首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Fault-propagation folding associated with an upward propagating fault in the Gilbertown graben system is revealed by well-based 3-D subsurface mapping and dipmeter analysis. The fold is developed in the Selma chalk, which is an oil reservoir along the southern margin of the graben. Area-depth-strain analysis suggests that the Cretaceous strata were growth units, the Jurassic strata were pregrowth units, and the graben system is detached in the Louann Salt.The growth trishear model has been applied in this paper to study the evolution and kinematics of extensional fault-propagation folding. Models indicate that the propagation to slip (p/s) ratio of the underlying fault plays an important role in governing the geometry of the resulting extensional fault-propagation fold. With a greater p/s ratio, the fold is more localized in the vicinity of the propagating fault. The extensional fault-propagation fold in the Gilbertown graben is modeled by both a compactional and a non-compactional growth trishear model. Both models predict a similar geometry of the extensional fault-propagation fold. The trishear model with compaction best predicts the fold geometry.  相似文献   

2.
The Yubei-Tangbei area in the southern Tarim Basin is one of the best-preserved Early Paleozoic northeast-southwest trending fold-and-thrust belts within this basin.This area is crucial for the exploration of primary hydrocarbon reservoirs in northwestern China.In this study,we constructed the structural geometric morphology of the Yubei-Tangbei area using geophysical logs,drilling,and recent two-and three-dimensional(2-D and 3-D)seismic data.The Early Paleozoic fault-propagation folds,the Tangnan triangle zone,fault-detachment folds,and trishear fault-propagation folds developed with the detachment of the Middle Cambrian gypsum-salt layer.According to a detailed chronostratigraphic framework,the growth strata in the Upper Ordovician-Lower Silurian layer formed by onlapping the back limb of the asymmetric fault-propagation folds,which therefore defines the timing of deformations.The changes in kink band hinges and amplitudes in the Permian-Carboniferous and Cenozoic folding strata suggest that the evolution of the fold-and-thrust belts followed a sequential evolution process rather than a simultaneous one.Above the pre-existing Precambrian basement structure,the Yubei-Tangbei fold-and-thrust belts can be divided into four tectonic evolution stages:Late Cambrian,Late Ordovician to Early Carboniferous,Carboniferous to Permian,and Cenozoic.The northwestern-verging Cherchen Fault is part of the piedmont fold-and-thrust system of the southern Tarim foreland basin.We interpreted its strata as a breakthrough trishear fault-propagation fold that developed in three phases:Mid-Late Ordovician,Silurian to Middle Devonian,and Triassic to present.These tectonic events are responses of the Altyn-Tagh and Kunlun collisional orogenic belts and the Indian-Eurasian collision.The inherited deformation and structural modification in the southern Tarim Basin may be an indicator of the growth and evolution of peripheral orogens.  相似文献   

3.
现有的断层相关褶皱理论均基于平衡剖面原理而建立的二维几何学模型。所谓的假三维模型则是通过一系列的二维剖面复合而成的,真正意义上的三维断层相关褶皱理论尚未确立,仍然处于探索阶段。本文采用Trishear 4.0和GoCad软件,分别构建一系列不同位移量的断层转折褶皱和三剪断层传播褶皱的二维正演剖面,将这些正演剖面按照一定的线性位移梯度平行排列,从而建立起断层转折褶皱和三剪断层传播褶皱的假三维理论模型并加以分析和讨论。进而选取川西南盆地中三维地震勘探所覆盖的邛西断层转折褶皱和盐井沟断层传播褶皱,作为真三维实际解释模型的两个实例。研究表明,邛西背斜是一个典型的剪切断层转折褶皱,盐井沟背斜是一个典型的三剪断层传播褶皱;断层相关褶皱的假三维理论模型与实际解释模型的对比分析,可以看出沿背斜走向的位移梯度是控制三维构造几何学特征的基本因素,然而自然界断层面几何学的复杂多变以及岩层力学性质的各向异性,是造成断层相关褶皱真三维理论模型难以建立的主要原因。  相似文献   

4.
Experimental (clay) models of inversion structures   总被引:3,自引:0,他引:3  
Experimental modeling is used to study the geometry and evolution of inversion structures. Two main types of inversion structures are analyzed:

1. (1) structures formed by fault-propagation folding; and

2. (2) structures formed by fault-bend folding on listric faults.

Fault-propagation inversion structures initially develop as broad drape folds with possible fault breakthrough during an early extensional phase. Syn-extensional strata deposited in the hanging wall typically thicken away from the fault. Compressional reactivation results in reversal of slip on the master and secondary faults, their rotation to shallower dips, and the development of a compressional fault-propagation fold. Key features of the fault-propagation fold are basinward thickening of syn-extensional units and resulting steep dips of the front limb of the structure. Fault-bend inversion structures initiate as rollover folds within extensional half-graben. Deformation is primarily localized along a system of antithetic faults. Syn-extensional strata typically thicken across the fault but also thin basinward away from the fault. During compression, the extensional rollover folds are folded into compressional fault-bend folds. Key features of this structure are thinning of syn-extensional units into the basin. Inversion of more symmetric graben results in a doubly-convex geometry of syn-extensional units. These observations of bed geometry and thickness provide predictive models for interpreting the geometries of inversion structures in areas of poor data quality.  相似文献   


5.
Fault-propagation folding is an important yet seldom recognised structural style within sediments affected by glacier-induced deformation. Fault-propagation folds develop in the hanging wall of low angle thrust faults and compensate part of the slip along the fault. Field examples are recognised across northern Europe, in glaciotectonic complexes of north Germany, Wales and the Isle of Man. The recognition of the fault-propagation fold mechanism in glaciotectonic deformation is important because resultant structures are related to exactly the same phase of deformation (i.e. the same phase of ice advance), and thus play a critical role in analyses of the temporal and spatial evolution of glacier-induced deformation. Some field examples show monoclinal geometries that are in good agreement with predictions of trishear kinematic theory. The trishear approach is appropriate to model these structures because the structures analysed in the field and simulated below show characteristics that are compatible with fault-propagation folds that were produced by trishear kinematics. The curved forelimb and the monocline geometry of the fault-propagation folds fit to the trishear model. The occurrence of footwall synclines is also in good agreement with trishear kinematics. These synclines show the typical thickening of the strata in the hinge. With respect to the modelling output, most important factors for the structural evolution of the fault-propagation folds is the ramp angle of the thrust, the position of the tip line and the propagation-to-slip ratio along the fault. This fits to observations made by previous studies at large scale fault-propagation folds in fold-and-thrust belts.  相似文献   

6.
伸展断层相关褶皱的几何学分析及其在车镇凹陷中的应用   总被引:2,自引:0,他引:2  
苏金宝  朱文斌  贾东 《地质学报》2011,85(10):1563-1573
本文总结了伸展断层相关褶皱的发育类型,主要包括伸展断层传播褶皱与伸展断层转折褶皱(也叫断弯褶皱)等.伸展断层传播褶皱多形成在较陡的正断层之上,正断层向上传播使断层顶部地层弯曲,进而形成一个伸展的断层传播褶皱,其发育模式与三剪变形发育模式一致.车镇凹陷是渤海湾盆地南部一个典型的中新生代半地堑盆地.本文通过对横穿车镇凹陷的...  相似文献   

7.
This paper describes how a model of fixed-hinge, basement-involved, fault-propagation folds may be adapted to apply to thin-skinned thrust faults to generate footwall synclines. Fixed-hinge, fault-propagation folding assumes that the fold-axial surfaces diverge upwards, fold hinges are fixed in the rock, the fault propagated through the forelimb, thickness changes occur in the forelimb and the forelimb progressively rotates with increasing displacement on the underlying fault. The original model for fixed-hinge, fault-propagation folds was developed for the case of a planar fault in basement with a tip line that was at the interface between basement and the overlying sedimentary cover rocks. The two geometries applicable to thin-skinned thrusts are for the cases where a fixed-hinge fault-propagation fold develops above an initial bedding-parallel detachment, and an initial fault ramp of constant dip which flattens down-dip into a bedding-parallel detachment.  相似文献   

8.
Fold terminations are key features in the study of compressional fault-related folds. Such terminations could be due to loss of displacement on the thrust fault or/and forming a lateral or oblique ramp. Thus, high-quality seismic data would help unambiguously define which mechanism should be responsible for the termination of a given fault-related fold. The Qiongxi and Qiongxinan structures in the Sichuan Basin, China are examples of natural fault-propagation folds that possess a northern termination and a structural saddle between them. The folds/fault geometry and along-strike displacement variations are constrained by the industry 3-D seismic volume. We interpret that the plunge of the fold near the northern termination and the structural saddle are due to the loss of displacement along strike. The fault geometry associated with the northern termination changes from a flat-ramp at the crest of the Qiongxinan structure, where displacement is the greatest, to simply a ramp near the northern tip of the Qiongxi structure, without forming a lateral or oblique ramp. In this study, we also use the drainage pattern, embryonic structure preserved in the crest of the Qiongxinan structure and the assumption that displacement along a fault is proportional to the duration of thrusting to propose a model for the lateral propagation of the Qiongxinan and Qiongxi structures. Specifically, we suggest that the structure first initiated as an isolated fault ramp within brittle units. With increased shortening, the fault grows to link with lower detachments in weaker shale units to create a hybridized fault-propagation fold. Our model suggests a possible explanation for the lateral propagation history of the Qiongxinan and Qiongxi structures, and also provides an alternative approach to confirming the activity of the previous Pingluoba structure in the southwestern Sichuan Basin in the late Cenozoic.  相似文献   

9.
We show the application of a simulated annealing algorithm to trishear inverse modeling. The algorithm traverses the parameter space in search for best-fit models without being trapped in local minima, and thus sampling for more possible solutions globally. Simulated annealing is a robust and efficient technique to determine the uniqueness of best-fit trishear models; the spread of possible trishear models that can fit a structure. We first apply the algorithm to a decameter-size, contractional fault-propagation fold in west-central Taiwan, for which there is an exceptional exposure of pre-growth and growth strata. Simulated annealing shows that even for this complete fold dataset with low uncertainties, there is a range of models and fault slip/uplift histories that can fit the data, with the consequent implications for the assessment of seismic hazard. We then apply the algorithm to a kilometer-size, extensional fault-propagation fold, the Hadahid monocline, Gulf of Suez Rift, Egypt. In this monocline there is only surface coverage in the footwall anticline areas and the algorithm was used to delimit the range of possible models that can fit the data and their uncertainties, thus avoiding biases in the interpretation. Simulated annealing suggests that the along-strike structural variability of the monocline can result from along-strike variability in fault slip, fault propagation to fault slip ratio and depth of fault nucleation. Both examples illustrate the benefits of searching for a possible range of models rather than a precise best-fit model when modeling fault-propagation folds. In an attempt to understand which parameters control fault development, and also how the spread of possible solutions varies with fold growth, we apply the algorithm to four sequential stages of a published, analog clay model of an extensional forced fold. The inversions of the natural examples and the analog model suggest that the spread of the possible models is a manifestation of the data uncertainties, the suitability of the trishear model, fold evolution, and rock mechanical properties.  相似文献   

10.
The leading edge of the ENE-trending Himalayan thrust front in Pakistan exhibits along-strike changes in deformational style, ranging from fault-bend to fault-propagation folds. Although the structural geometry is very gently deformed throughout the Salt Range, it becomes progressively more complex to the east as the leading edge of the emergent Salt Range Thrust becomes blind. Surface geology, seismic reflection, petroleum well, and chronostratigraphic data are synthesized to produce a 3-D kinematic model that reconciles the contrasting structural geometries along this part of the Himalayan thrust front. We propose a model whereby displacement was transferred, across a newly-identified lateral ramp, from a fault-bend fold in the west to fault-propagation folds in the east and comparable shortening was synchronously accommodated by two fundamentally different mechanisms: translation vs. telescoping. However, substantially different shortening distribution patterns within these structurally contrasting segments require a tear fault, which later is reactivated as a thrust fault. The present geometry of this S-shaped displacement transfer zone is a combined result of the NW–SE compression of the lateral culmination wall and associated tear fault, and their subsequent modification due to mobilization of underlying ductile salt.  相似文献   

11.
Stuart Hardy  Emma Finch   《Tectonophysics》2006,415(1-4):225-238
A discrete element model is used to investigate the influence of sedimentary cover strength on the development of basement-involved fault-propagation folds. We find that uniformly weak cover best promotes the development of classical, trishear-like fault-related folds showing marked anticlinal thinning and synclinal thickening, with cover dips increasing downwards towards the fault tip. Uniformly strong cover results in more rounded fold forms with only minor hinge thickening/thinning and significant basement fault-propagation into the sedimentary cover. Heterogeneous, layered, cover sequences with marked differences in strength promote the development of more complex and variable fold forms, with a close juxtaposition of brittle and macroscopically ductile features, which diverge from the predictions of simple kinematic models. In these structures the upper layers are often poor indicators of deeper structure. In addition, we find that in layered cover sequences fault-propagation into the cover is a complex process and is strongly buffered by the weaker cover units.  相似文献   

12.
伸展褶皱作用及其油气勘探意义   总被引:2,自引:0,他引:2  
汪新文 《现代地质》2008,22(1):60-69
伸展褶皱是张性盆地区构造变形的重要组成部分,其分布相当普遍,多属于与正断层相关的褶皱。伸展褶皱的分类可以采用褶皱轴向与成因类型相结合的方案。按褶皱轴向与相关正断层或区域构造线的关系可分为纵向、横向和斜向褶皱3大类;按褶皱作用的成因机制又可分为伸展断弯褶皱、伸展断展褶皱、断层牵引褶皱、逆牵引褶皱、均衡褶皱、断层位移梯度褶皱、构造变换带褶皱、横向收缩褶皱、转换伸展褶皱等多种类型。伸展褶皱是伸展型盆地中最重要的油气圈闭构造,而且可以控制沉积相带的分布,有利于形成良好的储集岩系,促进油气运移,并与断层、岩性、地层相结合形成多种类型的复合油气藏,控制油气的富集区带。  相似文献   

13.
塔里木盆地北缘库车前陆褶皱──冲断构造分析   总被引:19,自引:1,他引:19  
库车前陆褶皱-冲断带是以断坪-断坡式的台阶状逆断层作为滑动机制的盖层薄皮推覆构造,它们在剖面上形成一个向南变薄尖灭的推覆构造楔,底部沿脱面在北侧深南侧浅,推覆变形也是自北向南传递。依据其构造形态和变形特点可分为五个构造亚带:(1)南天山前缘楔状构造带;(2)库姆格列木-依奇克里克断层扩展褶皱构造带:(3)吐格尔明-吉迪克断层弯曲褶皱构造带:(4)秋里塔格断层扩展褶皱与断层弯曲褶皱叠加构造带;(5)库车-亚肯生长断层弯曲褶皱构造带。  相似文献   

14.
This study uses 3D seismic reflection dataset to investigate the time-integrated growth and degradation of fault-propagation folds and associated slump deposits in the deepwater Niger Delta. The results of the analysis showed that slump deposits are sourced almost entirely from the degradation of growing fold crests—resulting in the development of seaward-facing scarps on the forelimbs of these folds. The scarps develop parallel to fold axes and have dips that range between 4° SW and 20° SW. The constant presence of fan-shaped slump deposits downdip of these scarps suggests a direct relationship to fold crest degradation. Moreover, the spatio-temporal distribution of the slumps also shows a direct relationship with the heights of seabed scarps along the strike of growing folds. Slumps have short run-out distances (generally less than 5 km); however, they also travel long distances downslope (up to 10 km) across growing structures by exploiting relay areas between growing scarps.  相似文献   

15.
A simple method to estimate fold-amplification and thrust-movement rates for detachment folds is documented and illustrated by its application to a symmetrical detachment fold in the Southern Pyrenees, Spain. The technique provides a complete record of the kinematic evolution of detachment folds and is based on the application of equations for detachment folds involving limb rotation. The method uses the stratal pattern of the syntectonic sediments and assumes that these growth strata were deposited horizontally, that the folds involve a homogeneous competent unit detached over a ductile horizon, and that the folds can be represented by chevronkink bands. The procedure is applicable to any detachment fold with associated growth strata that display wedge geometries (‘progressive unconformities’) indicating limb rotation through time. This method can be used for both detachment folds formed with constant limb length or variable limb length, and it can also accommodate undecompacted or decompacted growth strata.  相似文献   

16.
库车再生前陆盆地冲断构造楔特征   总被引:60,自引:4,他引:56  
库车再生前陆盆地冲断构造楔由一系列向南运动的逆冲断层和相关褶皱组成。冲断楔的北部以断层转折褶皱、断层传播褶皱、双重逆冲构造为主。断层楔的前缘发育了很好的滑脱膝折背斜,全为盲断层控制,形成隐蔽式前锋。冲断层的就位从中新世开始,自北向南迁移,前锋的构造形成在第四纪。造成逆冲断层的地壳水平缩短作用速度在中新世较慢,平均为0.355mm/a,上新世中期达0.82mm/a,而到上新世晚期和第四纪速度增大了约一个数量级,达到1.29-3mm/a。  相似文献   

17.
早中生代(晚印支-早燕山期)岳阳-赤壁断褶带位于江南造山带与中扬子前陆盆地交界地带.作者对该构造带进行了地表地质调查,以此为基础探讨了构造剖面结构及构造变形动力机制.岳阳-赤壁断褶带自南而北可分为岳阳-临湘基底滑脱-逆冲带,桃花泉-肖家湾盖层滑脱褶皱带,以及赤壁-嘉鱼前陆盆地断-褶-盆构造带.岳阳-临湘基底滑脱-逆冲带自南而北依次有郭镇向斜、官山背斜、临湘倒转向斜和聂市背斜,组成隔槽式褶皱组合.褶皱轴面多向南倾,褶皱变形面为南华系盖层与冷家溪群褶皱基底间的角度不整合面和顺界面的滑脱断裂面.桃花泉-肖家湾盖层滑脱褶皱带主要发育轴面南倾倒转褶皱,褶皱波长较小,卷入地层为南华系-志留系以及上石炭统-中三叠统沉积盖层.赤壁-嘉鱼前陆盆地断-褶-盆构造带以南倾蒲圻断裂(江南断裂)为南部边界,发育T3-J2前陆盆地沉积,带内褶皱与断裂卷入地层包括沉积盖层以及T3-J2地层:南部断裂与褶皱轴面南倾.北部轴面近直立.自南西至北东,研究区内构造线走向由EW向渐变为NEE-NE向.上述构造分带及变形特征反映出自南向北的运动指向,表明岳阳-赤壁断褶带具前陆冲断带构造性质.从断裂相关褶皱理论出发,以地表构造特征为依据,厘定了岳阳-赤壁地质剖面结构并进行了变形动力机制分析,认识如下:①自南而北、自下而上的多个滑脱层及其间的南倾逆断裂或断坡(主要为江南断裂)组成近似台阶状的逆冲断裂系统,从总体上控制了构造块体的滑移、逆冲以及相应的构造格架或变形分区.②郭镇向斜为基底滑脱褶皱,官山背斜具滑脱褶皱和断裂传播褶皱双重成因,聂市背斜为断裂转折褶皱;临湘向斜为受两侧背斜控制的被动向斜,由于弯滑褶皱作用在其两翼沿不整合界面形成滑脱断裂.③岳阳-临湘基底滑脱-逆冲带隔槽式褶皱的形成主要受控于褶皱基底的滑脱和基底整体的水平压缩,其形成机制类似于肿缩式褶皱.最后讨论认为湘东北-鄂东南地区不存在大规模、长距离的逆冲推覆构造.  相似文献   

18.
玉东-玛东构造带位于塔里木盆地,是在中寒武统膏盐层上滑脱的大规模褶皱冲断带,内部发育多种断层相关褶皱。目前对此构造带的研究,多关注了构造带的局部以及断裂变形。本文根据断层相关褶皱理论,利用地震资料,分析了玉东-玛东构造带内构造样式上的差异性,并通过二维构造正演模拟,建立了典型构造样式的运动学模式。认为研究区内玉东、玛东、塘北3个分区,具有不同的构造样式。玉东地区主要发育和铲式逆断层相关的断弯褶皱,玛东、塘北地区则发育断层突破的滑脱褶皱,突破断层在玛东地区为铲式断裂,而在塘北地区为坪-坡-坪式断裂。根据上奥陶统变形特征及其顶面不整合面之上的地层年代,认为玉东-玛东构造带的变形始于晚奥陶世,主要断裂及其相关褶皱形成于晚奥陶世末期。玉东地区在晚奥陶世早期,形成基底-盖层的低幅褶皱,在晚奥陶世末,形成铲式断裂及断弯褶皱;玛东和塘北地区变形发生在上奥陶统沉积之后,经历了滑脱褶皱和断层突破阶段。通过对比分析认为,断层相关褶皱样式的差异,与膏盐层岩性、厚度,上奥陶统岩性、厚度及构造转换作用有关。本研究有助于完善对塔里木盆地早古生代末期构造变形及演化的认识。  相似文献   

19.
Surface geology and heophysical data, supplemented by regional structural interpretations, indicate that the Valle del Cauca basin and adjacent areas in west-central Colombia form a west-vergent, basement-involved fold and thrust belt. This belt is part of a Cenozoic orogen developed along the west side of the Romeral fault system. Structural analysis and geometrical constraints show that the Mesozoic ophiolitic basement and its Cenozoic sedimentary cover are involved in a “thick-skinned” west-vergent foreland style deformation. The rocks are transported and shortened by deeply rooted thrust faults and stacked in imbricate fashion. The faults have a NE---SW regional trend, are listric in shape, developed as splay faults which are interpreted as joining a common detachment at over 10 km depth. The faults carry Paleogene sedimentary strata and Cretaceous basement rocks westward over Miocene strata of the Valle del Cauca Basin. Fold axes trend parallel or sub parallel to the thrust faults. The folds are westwardly asymmetrical with parallel to kink geometry, and are interpreted to be fault-propagation folds stacked in an imbricate thrust system. Stratigraphic evidence suggests that the Valle del Cauca basin was deformed between Oligocene and upper Miocene time. The kinematic history outlined above is consistent with an oblique convergence between the Panama and South American plates during the Cenozoic.A negative residual Bouguer anomaly of 20–70 mgls in the central part of the Valle del Cauca basin indicates that a substantial volume of low density sedimentary rocks is concealed beneath the thrust sheets exposed at the land surface. The hydrocarbon potential of the Valle del Cauca should be reevaluated in light of the structural interpretations presented in this paper.  相似文献   

20.
We use scaled physical analog (centrifuge) modeling to investigate along- and across-strike structural variations in the Salt Range and Potwar Plateau of the Himalayan foreland fold-thrust belt of Pakistan. The models, composed of interlayered plasticine and silicone putty laminae, comprise four mechanical units representing the Neoproterozoic Salt Range Formation (basal detachment), Cambrian–Eocene carapace sequence, and Rawalpindi and Siwalik Groups (Neogene molasse), on a rigid base representing the Indian craton. Pre-cut ramps simulate basement faults with various structural geometries.A pre-existing north-dipping basement normal fault under the model foreland induces a frontal ramp and a prominent fault-bend-fold culmination, simulating the Salt Range. The ramp localizes displacement on a frontal thrust that occurs out-of-sequence with respect to other foreland folds and thrusts. With a frontal basement fault terminating to the east against a right-stepping, east-dipping lateral ramp, deformation propagates further south in the east; strata to the east of the lateral ramp are telescoped in ENE-trending detachment folds, fault-propagation folds and pop-up structures above a thick basal detachment (Salt Range Formation), in contrast to translated but less-deformed strata with E–W-trending Salt-Range structures to the west. The models are consistent with Salt Range–Potwar Plateau structural style contrasts being due to basement fault geometry and variation in detachment thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号