首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Migmatitic rocks developed in metagraywackes during the Variscan orogeny in the Aiguilles-Rouges Massif (western Alps). Partial melting took place 320 Ma ago in a 500 m-wide vertical shear zone. Three leucosome types have been recognised on the basis of size and morphology: (1) large leucosomes > 2 cm wide and > 40 cm long lacking mafic selvage, but containing cm-scale mafic enclaves; (2) same as 1 but with thick mafic selvage (melanosome); (3) small leucosomes < 2 cm and < 40 cm) with thin dark selvages (stromatic migmatites). Types 1 + 2 have mineralogical and chemical compositions in keeping with partial melting experiments. But Type 3 leucosomes have identical plagioclase composition (An19–28) to neighbouring mesosome, both in terms of major- and trace-elements. Moreover, whole-rock REE concentrations in Type 3 leucosomes are only slightly lower than those in the mesosomes, unlike predicted by partial melting experiments. The main chemical differences between all leucosome types can be related to the coupled effect of melt segregation and late chemical reequilibration.

Mineral assemblages and thermodynamic modelling on bulk-rock composition restrict partial melting to  650 °C at 400 MPa. The large volume of leucosome (20 vol.%) thus generated requires addition of 1 wt.% external water. Restriction of extensive migmatization to the shear zone, without melting of neighbouring metapelites, also points to external fluid circulation within the shear zone as the cause of melting.  相似文献   


2.
The stromatic migmatites of Nelaug (Tvedestrand area, SouthernNorway) are investigated in detail. They show well developedlayers of leucosomes, mesosomes and melanosomes. It is establishedthat the mesosomes and leucosomes of these migmatites are differentfrom each other texturally, mineralogically, and chemically.Also combinations of leucosome plus adjacent melanosome portionsare chemically different from those of the mesosomes. Theseobservations do not agree with the findings of Mehnert (1971)and do not fit into his genetic model. The mesosome layers and the leucosome + melanosome combinationsare taken to represent the chemical compositions of the countryrock, a metagraywacke with relicts of primary rhythmic layering(Touret, 1965). The mineralogical composition of the layersvaries from granitic to tonalitic. Relict textures indicatethat the leucosome portions were initially occupied by layersof granitic composition relatively rich in K-feldspar, whereasthe mesosomes are the representatives of those metagraywackelayers which were relatively rich in plagioclase. An almostisochemical transformation of a paragneiss into the investigatedstromatic migmatite is established. Melting experiments performed at PH2O= 5 Kb yielded solidustemperatures of 640±7 °C for all layers. The Composition of plagioclases present in the different layersis explained by isochemical partial melting and in situ crystallization.The chemical, mineralogical, and textural findings support themodel of almost isochemical transformation already establishedfor the Arvika migmatites (Johannes & Gupta, 1982).  相似文献   

3.
Evidence of melting is presented from the Western Gneiss Region (WGR) in the core of the Caledonian orogen, Western Norway and the dynamic significance of melting for the evolution of orogens is evaluated. Multiphase inclusions in garnet that comprise plagioclase, potassic feldspar and biotite are interpreted to be formed from melt trapped during garnet growth in the eclogite facies. The multiphase inclusions are associated with rocks that preserve macroscopic evidence of melting, such as segregations in mafic rocks, leucosomes and pegmatites hosted in mafic rocks and in gneisses. Based on field studies, these lithologies are found in three structural positions: (i) as zoned segregations found in high‐P (ultra)mafic bodies; (ii) as leucosomes along amphibolite facies foliation and in a variety of discordant structures in gneiss; and (iii) as undeformed pegmatites cutting the main Caledonian structures. Segregations post‐date the eclogite facies foliation and pre‐date the amphibolite facies deformation, whereas leucosomes are contemporaneous with the amphibolite facies deformation, and undeformed pegmatites are post‐kinematic and were formed at the end of the deformation history. The geochemistry of the segregations, leucosomes and pegmatites in the WGR defines two trends, which correlate with the mafic or felsic nature of the host rocks. The first trend with Ca‐poor compositions represents leucosome and pegmatite hosted in felsic gneiss, whereas the second group with K‐poor compositions corresponds to segregation hosted in (ultra)mafic rocks. These trends suggest partial melting of two separate sources: the felsic gneisses and also the included mafic eclogites. The REE patterns of the samples allow distinction between melt compositions, fractionated liquids and cumulates. Melting began at high pressure and affected most lithologies in the WGR before or during their retrogression in the amphibolite facies. During this stage, the presence of melt may have acted as a weakening mechanism that enabled decoupling of the exhuming crust around the peak pressure conditions triggering exhumation of the upward‐buoyant crust. Partial melting of both felsic and mafic sources at temperatures below 800 °C implies the presence of an H2O‐rich fluid phase at great depth to facilitate H2O‐present partial melting.  相似文献   

4.
Abstract. A method for the quantitative analysis of the spatial relations of minerals is described. Dispersed distributions are formed by annealing and destroyed in post-tectonic migmatization. Aggregate distributions characterize solid-state differentiation, whereas leucosomes formed in systems of high fluid:rock ratio (in the examples studied, anatectic melts) show random distributions.
Quantitative textural analysis can be used to indicate whether migmatization was post-tectonic or earlier, though caution is necessary if post-migmatite cooling is slow or if there is some minor deformation. More importantly, it can be used to discriminate melt-present from melt-absent leucosomes; this is exemplified by a suite of metamorphic and anatectic migmatites from the Scottish Caledonides.
The textural evolution of anatexites with increasing melt percentage is traced. Initial feldspar porphyroblastesis occurs by Ostwald ripening via grain boundary melts; subsequently ophthalmites develop with fabrics and chemistry inherited from the palaeosome. At greater than 30% melt these inherited fabrics are wholly destroyed. Deformation prompts segregation into melanosome and leucosome; resultant leucosomes contain no inherited crystals. The scale of anatectic systems is fixed at the point at which segregation begins; ophthalmites provide evidence for melt and crystal transfer beyond original palaeosome boundaries. In contrast, metamorphic migmatites are necessarily small-scale systems because of diffusive constraints, and melanosomes are invariably produced.  相似文献   

5.
Mass-balance and mass-transfer in migmatites from the Colorado Front Range   总被引:5,自引:0,他引:5  
Metasomatic exchanges between the infiltrating fluids and wall rocks most likely initiated the formation of nine leucosomes in two large samples of the Precambrian biotite-quartz-feldspar migmatites from the east-central Colorado Front Range. The leucosomes, 2 to 20 mm thick and enclosed in mafic salvages 1 to 10 mm thick, are granitic to tonalitic in composition. Mass-balance calculations suggest that each leucosome formed by local introduction of mass. The net gains and losses calculated assuming that all such gains and losses were contained within the leucosome show that, in general, neither the gains nor the losses fit the composition of any silicate melt. It is more likely that the components were transported in a fluid. Recalculated on constant Al basis, the most significant relative mass transfers were gain of K and losses of Na and Mg by the rocks. The metasomatic reactions calculated are those for replacement of plagioclase by microcline and breakdown of biotite. The reactions must have been the cause of incipient migmatization. A mafic selvage formed from the paleosome by the loss of material whose composition is tonalitic to granodioritic varying systematically with the paleosome composition.It is proposed that an infiltrating fluid caused metasomatism and partial melting along its path and that the melt, segregated from the mafic residues, combined with the introduced material to form a leucosome. The degree of melting was controlled by the paleosome composition and by the net amount (but not the composition) of the introduced material. The cause of melting of the paleosome was most likely an increased due to the influx of H2O from the water-rich fluid.The compositional range of the metamorphic solution in equilibrium with these rocks was calculated from available experimental data. The sample calculations show that such fluid could have been responsible for the reactions and mass transfers observed.  相似文献   

6.
Estimated variations in mineral concentrations across leucosomes suggest that leucosomes are generated during anatexis by a diffusive exchange between the leucosome and the mesosome, and not by the migration of melt from the mesosome. However, the presence of melt is a precondition for the diffusive exchange to take place. Initially a crack is formed due to shear stress. The formation of a crack allows a diffusive exchange to take place through the melt, which causes melting of minerals situated near the crack. The diffusive exchange of material is less efficient in the mesosome where the melt is isolated at grain corners and edges. The microcline enrichment of some granitic leucosomes is thought to be due to the diffusive depletion of the mesosome caused by growth of alkali feldspar during the consolidation of the migmatite. In general, it seems unnecessary to invoke concentrations of water in the leucosome or the intrusion of external fluids or magmas for migmatite formation.  相似文献   

7.
SAWYER  E. W. 《Journal of Petrology》1991,32(4):701-738
Migmatites are developed in Archaean metabasites south of theGrenville Front. Relative to equivalent greenschist facies metabasites,those hosting the migmatites have undergone some mobilizationof CaO, Na2O, and Sr, and, in the case of sheared metabasites,the introduction of K2O, Ba, Cs, and Rb, before migmatization.Three types of anatectic migmatite are recognized, based ontheir leucosome-melanosome relationships: (1) non-segregatedmigmatites in which new leucocratic and magic phases are intimatelymixed in patches up to 15 cm across, (2) segregated migmatitesin which the leucosomes are located in boudin necks and shearbands, and are separated from their associated mafic selvedgesby 5–100 cm, and (3) vein-type migmatites where discordantleucosomes lack mafic selvedges. The non-segregated and segregatedmigmatites have a local and essentially isochemical origin,whereas the vein-type represent injected melt. Leucosomes fromthe segregated and vein-type migmatites have similar tonaliticmajor oxide compositions, but they differ greatly in their trace-elementcharacteristics. The vein-type leucosomes are enriched in K2O, Ba, Cs, Rb, LREE,Th, Hf, Zr, and P2O5 relative to their metabasite hosts, andhave greater La/YbN ratios (27 compared with 0?6–17).These veins may have formed by between 5 and 25%equilibriumbatch partial melting of Archaean metabasalt, leaving garnet+ hornblende in the residuum. In contrast, leucosomes from the segregated migmatites are depletedin REE, Sc, V, Cr, Ni, Co, Ti, Th, Hf, Zr, Nb, and P2O5 relativeto their source rocks; the associated mafic selvedges are enrichedin these elements. The leucosomes and mafic selvedges both haveLa/YbN ratios that are similar to those of the source metabasitesirrespective of whether the source is LREE depleted or LREEenriched. The abundances of many trace elements in the leucosomesappear to be controlled by the degree of contamination withresiduum material. Zr concentrations in the leucosomes are between10 and 52% of the estimated equilibrium concentrations in felsicmelts at the temperature (750–775 ?C) of migmatization.A numerical simulation of disequilibrium melting using bothLREE-depleted and LREE-enriched sources yields model melts withtrace element abundances that match those of the natural leucosomes.Mafic selvedge compositions indicate that the segregated migmatitesrepresent a range of between 12 and 36% partial melting of theirhost metamatization. Based upon calculated dissolution times for zircon in wet melts,the melt and residuum were separated in less than 23a, otherwisemelts would have become saturated in Zr. Rapid melt extractionis thought to be driven by pressure gradients developed duringnon-coaxial deformation of the anisotropic palaeosome duringmigmatization. The common occurrence, based on published work, of disequilibriumcompositions in migmatite leucosomes implies that during mid-crustalmelting the melt-segregation rates are greater than the rateof chemical equilibration between melt and the residual solid.In contrast, at the higher temperatures of granite formation,the rate of chemical equilibration exceeds that of melt-segregationand equilibrium melt compositions are reached before segregationcan occur. On the basis of their trace element characteristics,the melt which forms segregated migmatites cannot be the sameas that which forms the vein-like migmatites, or granitoid plutons.  相似文献   

8.
Integrated, in situ textural, chemical and electron microprobe age analysis of monazite grains in a migmatitic metapelitic gneiss from the western Musgrave Block, central Australia has identified evidence for multiple events of growth and recrystallisation during poly-metamorphism in the Mesoproterozoic. Garnet + sillimanite-bearing metapelite underwent partial melting and segregation to palaeosome and leucosome during metamorphism between 1330 and 1296 Ma, with monazite grains in leucosome recording crystallisation at 1300 Ma. Monazite breakdown during melting is inferred to have occurred in the palaeosome. During a subsequent granulite facies event at 1200 Ma, deformation and metamorphism of leucosome and palaeosome resulted in partial disturbance of ages and potential minor growth on 1300 Ma monazite in leucosome. Growth of new, high-Y (+HREE) monazite in palaeosome domains occurred during garnet breakdown in the presence of sillimanite to cordierite and spinel, as a result of post-peak isothermal decompression. Diffusive enrichment of resorbed garnet rims in Y + HREE suggests garnet breakdown occurred slower than volume diffusion of REE. Monazite in both palaeosome and leucosome were subsequently partially to penetratively recrystallised during a retrogression event that is suggested to have occurred at 1150–1130 Ma. The intensity of recrystallisation and disturbance of ages appears linked to proximity to retrogressed garnet porphyroblasts and their occurrence in the relatively reactive or ‘fertile’ local environments provided by the palaeosome/mesosome volumes, which caused localised changes in retrogressive fluids towards compositions more aggressive to monazite. Like reaction textures, it is apparent that domainal equilibrium and reaction may control or at least strongly influence monazite REE and U–Th–Pb chemistry and hence ages.  相似文献   

9.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   

10.
Abstract In the northeastern part of the Grenville Province, along the gulf of St Lawrence, cordierite is widespread in the migmatites of Baie Jacques Cartier (BJC) and Baie des Ha! Ha! (BHH). In the BJC area, rafts of mesosome occur in a pervasive network of leucosome consisting of cordierite-bearing pegmatite. In BHH, however, the mesosome and leucosome are well segregated and locally separated by thin biotite –hornblende melanosomes. Leucosomes in the BJC area record the highest temperatures (oxide thermometry = 900°C), whereas leucosomes of BHH and mesosomes of both areas indicate peak temperatures around 800°C (oxide thermometry; biotite–garnet thermometry with fluorine-rich biotite). Peak pressures were constrained at 720 MPa using the Ilm-Sil–Qtz–Grt–Rt (GRAIL) equilibrium. The area is thought to have undergone extensive melting under relatively modest pressures. The highest temperatures recorded in the BJC area are probably related to a pervasive impregnation of this terrane by aluminous granitic melts. Most post-peak P–T estimates for the mesosomes fall on a nearly isobaric, clockwise, P–T path (0.6 MPa/°C) with the exception of the high-temperature leucosomes of BJC, which fall about 100°C away from this path; this is additional evidence for the external origin of these leucosomes. The ultimate source of heat that generated the migmatites is thus though to be an underlying plutonic complex (anorthosite?).  相似文献   

11.
秦岭群中条带状混合岩质量等比线分析   总被引:4,自引:1,他引:4  
刘景波  游振东 《岩石学报》1997,13(3):427-438
对采自秦岭群中的五块条带状混合岩所作的质量等比线分析显示了两种情况:(1)古成体或围岩与脉体加暗色体确定的质量等比线揭示古成体或围岩是脉体加暗色体的原岩。脉体加暗色体有小的质量剩余,主要是Na+K的带入,一块标本有Ca的带出,而另一块标本有Fe的带出。后一标本的古成体与暗色体确定的质量等比线表明这类条带状混合岩的形成还涉及分异作用,它由分异作用和交代作用共同形成。(2)古成体与脉体加暗色体确定的质量等比线表明脉体加暗色体有大的质量剩余,剩余物质是花岗岩成分,没有物质的损失。这一情况存在两种解释:其一是原岩有不同的成分层,富长英质的成分层发育为脉体加暗色体;其二是原岩均匀,脉体加暗色体的形成中有大量外来物质的加入。本文倾向于第一种解释。  相似文献   

12.
鄂东北大别杂岩中深熔混合岩存在的地质地球化学证据   总被引:1,自引:0,他引:1  
王江海  游振东 《地球化学》1995,24(4):359-367
基于地质地球化学研究结果提出识别大别杂岩中深熔混合岩的证据:①浅色体粗大可横切面理,伴有复杂褶皱,帮助发育;②浅色体和古成体中斜长石牌号有明显差异;③矿物成分和组合指示曾达到深熔条件;④浅色体中富含Al2O3、Fe2O3、TiO2和不活动、不相容元素,如LREE、Th、Hf、Zr。最结合混合岩矿物空间分布和质量平衡研究结果得出结论:大别核心杂岩中混合岩的主导成因机制是深熔。  相似文献   

13.
Making a distinction between partial melting and subsolidus segregation in amphibolite facies migmatites is difficult. The only significant melting reactions at lowpressures, either vapour saturated or muscovite dehydration melting, do not produce melanocratic peritectic phases. If protoliths are Si-rich and K-poor, then peritectic sillimanite and K-feldspar will form in scarce amounts, and may be lost by retrograde rehydration. The Roded migmatites of southern Israel (northernmost Arabian Nubian Shield) formed at P = 4.5 ± 1 kbar and T ≤ 700 °C and include Si-rich, K-poor paragneissic paleosome and trondhjemitic leucosomes. The lack of K-feldspar in leucosomes was taken as evidence for the non-anatectic origin of the Roded migmatites (Gutkin and Eyal, Isr J Earth Sci 47:117, 1998). It is shown here that although the Roded migmatites experienced significant post-peak deformation and recrystallization, microstructural evidence for partial melting is retained. Based on these microstructures, coupled with pseudosection modelling, indicators of anatexis in retrograded migmatites are established. Phase diagram modelling of neosomes shows the onset of muscovite dehydration melting at 4.5 kbar and 660 °C, forming peritectic sillimanite and K-feldspar. Adjacent non-melted paleosomes lack muscovite and would thus not melt by this reaction. Vapour saturation was not attained, as it would have formed cordierite that does not exist. Furthermore, vapour saturation would not allow peritectic K-feldspar to form, however K-feldspar is ubiquitous in melanosomes. Direct petrographic evidence for anatexis is rare and includes euhedral plagioclase phenocrysts in leucosomes and quartz-filled embayments in corroded plagioclase at leucosome-melanosome interfaces. In deformed and recrystallized rocks muscovite dehydration melting is inferred by: (1) lenticular K-feldspar enclosed by biotite in melanosomes, (2) abundant myrmekite in leucosomes, (3) muscovite–quartz symplectites after sillimanite in melanosomes and associated with myrmekite in leucosomes. While peritectic K-feldspar formed in melanosomes by muscovite dehydration melting reaction, K-feldspar crystallizing from granitic melt in adjacent leucosome was myrmekitized. Excess potassium was used in rehydration of sillimanite to muscovite.  相似文献   

14.
A suite of migmatites in uppermost amphibolite facies schists of the Koettlitz Group exposed in the Taylor Valley, Antarctica, provides direct evidence of the behaviour of partially molten rock during syn-anatectic deformation. The geometry of the migmatites is directly related to their position relative to the hinge of a kilometre-scale antiform. Migmatitic rocks on the fold limbs are characterized by extensional shears and fractures, filled with leucosome material, that intersect the pervasive foliation and millimetre-thick stromatic leucosomes. Vein- and dyke-like leucosomes become more common and thicker from the limb to the hinge region of the antiform. Rocks characterized by high leucosome-to-rock ratios near the antiform hinge are xenolithic in appearance. Major parasitic folds within the hinge contain leucogranite 'microplutons' up to 50 m across beneath refractory 'cap-rock' layers.
Angular boudinage structures in schists surrounded by leucosomes indicate a relatively low yield strength in the leucosome, which is compatible with a molten rather than solid leucosome. Leucogranite-bearing extensional shears and fractures indicate that repeated extensional fracturing and shearing promoted by high fluid (melt) pressure is an important mechanism of melt segregation. Dilation in the hinges of developing folds aids the migration of melt into fold hinges and the development of 10–50-m-wide 'microplutons' of xenolith-rich leucogranite.
Lack of vapour-absent melting and consequent low melt-to-rock ratios allowed the Koettlitz Group to maintain its structural coherency on a kilometre scale. Consequently, leucosome 'microplutons' did not exceed 50 m in width, and therefore observed leucosomes have not contributed to the development of adjacent plutonic-scale granitoids.  相似文献   

15.
Abstract Migmatites in the Quetico Metasedimentary Belt contain two types of leucosome: (1) Layer-parallel leucosomes that grew during deformation and prograde metamorphism. These are enriched in SiO2, Sr, and Eu, but depleted in TiO2, Fe2O3, MgO, Cs, Rb, REE, Sc, Th, Zr, and Hf relative to the Quetico metasediments. (2) Discordant leucosomes that formed after the regional folding events when metamorphic temperatures were at their peak. These are enriched in Rb, Ba, Sr and Eu, but display a wide range of LREE, Th, Zr, and Hf contents relative to the Quetico metasediments.
Layer-parallel leucosomes formed by a subsolidus process termed tectonic segregation. This stress-induced mass transfer process began when the Quetico sediments were deformed during burial, and continued whilst the rocks were both stressed and heterogeneous. Subsolidus leucosome compositions are consistent with the mobilization of quartz and feldspar from the host rocks by pressure solution. The discordant leucosomes formed by partial melting of the Quetico metasediments, possibly during uplift of the belt. The range of composition displayed by the anatectic leucosomes arises from crystal fractionation during leucosome emplacement. Some anatectic leucosomes preserve primary melt compositions and have smooth REE patterns, but those with negative Eu anomalies represent fractionated melts, and others with positive Eu anomalies represent accumulations of feldspar plus trapped melt.  相似文献   

16.
Low‐P granulite facies metapelitic migmatites in the Wuluma Hills, Strangways Metamorphic Complex, Arunta Block, preserve evidence of polyphase deformation and migmatite formation which is of the same age of the c. 1730 Ma Wuluma granite. Mineral equilibria modelling of garnet‐orthoproxene‐cordierite‐bearing assemblages using thermocalc is consistent with peak S3 conditions of 6.0–6.5 kbar and 850–900 °C. The growth of orthopyroxene and garnet was primarily controlled by biotite breakdown during partial melting reactions. Whereas orthopyroxene in the cordierite‐biotite mesosome shows enrichment of heavy‐REE (HREE) relative to medium‐REE (MREE), orthopyroxene in adjacent garnet‐bearing leucosome shows depletion of HREE relative to MREE. There is no appreciable difference in major element contents of minerals common to both the mesosome and leucosome. The REE variations can be satisfactorily explained by decoupling of major element and REE partitioning, in the context of appropriate phase‐equilibria modelling of a prograde path at ~6 kbar. Sparse garnet nucleii formed at ~760 °C, along with concentrated leucosome development and preferentially partitioned HREE. Further heating to ~800 °C at constant or subtly increasing pressure conditions additionally stabilized orthopyroxene and decreased the garnet mode. Orthopyroxene in the leucosome inherited an REE pattern consequent to the partial consumption of garnet, it being distinct from the REE pattern in mesosome orthoproxene that was mostly controlled by biotite breakdown. Such within‐sample variability in the enrichment of heavy REE indicates that caution needs to be exercised in the application of common elemental partitioning coefficients in spatially complex metamorphic rocks.  相似文献   

17.
Leucosomes and melanosomes in selected specimens of migmatitic, sillimanite-zone, pelitic schists are modal and chemical complements formed by segregation within originally homogeneous paleosomes. Systematic bulk chemical and modal variations in melanosomes can be used to infer the reactions by which leucosomes were generated.Trace element variations and relationships in melanosomes and leucosomes indicate that the migmatites behaved as closed systems during leucosome formation. Mass-balance evaluation of trace element relationships in the context of inferred leucosome-forming reactions suggest that trace elements essentially followed the melanosome phases initially containing them, as these phases reacted in leucosome generation. The trace element composition of a leucosome is given by the sum of those of the melanosome phases reacted, minus the trace element contents of any new solid melanosome phases produced by the reactions.Trace element relations are consistent with metamorphic equilibrium during leucosome generation, but suggest that once leucosome was segregated, equilibrium was not maintained between leucosome and melanosome.  相似文献   

18.
D. L. Whitney  A. J. Irving 《Lithos》1994,32(3-4):173-192
Two types of stromatic leucosomes are identified in metasedimentary rocks from the Skagit migmatite complex, North Cascades, Washington state, U.S.A. Both types are trondhjemitic and appear similar in outcrop, but, although both contain low abundances of REE, one type consists of leucosomes that are relatively REE-enriched compared to the other, and contains (1) small (<0.8 mm), Fe-rich garnets that are compositionally and texturally different from mesosome and melanosome garnet; (2) Ti-rich minerals (rutile, titanite) that are not present in the groundmass of the associated mesosomes or melanosomes and (3) CO2-rich fluid inclusions in quartz. Leucosomes of the second type are REE-depleted compared to the first type, lack garnet and Ti-minerals, and contain only H2O-rich fluid inclusions. The first type of leucosome is interpreted to have formed by in situ partial melting accompanied, and perhaps initiated, by an influx of water-rich fluid during upper amphibolite facies metamorphism. These conclusions are based on estimates of metamorphic P-T-Xfluid conditions (9–10 kbar, > 700°C, water-rich fluid present), inferences about the origin of the above-listed mineralogical and fluid inclusion features, and modeling of leucosome trace element abundances. The second type of leucosome is interpreted to have formed entirely by subsolidus processes (e.g., metamorphic differentiation) because these leucosomes lack features consistent with an origin by partial melting.

K-poor (tonalitic/trondhjemitic) leucosomes associated with metasedimentary (biotite-bearing) source rocks may form by water-saturated partial melting or by subsolidus processes. Both general leucosome-forming mechanisms may operate at different times during upper amphibolite facies regional metamorphism. Partial melting may be initiated by syn-metamorphic magmatic activity if crystallizing plutons serve as external sources of the water-rich fluid necessary for ultrametamorphism in the middle crust during orogenesis. Large-scale migmatite complexes such as the Skagit migmatites may form at least in part in response to contact effects of plutonism associated with high-grade metamorphism, so, although migmatite complexes are a volumetrically substantial part of many orogenic belts, they may not themselves represent a significant original source of magma for larger-scale igneous bodies.  相似文献   


19.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

20.
Migmatite structures in the Central Gneiss Complex, Boca de Quadra, Alaska   总被引:3,自引:0,他引:3  
Abstract Migmatite structures in the Coast Plutonic-Metamorphic Complex are well exposed in the inlet of Boca de Quadra, southeast Alaska. Two types of anatectic migmatites are present. Patch migmatites formed by in situ melting and subsequent crystallization of melt. Diktyonitic migmatites comprise a discontinuous veined network of leucocratic material, in which leucosomes enclose boudins of host rock. The margins of these boudins show the development of both melanosomes and shear band fabrics.
Strain analysis of diktyonitic melanosomes indicates that these regions have undergone volume decreases of 20-27%. This volume decrease is attributed to melt extraction into the adjacent fracture-filling leucosomes. Thus, diktyonitic migmatites formed by shear-induced segregation of partial melt, whereas in patch migmatites the lack of shear stresses inhibited melt segregation. The variable structural style of anatectic migmatites in Boca de Quadra is not related to host-rock composition, but may be due to differences in the amount of differential stress during migmatization. These in turn may be controlled by host-rock strength and/or diachroneity of migmatization and deformation.
Determination of volume changes during migmatization using strain analysis is potentially capable of discriminating intrusive and anatectic migmatites and consequently of documenting melt segregation and subsequent migration across crustal levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号