applications. These exotic rocks are emplaced along WNW-ESE to NW-SE trending fractures in the granitic rocks belonging to the Peninsular Gneissic Complex. Ten out of twelve lamproites occur near Vattikod village and one each is located in the vicinity of Marepalli and Gundrapalli villages respectively. These lamproites, though highly altered, contain microphenocrysts of altered olivine, clinopyroxene, phlogopite, leucite and sanidine and translucent to opaque, amoeboid shaped patches of glass set in a groundmass rich in carbonate, phlogopite, serpentine, and chlorite. This new cluster of lamproites constitutes a part of the recently discovered Ramadugu lamproite field. The Vattikod and Ramadugu lamproites, together with those from Krishna lamproite field and the Cuddapah basin, constitute, a wide spectrum of ultrapotassic magmatism emplaced in and around the Palaeo-Mesoproterozoic Cuddapah basin in southern India.  相似文献   

11.
《Chemical Geology》2007,236(3-4):291-302
The probable sources of some of the famous Indian diamonds are the 1.2 Ga old Krishna lamproites of Southern India, a rare Proterozoic occurrence of lamproites which are usually Cretaceous or younger in age. In this study we report Nd, Sr, Pb and Hf isotopes and multiple trace element concentrations of the Krishna lamproites. The goals are to evaluate mantle-processes and the petrogenesis of these ultrapotassic rocks of extreme chemical composition in light of these geochemical data, including their major element compositions.The Krishna lamproites show nearly uniform, parallel rare earth element (REE) distribution patterns with high concentrations and extreme light-REE enrichment (La/Yb(N) = 41–88), high average concentrations of Ba (∼ 1200 ppm), Sr (∼ 1200 ppm), Zr (∼ 930 ppm), La (∼ 230 ppm), high U/Pb and Th/U ratios with notable absence of any Eu-anomaly. These rocks are typically porphyritic without any evidence of crystal accumulation, and have moderately high Mg-numbers (59–73) along with high Ni (average ∼ 301 ppm, highest 819 ppm) and Cr (average ∼ 183 ppm, highest 515 ppm) concentrations that show a positive correlation with MgO (wt.%), implying a role of olivine in the melt source. The low SiO2 content (lowest 37.8%, average 49%) and high Nb (average 147 ppm), Zr, Sr, as well as Ni and Cr in these rocks indicate lack of upper continental crustal contribution in the genesis of these rocks. The initial Pb-isotopic composition of these lamproites is unusual in that in a 207Pb/204Pb vs. 206Pb/204Pb plot, these rocks plot to the left of the 1.2 Ga geochron (age of emplacement), unlike most mantle-derived rocks. This Pb-isotopic signature and the superchondritic Nb/Ta ratios (average 23.6) of these rocks rule out their derivation from a metasomatized sub-continental lithospheric mantle. The high 207Pb/204Pb at low 206Pb/204Pb indicates an Archean component in the source of these rocks. We argue that this Archean crustal component, which produced the low-SiO2 lamproites along with the high Ni and Cr must have been ultrabasic, and we propose a model in which these lamproites formed by partial melting of metasomatized, subducted Archean komatiite in a peridotite mantle-source assemblage. In addition, these rocks display initial Hf isotopic compositions similar to Al-depleted komatiites, and high Nb/U, Nb/Th, and TiO2 as well as low Al2O3/TiO2 ratios (1.1–4.2) and average CaO/Al2O3 of ∼ 1.6 that are also similar to Archean komatiites. This is also supported by the initial Pb isotopic composition of the Krishna lamproites, requiring evolution in a variably high U/Pb, Th/Pb reservoir early in earth history, possibly resulting from preferential segregation of Pb relative to U and Th in the sulfides of the komatiite.The Al-depleted subducted komatiitic component was enriched by carbonate metasomatism in the peridotitic mantle. This metasomatism was responsible for the observed Nd–Hf isotope characteristics, specifically variable εNd(T) at relatively constant εHf(T) in the lamproites. This Nd–Hf-isotopic characteristic seems to be common in global lamproites of all ages. Our proposed model for the genesis of the Krishna lamproites involving a subducted komatiitic source may also be applicable for other global lamproites from cratonic settings, as older komatiite-bearing subducted crustal components were possibly ubiquitous in the architecture of ancient cratonic mantle.  相似文献   

12.
Batholith-sized bodies of crystal-rich magmatic ‘mush’are widely inferred to represent the hidden sources of manylarge-volume high-silica rhyolite eruptive units. Occasionallythese mush bodies are ejected along with their trapped interstitialliquid, forming the distinctive crystal-rich ignimbrites knownas ‘monotonous intermediates’. These ignimbritesare notable for their combination of high crystal contents (35–55%),dacitic bulk compositions with interstitial high-silica rhyoliticglass, and general lack of compositional zonation. The 5000km3 Fish Canyon Tuff is an archetypal eruption deposit of thistype, and is the largest known silicic eruption on Earth. Ejectafrom the Fish Canyon magmatic system are notable for the limitedcompositional variation that they define on the basis of whole-rockchemistry, whereas 45 vol. % crystals in a matrix of high-silicarhyolite glass together span a large range of mineral-scaleisotopic variability (microns to millimetres). Rb/Sr isotopicanalyses of single crystals (sanidine, plagioclase, biotite,hornblende, apatite, titanite) and sampling by micromillingof selected zones within glass plus sanidine and plagioclasecrystals document widespread isotopic disequilibrium at manyscales. High and variable 87Sr/86Sri values for euhedral biotitegrains cannot be explained by any model involving closed-systemradiogenic ingrowth, and they are difficult to rationalize unlessmuch of this radiogenic Sr has been introduced at a late stagevia assimilation of local Proterozoic crust. Hornblende is theonly phase that approaches isotopic equilibrium with the surroundingmelt, but the melt (glass) was isotopically heterogeneous atthe millimetre scale, and was therefore apparently contaminatedwith radiogenic Sr shortly prior to eruption. The other mineralphases (plagioclase, sanidine, titanite, and apatite) have significantlylower 87Sr/86Sri values than whole-rock values (as much as –0·0005).Such isotopic disequilibrium implies that feldspars, titaniteand apatite are antecrysts that crystallized from less radiogenicmelt compositions at earlier stages of magma evolution, whereashighly radiogenic biotite xenocrysts and the development ofisotopic heterogeneity in matrix melt glass appear to coincidewith the final stage of the evolution of the Fish Canyon magmabody in the upper crust. Integrated petrographic and geochemicalevidence is consistent with pre-eruptive thermal rejuvenationof a near-solidus mineral assemblage from 720 to 760°C (i.e.partial dissolution of feldspars + quartz while hornblende +titanite + biotite were crystallizing). Assimilation and blendingof phenocrysts, antecrysts and xenocrysts reflects chamber-wide,low Reynolds number convection that occurred within the last10 000 years before eruption. KEY WORDS: Fish Canyon Tuff; Rb–Sr isotopes; microsampling; magmatic processes; crystal mush  相似文献   

13.
Vesicular interstitial glass in four kaersutite-bearing spinel–wehrlitexenoliths from Foster Crater, Antarctica has reacted with hostolivine (Fo75–79) and clinopyroxene (Ca47 Mg45 Fe8) andcontains a microphenocryst assemblage of spinel, olivine, andclinopyroxene together with later rhonite and plagioclase. Electronmicroprobe analyses of the glasses have low SiO2 (46–49wt. per cent) and MgO (2.2–3.7) contents and high contentsof alkalis, TiO2 (3.4–4.8), Al2O3 (18.1–20.6) andP2O5 (1.1–1.3). Olivine microphenocryst cores in glassare magnesian (up to Fo88) and must have precipitated from moreprimitive liquids; rim compositions are Fe-rich (Fo75) and inequilibrium with glass. Continuous core to rim zonation in theolivine microphenocrysts indicate that glass compositions havefractionated due to crystallization of the enclosed mineralassemblage. Mass balance addition calculations, using the compositionsand proportions of the crystals in glass, produce melt compositionsappropriate to primary alkali basaltic magmas. Glasses showlight rare earth element (REE) enrichment relative to chondrites(Ce/YbN = 10.5) and, together with Ba, Rb, Cr, Hf, Ta, and Thare similar to many of the basanites from the Erebus VolcanicProvince. Textural relationships of the kaersutite are complex owing tothe instability of kaersutite in the presence of melt. However,in the association with glass we observe textural evidence suchas olivine and clinopyroxene microphenocrysts, identical tothe liquidus phases of the glasses, enclosed by kaersutite crystals.We believe that relationships such as this link the crystallizationof kaersutite to mafic melt which infiltrated and reacted withthe host wehrlite. Thus, the melt did not form in situ withinthe xenolith but originated elsewhere in the upper mantle.  相似文献   

14.
Modal mantle metasomatism, involving the re-enrichment of depletedmantle by the introduction or production of new hydrous phases,apatite and other minerals, has been proposed as a criticalprecursor to alkaline volcanism. The merits of the modal metasomatismmodel are evaluated by examining whole-rock 100 Mg/(Mg+Fe2+)ratios and the abundances of TiO2, K2O and P2O5 in mafic volcanicsspanning the mafic alkaline-subalkaline compositional spectrum.Upper mantle amphiboles and micas are also discussed becausethey would be major donors of Ti, Fe, and K to melts duringanatexis of either modally metasomatized depleted mantle orundepleted mantle. Compared with tholeiitic and calc-alkaline basalts and andesites,basanites and alkali basalts and alkali andesites are neitherdistinctive nor unique by virtue of persistant or well-definedhigher abundances of TiO2, K2O, and P2O5 or lower 100 Mg/(Mg+Fe2+)ratios, features which might reflect precursor modal metasomatismof the alkaline sources. Some basanites and alkali basalts dohave higher abundances of TiO2, K2O, and P2O5 than some tholeiitesbut these abundances may be the result of lower degrees of meltingof similar undepleted mantle sources for both magma types. The most widespread mantle phases of inferred metasomatic originare interstitial amphiboles and micas in Group I spinel peridotitexenoliths. These have high 100 Mg/(Mg+Fe) ratios ({small tilde}90) and high Cr2O3 and low TiO2 abundances, and the K2O/Na2Oratios of the amphiboles (chromian pargasites) are low, generallyless than 0?3. Interstitial amphiboles and micas developed asa result of near-isochemical hydration reactions which largelyinvolved Cr-spinel and Cr-diopside. Their formation was probablyinduced in many instances by fluids derived from crystallizingmafic magmas. Metasomatized Group I xenoliths with interstitialhydrous phases remain depleted in TiO2, K2O, and P2O5, and theyretain the high 100 Mg/(Mg+Fe) ratios characterizing depletedGroup I xenoliths. Together with the low K2O/Na2O ratios, thesefeatures preclude such peridotites as suitable sources of mostalkaline (and subalkaline) volcanics. It is suggested that modalmetasomatism plays an insignificant role in the genesis of mostmantle-derived mafic volcanics. Compared with the interstitial phases, kaersutitic amphibolesand titaniferous micas from vein, Group II inclusion and megacrystupper mantle parageneses have lower 100 Mg/(Mg+Fe) ratios andCr2O3 contents, and much higher TiO2 abundances. K2O/Na2O ratiosof the Ti-amphiboles are also much more wide-ranging (0?3 togreater than 1?0). These Fe, Ti-rich amphiboles and micas areneither widespread nor pervasive phases in metasomatized mantle.They are directly related to alkaline magmatism in the uppermantle where they may be associated with incompatible elementenrichment of peridotite wallrocks in the immediate vicinityof frozen conduits of alkaline mafic magmas. The varying K2O/Na2O ratios of mafic volcanics (MORB constitutea major exception) indicate that the principal K-bearing phasesin undepleted mantle are kaersutitic amphibole and titaniferousmica, in varying proportions. The former is probably the majorsource of Ti and K for low K/Na volcanics (K2O/Na2O < 0?5)and also many medium K/Na types (0?5 < K2O/Na2O < 1?0),whereas mica is more likely to be the major K-bearing phasein the source regions of high K/Na extrusives (K2O/Na2 >1?0). Experimental data indicate that kaersutitic amphibole,mica and apatite probably coexist in undepleted spinel- andgarnet lherzolites at pressures up to 25 kb, with mica persistingto pressures as high as 50 kb. It is proposed that undepleted asthenospheric mantle is heterogeneouswith respect to its amphibole, mica, and apatite contents (andhence TiO2, K2O, and P2O5 abundances and K2O/Na2O ratios), andalso with respect to 100 Mg/(Mg+Fe2+ ) ratios which may be significantlyless than the ratios generally assigned to undepleted mantle,namely 88–90.  相似文献   

15.
New members of the crichtonite mineral series are described in which K, Ba, Ca and REE are in significant concentrations (5 wt% oxides) filling the A formula position in AM21O38. These phases are chromium (16 wt% Cr2O3) titanates (58 wt% TiO2) enriched in ZrO2 (5 wt%) and constitute a mineral repository for refractory and large ion lithophile elements in the upper mantle. The mineral senes coexists with Mg-Cr-ilmenite, Nb-Cr-rutile, and Ca-Cr (NbZr) armalcolite that have equally unusual chemistries. Kimberlitic crichtonites are depleted in the intermediate lanthanides but highly enriched in LREE and HREE with chondrite normalized abundances of 103 to 105. Crichtonite, armalcolite, and Nb-Cr-rutile occupy a compositional range in TiO2 contents bridging the gap between ilmenite and rutile, two minerals having a widespread distribution in kimberlites and mantle-derived nodule suites.In common with other associations, and based on similarities in mineral chemistry, it is concluded that these minerals formed at P = 20–30 kb, 900–1100°C by reaction of peridotite with metasomatizing fluids. Kimberlitic crichtonite may be expressed as spinel + Cr-ferropseudobrookite, and armalcolite is equivalent to Cr-geikielite + rutile in the system (FeMg)-TiO2-Cr2O3. This system contains a number of Cr-Ti compounds not found as minerals but it is proposed that the ubiquitous occurrence of ilmenite intergrowths in kimberlitic rutile results from decomposition of high pressure αPbO2-type crystallographic shear structures. The new minerals have exotic chemistries and the high K-affinities broaden the scope for the origin of alkalic rocks, the generation of highly potassic magmas in the upper mantle, and suggest that alkali metasomatism may be pervasive.  相似文献   

16.
Ultrapotassic basaltic lavas erupted 3.4–3.6 m.y. ago(K/Ar) in the central Sierra Nevada and originated by partialmelting of a phlogopite-enriched, garnet-bearing upper mantlesource. Ultrapotassic basanites (K2O: 5–9 per cent), whichare spatially related to contemporaneous potassic olivine basalts(K2O: 3–5 per cent) and alkali olivine basalts (K2O: 1–3per cent), contain the K2O-bearing minerals phlogopite, sanidine,and leucite as well as olivine, diopside, apatite, magnetite,and pseudobrookite. The presence and modal abundance of theK2O-bearing minerals closely reflects the east to west increasein K2O throughout the basaltic suite. Many lines of evidence support the derivation of the ultrapotassicbasanites and the related basalts from an upper mantle source:TiO2 in phlogopite phenocrysts and groundmass crystals, 2–3and 7–9 per cent respectively, support phlogopite phenocrystcrystallization at high pressure, whole rock Mg values (100Mg/Mg + 0.85 Fe) range from 66–78, phlogopite-rich pyroxeniticand periodotitic nodules are included in some flows, and geobarometriccalculations indicate depths of generation at 100–125km. Also, model calculations show that the major, rare earth,and trace elements, except for Ba, Rb, and Sr, can be accuratelygenerated by 1.0–2.5 per cent melting of a phiogopite-and garnet-bearing clinopyroxene-rich upper mantle source. Partialmelting occurred after a general upper mantle enrichment beneaththe Sierra Nevada, the phlogopite- and clinopyroxene-rich sourceof the ultrapotassic lavas being the extreme result of the enrichmentprocess. Clinopyroxene enrichment of the upper mantle probablyoccurred by introduction of a partial melting fraction intothe upper mantle source areas. Enrichment of the upper mantlein the alkali and alkali-earth elements was not accomplishedby a partial melt, but resulted from influx of a fluid phaserich in Ba, K, Rb, Sr, and, probably, H2O The continuous rangein K2O of the erupted lavas implies that the upper mantle enrichmentis a cumulative process. The inverse relationship in the SierraNevada between uplift and the K2O content of the erupted basaltsimplies that a critical relationship may exist between upliftand upper mantle enrichment.  相似文献   

17.
Basalt was successfully cored at Site 54 in the Parace VelaBasin of the Philippine Sea, and at Site 57 on the CarolineRidge as part of Leg 6 of the Deep Sea Drilling Project. Site54 basalts are altered, but selected major and trace elements,particularly REE allow their characterization as high-aluminaolivine tholeiites, with flat REE patterns, no Eu anomalies,and low dispersed trace-element contents. Basalt from Site 57is distinctly different, with higher TiO2, P2O5, Fe/Mg ratio,and dispersed trace elements, low Ni, Mg, and a strongly fractionatedREE pattern. Derivation by fractionation of transitional basaltis suggested. Varying degrees of alteration of Site 54 basalts has causeddepletion in MgO and addition of Rb, Sr, Ba, Ka2O, and Na2O.Mineralogically these changes have resulted in alteration ofolivine and pyroxene, but plagioclase and iron-titanium oxidesremain unaffected. Microprobe data are presented for olivine, clinopyroxene, plagioclase,Fe-Ti oxides, and chrome-spinel in all three basalts. In 54–4,54–8 pyroxenes are zoned from salite to ferroaugite, andshow erratic decrease in A12O3 and TiO2 with increasing ironcontent. In 57–2, pyroxenes are more magnesian than thosein site 54 basalts, and show an increase in A12O3 and TiO2 withiron-enrichment. The anomalous behaviour of Al2O3 and TiO2 insome clinopyroxenes, and the close textural relationship ofpyroxene and magnesian olivine in 57–2 basalt, suggestthese minerals are xenocrystic, and were incorporated duringmagma ascent. Spinels of picotite composition in early-formed,and possibly xenocrystic, olivine, and plagioclase crystallizedprior to magma eruption, and may have begun crystallizationwithin the mantle. Site 54 basalts add further confirmation that inter-are basaltsclosely resemble ocean ridge tholeiites, although there is apaucity of data from inter-are environments. Site 57 basaltis chemically and mineralogically distinct from ocean ridgebasalts and may be related to similar volcanics erupted on theCaroline Islands.  相似文献   

18.
Petrological and chemical evidence is presented to show thatsmall patches of brown glass found in blocks of granite eruptedin basaltic scoria at Mt. Elephant are the result of the partialfusion of biotite and quartz. The glass has moderate SiO2 (63–66per cent), high AI2O3 (17.5–19 per cent), high FeO (3.8–5.2per cent) and very high K2O (7.0–7.8 per cent) relativeto Na2O (3.3–3.7 per cent) and is similar in compositionto many high K alkali syenites and trachytes.  相似文献   

19.
The Fish Canyon Tuff is one of the largest currently recognizedash-flow tuffs (> 3000 km3). It is a crystal-rich quartzlatite containing about 40 per cent phenocrysts of plagioclase,sanidine, biotite, hornblende, quartz, magnetite, sphene, andilmenite. Pyrrhotite occurs as inclusions in magnetite, sphene,and hornblende. The consistency of mineralogy and whole rockchemistry confirms that the Fish Canyon tuff is remarkably homogeneous.Most chemical variations can be accounted for by phenocryst-matrixfractionation, probably due to glass winnowing during eruptionand emplacement. The composition of the parent magma, correctedfor such winnowing, is very similar to that of calc-alkalinebatholiths such as the Boulder and the Sierra Nevada batholiths. Fe-Ti oxide geothermometers indicate temperatures of 800 ? 30?C for most of the outflow tuff. No evidence for a regular thermalgradient in the magma chamber could be detected. Two feldsparand Fe-Ti oxide equilibria indicate that the magma developedat depths of 25 to 30 km (about 9 kb pressure), and was eruptedwithout time for phenocryst re-equilibration. The reconstructedcomposition of the liquid in equilibrium with the phenocrystsalso suggests a deep source for this ash flow. A late, upperpackage of flow units have mineralogical characteristics whichmay reflect partial re-equilibration in a shallower environment. Oxygen fugacities are moderately high (log fO2 = — 11.5?0.3) but are similar to those obtained from other continentalcalc-alkaline ash-flow tuffs. The water fugacity is limitedby calculations using biotite equilibria and experimental workrelating to the stability of the phenocryst assemblage. Bestestimates are that water fugacity was 2000 ? 1000 bars. Theactivities of sulphurous gases are estimated at fSO2 = 2 to4 bars, fso2 = 150 to 200 bars, fH2S = 70 to 80 bars. The Fish Canyon Tuff therefore came from a deep, homogeneous,granitic magma body of batholithic proportions. Calculationsof its probable viscosity, density, and size indicate that thesystem should convect with any reasonable thermal gradient.Convective mixing may account for the homogeneity of the parentmagma body.  相似文献   

20.
Pyroxenes in a low-Ca boninite from a dyke show remarkable growthand overgrowth textures and chemical zoning, which are usedto infer crystallization mechanisms and kinetics. The rock comprisesnearly 50 vol.% fresh glass, phenocrysts and glomerocrysts ofclinoenstatite sensu lato ({small tilde}32 vol.%), microphenocrystsof orthopyroxene and Ca-rich clinopyroxene ({small tilde}17vol.%), and microlites of amphibole and oxides ({small tilde}3vol.%). Clinoenstatite, which inverted from protoenstatite,is skeletal with glass and chrome-spinel inclusions and thinovergrowth zones of Ca-rich clinopyroxene and amphibole; thecrystals are occasionally broken. Orthopyroxene is often skeletal,sometimes slightly resorbed with the same inclusions and overgrowthzones. Ca-rich clinopyroxene and amphibole occur mainly in pyroxeneovergrowth zones. Chrome-spinel in contact with glass is overgrownby magnetite-maghemite or amphibole. The rock is andesitic witha high mg-number of 0.78, and is quartz- and strongly hypersthene-and feldspar-normative. The glass is dacitic with an mg-numberof 0.15, strongly quartz- and feldspar-normative, and rich inwater ({small tilde}5.6wt.%). Strong chemical zoning occurs in all minerals, oscillatory zoningoccurring only in clinoenstatite and orthopyroxene. The mg-numberin clinoenstatite sensu lato ranges from 0.95 (clinoenstatitesensu stricto) to 0-68 (clinohypersthene), the largest rangeso far described, and from 0.88 to 0.43 in orthopyroxene. TheWo content of the former (0.21–1.56 with rare higher values)is considerably smaller than and does not overlap that of thelatter (1.36–4.84X Wo generally increasing with Fs. Thecores of both are chromian (up to 0–018 atoms per formulaunit), and Cr falls to or below the detection limit for Fs>25.The Fs-rich zones of clinohypersthene have {small tilde}2wt%A12O3 and (M6wt% TiO2, whereas those of orthopyroxene reachnearly 10 and 04 wt. %, respectively. Ca-rich clinopyroxenevaries from pigeonite through subcalcic augite and augite toferroaugite, the outer zones reaching 12wt.% A12O3 and 1–8wt% TiO2. Amphibole is magnesio-hornblende on pyroxene or tschermakitichornblende on oxide. The relative times of nucleation, growth, partial resorption,and fracturing of the crystals were determined from the texturesand the chemistry of the overgrowths. Protoenstatite and chrome-spinelnucleated from the melt and were overgrown in places by allsucceeding minerals. Orthopyroxene nucleated mainly from themelt, whereas the other phases occur only as overgrowths. Orthopyroxenemay show weak resorption at intermediate stages. Protoenstatitecrystals were occasionally broken, the relative times beingshown by the nature of the overgrowths. Minor-element concentrationsvary strongly with the growth stage, chromium soon being usedup in the melt and aluminium and titanium being strongly concentratedin the crystals during the last stages. Plagioclase and quartzare absent because of suppression of their nucleation in a water-richmelt on rapid cooling. Crystallization probably occurred intwo main stages, an early one of moderately fast cooling atlow undercooling probably in a shallow magma chamber (correspondingto the growth of the protoenstatite phenocrysts) and a laterone over a period of less than a day of faster cooling at higherundercooling after uprise and injection into the dyke (correspondingto the fracturing of protoenstatite and growth of the microphenocrystsand microlites).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号