首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
The Panzhihua intrusion in southwest China is part of the Emeishan Large Igneous Province and host of a large Fe-Ti-V ore deposit.During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.We measured the oxygen-isotope composition of the intrusions,their constituent minerals,and samples of the country rock.Magnetite and plagioclase from Panzhihua intrusion haveδ18O values that are consistent with magmatic equilibrium, and formed from magmas withδ18O values that were 1-2‰higher than expected in a mantle-derived magma.The unmetamorphosed country rock has highδ18O values,ranging from 13.2‰(sandstone) to 24.6-28.6‰(dolomite).The skarns and marbles from the aureole have lowerδ18O andδ13C values than their protolith suggesting interaction with fluids that were in exchange equilibrium with the adjacent mafic magmas and especially the numerous mafic dykes that intruded the aureole.This would explain the alteration ofδ18O of the dykes which have significantly higher values than expected for a mantle-derived magma.Depending on the exactδ18O values assumed for the magma and contaminant, the amount of assimilation required to produce the elevatedδ18O value of the Panzhihua intrusion was between 8 and 13.7 wt.%,assuming simple mixing.The exact mechanism of contamination is unclear but may involve a combination of assimilation of bulk country rock,mixing with a melt of the country rock and exchange with CO2-rich fluid derived from decarbonation of the marls and dolomites.These mechanisms,particularly the latter,were probably involved in the formation of the Fe-Ti-V ores.  相似文献   

2.
 Siliceous dolomites and limestones contain abundant retrograde minerals produced by hydration-carbonation reactions as the aureole cooled. Marbles that contained periclase at the peak of metamorphism bear secondary brucite, dolomite, and serpentine; forsterite-dolomite marbles have retrograde tremolite and serpentine; wollastonite limestones contain secondary calcite and quartz; and wollastonite-free limestones have retrograde tremolite. Secondary tremolite never appears in marbles where brucite has replaced periclase or in wollastonite-bearing limestones. A model for infiltration of siliceous carbonates by CO2-H2O fluid that assumes (a) vertical upwardly-directed flow, (b) fluid flux proportional to cooling rate, and (c) flow and reaction under conditions of local equilibrium between peak temperatures and ≈400 °C, reproduces the modes of altered carbonate rocks, observed reaction textures, and the incompatibility between tremolite and brucite and between tremolite and wollastonite. Except for samples from a dolomite xenolith, retrograde time-integrated flux recorded by reaction progress is on the order of 1000 mol fluid/cm2 rock. Local focusing of flow near the contact is indicated by samples from the xenolith that record values an order of magnitude greater. Formation of periclase, forsterite, and wollastonite at the peak of metamorphism also required infiltration with prograde time-integrated flux approximately 100–1000 mol/cm2. The comparatively small values of prograde and retrograde time-integrated flux are consistent with lack of stable isotope alteration of the carbonates and with the success of conductive thermal models in reproducing peak metamorphic temperatures recorded by mineral equilibria. Although isobaric univariant assemblages are ubiquitous in the carbonates, most formed during retrograde metamorphism. Isobaric univariant assemblages observed in metacarbonates from contact aureoles may not record physical conditions at the peak of metamorphism as is commonly assumed. Received: 19 September 1995 / Accepted: 14 March 1996  相似文献   

3.
The borate mineralization of the Pitkáranta skarn field of Karelia is localized in metasomatically altered Proterozoic dolomites. In the contact aureole of rapakivi granites, the zoning of magnesian skarns includes spinel-diopside or fassaite skarns with syngenetic magnetite and spinel-forsterite calciphyres surrounded by periclase marbles, which confirms their hypabyssal genesis. Stringer-stockwork bodies developing in the brecciation zone at the roof show a primitive zoning consisting of an inner diopside and an outer forsterite calciphyre zone grading into a dolomitic marble. All these zones inherited the Ca/Mg ratio of the primary carbonate rocks. Rhythmically banded textures observed in the skarns and calciphyres of the deposits studied suggest their formation under thermodynamically disequilibrium conditions typical of hypabyssal metasomatites. Magnesium and magnesium-iron borates in marbles and calciphyres and beryllium borates in greisens were formed during the postmagmatic stage. Data are reported on the chemical composition and genesis of suanite, kotoite, ludwigite, hulsite, pertsevite, fluoborite, szaibelyite, and humites from the Hopunvaara, Klara, Lupikko, and Herberz deposits. The deficit of boron in magnesian borates is related to their endogenous hydration. Data on hambergites and berborite are given according to E.I. Nefedov.  相似文献   

4.
http://www.sciencedirect.com/science/article/pii/S1674987113000327   总被引:1,自引:0,他引:1  
The Panzhihua intrusion in southwest China is part of the Emeishan large igneous province and host of a large Fe-Ti-V ore deposit.In previous interpretations it was considered to be a layered,differentiated sill with the ore deposits at its base.New structural and petrological data suggest instead that the intrusion has an open S-shape,with two near-concordant segments joined by a discordant dyke-like segment. During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.In the central segment,magmatic layering is oriented oblique to the walls of the intrusion.This layering cannot have formed by crystal settling or in-situ growth on the floor of the intrusion;instead we propose that it resulted from inward solidification of multiple,individually operating,convection cells.Ore formation was triggered by interaction of magma with carbonate wall rocks.  相似文献   

5.
Pb-Zn-Ag-bearing M anganoan Skarns of China   总被引:2,自引:0,他引:2  
Manganoan skarns consist of special Mn (Ca, Mg, Fe, Al) silicate metasomatic minerals and are usually associated with Pb-Zn(Ag) mineralization. They occur chiefly along the lithologic contacts or faults and fractures of carbonate wall rocks distal from the intrusive contact zone, and are combined with Fe, Cu, W, Sn and Cu-bearing calcic or magnesian skarns occurring in the contact zones to constitute certain metasomatic zoning. Manganoan skarns are formed later than calcic or magnesian skarns. Their rock-forming temperatures are lower than those of calcic or magnesian skarns. The mineral assemblages of manganoan skarns occurring in different carbonate rocks (limestone or dolomite) are notably different.  相似文献   

6.
This paper addresses the genesis and composition of endogenous borates and other minerals from the magnesian-skarn aureoles at the contacts between dolomites and Hercynian granitoid intrusions of the Eastern and Central Pyrenees (Querigut and Costabonne peak massifs in France, and the Monchi deposit in Spain). It was shown that these occurrences and other magnesian skarns in the Sierra Morena Range, Spain, genetically belong to the periclase depth facies: zoned metasomatic aureoles of dolomites of primitive structure complicated by the development of periclase marble zones. The near-contact zones of the intrusions are represented by the granitoids of increasing basicity and alkalinity, which indicates the assimilation of host rocks by overheated granitic magmas. The postmagmatic stage was marked by the formation of magnesium and magnesium-iron borates of diverse composition in calciphyres and marbles, replacement of forsterite by humites in the calciphyres, and the development of silicates of decreasing Mg mole fraction after pyroxene skarns; the latter is accompanied by magnesium migration into the outer zones of the aureole. It was determined that the studied deposits of France contain boron minerals (kotoite, suanite, and pertsevite) previously unknown for this region in association with fluoborite and late szaibelyite. In skarns of Spain, the high-Fe borates are represented by monomineral aggregates of fine-prismatic parallel oriented crystals of vonsenite or its coarse-grained masses. It is conceivable that sulfide-bearing magnesian skarns and calciphyres of the studied deposits contain magnesium hydroxysulfides: tochilinite (after pyrrhotite) and valleriite (after chalcopyrite).  相似文献   

7.
8.
J. V. Owen  J. D. Greenough 《Lithos》1997,39(3-4):195-208
Migmatitic rocks near Grenville, Quebec, preserve features indicative of reactions at the onset of granulite facies metamorphism. In this area, metapelites and metacarbonates of the classic Grenville Series are spatially associated with granitic gneiss and metabasite, and flank a Paleozoic, Fe-rich syenite stock. Near this intrusion, the metapelite is diatexitic and nearly devoid of biotite, indicating the involvement of biotite during melting in the contact aureole of this intrusion. Outside of the contact aureole, metapelites and associated rocks contain biotite and are metatexitic. These features suggest two episodes of migmatization, the earlier predating the syenite, the later, synchronous with this intrusion.

Hornblende-rich metabasites near the syenite contain a two-part neosome consisting of coarse-grained leucosome veins and patches that are enclosed by fine-grained, pyroxene-rich envelopes. Migmatization is attributed to dehydration melting in the presence of CO2-rich fluids possibly derived from nearby carbonate rocks prior to and/or during emplacement of the syenite. The occurrence of isolated mafic clots in the mesosome and rarity of melanosome seams on leucosomes suggest that some melts were mobile on an outcrop scale. These observations suggest that the leucosomes formed by the segregation of melts, which, coupled with CO2 flux, dehydrated the wallrock along narrow margins, forming the pyroxene-rich neosomes. Back-reaction with residual fluids led to the local scapolitization of plagioclase and the concomitant formation of coronal garnet on pyroxene in neosomes. Thermobarometry of corona structures within the contact aureole generates diffusional Mg-Fe blocking temperatures ( 550 °C at 5.5 kbar). Extrapolated up-temperature, P-sensitive equilibria for the coronas yield similar pressures (8–9 kbar) as texturally-equilibrated assemblages for which high temperatures ( 750 ± 50 °C; XCO2 = 0.90−0.95) were determined for rocks sampled inside and outside of the contact aureole. This suggests that the Grenville migmatites had not been substantially decompressed by the time that the syenite was emplaced.  相似文献   


9.
We present results of isotope-geochemical study of the Ermakovka F-Be deposit, including data on the oxygen and carbon isotope compositions in dolomite and calcite marbles and in carbonates accompanying skarns, of early and late stages of ore formation and of post-ore parageneses. To elucidate the sources of fluids participated in the ore formation, we calculated the oxygen isotope composition in water and the hydrogen isotope composition in hydroxyl-containing minerals. Phlogopite in marbleized dolomites, vesuvianite and amphibole in skarns, eudidimite and bertrandite in ore parageneses, and bavenite formed during post-ore processes are analyzed. Most of the ore-stage minerals are depleted in heavy oxygen. Their 518O values are lower than 5-6%c (SMOW). Oxygen in carbonate minerals of the initial stage (dolomite and bastnaesite) is heavier (1.3-4.9%c) than that in calcite (+ 2 to -3.7%c). The 518O values of water in equilibrium both with carbonate and with silicate minerals (-4 to -14%c) suggest the contribution of meteoric water to the mineral formation. A magmatic fluid (518O from + 6 to + 9%c) participated in the skarn formation at the initial stage, and a meteoric fluid, at the final stage (518O from -1 to -9%c). A meteoric source is confirmed by the depleted hydrogen isotope composition in minerals (5D from -119 to -192%c).  相似文献   

10.
The Shivar pluton, a large granodiorite–monzonite intrusion in NW Iran, was intruded into Cretaceous sedimentary rocks during the Oligo‐Miocene. Its thermal aureole contains a variety of pelitic, basic and calc‐silicate hornfelses. Mineral parageneses in the pelitic and calc‐silicate hornfelses are studied here and mineralogical zones are determined. The maximum pressure of contact metamorphism is estimated to have been about 2.2 kbar on the basis of mineral parageneses in the pelitic rocks, indicating that the intrusion was emplaced no deeper than 8 km in the crust. Crystal size distribution (CSD) studies in the calc‐silicate hornfelses indicate that the degree of overstepping was high near the igneous contact. Secondary solid phases (SSP) inhibited growth of calcite grains in the calc‐silicate rocks and impure marbles. Garnet had a greater inhibitory effect as a SSP than tremolite or clinopyroxene. The time required for coarsening of calcite is calculated for two samples collected at different distances from the igneous contact. The time required for calcite coarsening is about 33 000 years for the sample 800 m from the contact and about 226 000 years for the sample 120 m from the contact. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Recent work on the Panzhihua intrusion has produced two separate models for the crystallisation of the intrusion:(1) low-Ti,high CaO and low H2O(0.5 wt.%) parent magma(equivalent to Emeishan low-Ti basalt) at FMQ;and(2) high-Ti,low CaO and higher H2O(>1.5 wt.%) parent magma(equivalent to Emeishan high-Ti basalt) at FMQ + 1.5.Modelling of these parent magma compositions produces significantly different results. We present here detailed f(O2) and H2O modelling for average compositions of both Emeishan high-Ti and low-Ti ferrobasalts in order to constrain the effects on crystallisation sequences for Emeishan ultra-mafic -mafic layered intrusions.Modelling is consistent with numerous experimental studies on ferro-basaltic magmas from other localities(e.g.Skaergaard intrusion).Modelling is compared with the geology of the Panzhihua intrusion in order to constrain the crystallisation of the gabbroic rocks and the Fe-Ti oxides ore layers.We suggest that the gabbroic rocks at the Panzhihua intrusion can be best explained by crystallisation from a parent magma similar to that of the high-Ti Emeishan basalt at moderate H2O contents(0.5-1 wt.%) but at the lower end of TiO2 content for typical high-Ti basalts(2.5 wt.%TiO2). Distinct silicate disequilibrium textures in the Fe-Ti oxide ore layers suggest that an influx of H2O may be responsible for changing the crystallisation path.An increase in H2O during crystallisation of gabbroic rocks will result in the depression of silicate liquidus temperatures and resultant disequilibrium with the liquid.Continued cooling of the magma with high H2O then results in precipitation of Mt-Uv alone. The H2O content of parent magmas for mafic layered intrusions associated with the ELIP is an important variable.H2O alters the crystallisation sequence of the basaltic magmas so that at high H2O and f(O2) Mt -Uv crystallises earlier than plagioclase and clinopyroxene.Furthermore,the addition of H2O to an anhydrous magma can explain silicate disequilibrium texture observed in the Fe-Ti oxide ore layers.  相似文献   

12.
Summary The intrusion of the Lower Permian Los Santos-Valdelacasa granitoids in the Los Santos area caused contact metamorphism of Later Vendian-Lower Cambrian metasediments. High grade mineral assemblages are confined to a 7 km wide contact aureole. Contact metamorphism was accompanied by intense metasomatism and development of skarns, and it generated the following mineral assemblages: diopside, forsterite, phlogopite (±clintonite) and humites and spinel-bearing assemblages or diopside, grossular, vesuvianite ± wollastonite in the marbles, depending on the bulk rock composition. Cordierite, K-feldspar, andalusite and, locally, sillimanite appear in the metapelitic rocks. Mineral assemblages of marbles and hornfelses indicate pressure conditions ranging from 0.2 to 0.25 GPa and maximum temperatures between 630 and 640 °C. 13C and 18O depletions in calcite marbles are consistent with hydrothermal fluid–rock interaction during metamorphism. Calcites are depleted in both 18O (δ18O = 12.74‰) and 13C (δ13C = −5.47‰) relative to dolomite of unmetamorphosed dolostone (δ18O = 20.79‰ and δ13C = −1.52‰). The δ13C variation can be interpreted in terms of Rayleigh distillation during continuous CO2 fluid removal from the carbonates. The δ18O values reflect hydrothermal exchange with an externally derived fluid. Microthermometric analyses of fluid inclusions from vesuvianite indicate that the fluid was water dominated with minor contents of CO2 (±CH4 ± N2) suggesting a metamorphic origin. Fluorine-bearing minerals such as chondrodite, norbergite and F-rich phlogopite indicate that contact metamorphism was accompanied by fluorine metasomatism. Metasomatism was more intense in the inner-central portion of the contact aureole, where access to fluids was extensive. The irregular geometry of the contact with small aplitic intrusives between the metasediments and the Variscan granitoids probably served as pathways for fluid circulation.  相似文献   

13.
Analysis of magmatic and sedimentary rocks of several large igneous provinces has demonstrated that the release of gas during plutonic-metamorphic processes may be linked to global climate change and mass extinctions. Aguablanca, one of the largest Cu–Ni–PGE deposits in Europe, formed during the Variscan orogeny when a mafic magma intruded limestones and shales, creating a contact aureole composed of marble, skarn and hornfels. Our petrological and geochemical investigation of the aureole provides evidence that a combination of the two processes led to the formation of the ore deposit: The assimilation of terrigenous sediments supplied S to the magma while the assimilation of carbonates changed the oxygen fugacity and decreased the solubility of sulfur in the magma. The metamorphic assemblages in the contact aureole are directly related to heterogeneity of the protolith and particularly to the original proportions of calcite and clay. We modeled carbon dioxide degassing during contact metamorphism and showed that pure limestone is relatively unproductive because of its high reaction temperature. The presence of clay, however, leads to the formation of calc-silicates and significantly enhances CO2 degassing. Our estimations suggest that degassing of the Aguablanca contact aureole released about 74.8 Mt of CO2, a relatively low volume that we attribute to the composition of the host rock, mainly a pure limestone. A far larger volume of carbon dioxide was emitted by the contact metamorphism of dolostones in the contact aureole of Panzhihua (part of Emeishan large igneous province, SW China). We propose that the level of emission of carbon dioxide depends strongly on the nature of the protolith and has to be considered when predicting environmental impact during the emplacement of large igneous provinces.  相似文献   

14.
The picritic dykes occurring within fine-grained gabbro in the marginal zone and in the surrounding Proterozoic wall-rock marbles of the Panzhihua Fe–Ti oxide deposit closely correspond in bulk composition with the nearby Panzhihua intrusion. These dykes offer important constraints on the nature of the mantle source of the Panzhihua ore-bearing intrusion and its possible link to the Emeishan plume. U–Pb zircon dating of the picritic dyke yields a crystallization age of 261.4 ± 4.6 Ma, coeval with the timing of the main Panzhihua gabbroic intrusion and Late Permian Emeishan flood basalts. The Panzhihua picritic dykes contain 37.63–43.41 wt% SiO2, 1.15–1.56 wt% TiO2, 11.43–13.25 wt% TFe2O3, and 20.96–28.87 wt% MgO. Primitive-mantle-normalized patterns of the rocks are comparable to those of ocean island basalt. The rocks define a relatively small range of Os isotopic compositions and a low Os signature of ?0.13 to +2.76 for γOs (261 Ma). In combination with their Sr–Nd–Os isotopic compositions, we interpret that these rocks were derived from the Emeishan plume sources as well as the interactions of plume melts with the overlying lithosphere which had been extensively affected by eclogite-derived melts from the deep-subducted oceanic slab. Partial melting induced by an upwelling mantle plume that involved an eclogite or pyroxenite component in the lithospheric mantle could have produced the parental Fe-rich magma. Our study suggests that plume-lithosphere interaction might have played a key role in generating many world-class Fe–Ti oxide deposits clustered in the Panxi area.  相似文献   

15.
The boron, tin, tungsten, beryllium, and fluorite deposits of the York Range, Seward Peninsula, represent the continuation of the Asian segment of the Pacific ore belt and are globally conjugate with the Verkhoyan-Chukotka ore province of Northeastern Russia. They are localized in the alteration aureoles of dolomites and limestones of the Paleozoic Port Clarence Formation at the contact with the Mesozoic leucocratic granites and genetically belong to the magnesian-skan ore formation. Ore-generating process developed in marbles, skarns, and greisens under hypabyssal conditions in several stages and was accompanied by sequential formation of polymineral assemblages. Early mineralization is represented by magnetite in prograde pyroxene skarns after dolomites. Postmagmatic ore stage is represented by formation of endogenous borates, including their tin-bearing Mg-Fe species, in the magnesian skarns, superposition of calcareousskarn assemblages containing calcium borates, borosilicates, and scheelite, formation of cassiterite and wolrframite in the greisenized granites, and precipitation of sulfides, chrysoberyl, and fluorite. The mineral composition of the rocks and ores was formed under the influence of F-bearing hydrothermal solutions, which caused the presence of fluorine in borates, rock-forming silicates, and the replacement of calcite by fluorite. Boron, tin, beryllium, and fluorine participate at all the stages of endogenous process, but the mineral modes of their occurrence are varied, which is confirmed by data on their chemical composition. The results of studying the skarns and ores of the Alaska deposits are of great applied and scientific significance, and can be used for study of skarn-greisen deposits localized at the contacts of carbonate rocks with granite intrusions of the Pacific ore belt and other world’s regions.  相似文献   

16.
The results of skarn-forming processes at contacts of the multiphase Southern California Batholith with carbonate rocks accessible to study in quarries in Riverside, California, involve prograde metasomatic transformations of marmorized dolomites and calcareous rocks in contact with granitic melts and contaminated magmas. The processes of contact assimilation are proved to have been controlled by the emplacement of granitic melts overheated relative to subliquidus melts (with the overheated melts prone to approach the composition of granodiorite, syenite, and gabbro) into skarnified marbles. The degree of magma overheating was evaluated based on G.F. Smith’s data on linear melting temperature variations for anhydrous intrusive rocks with various SiO2 concentrations (<750°C for granites and >1100°C for contaminated rocks, ΔT 350°). This corresponds to the thermal regime of the development of mineralogically contrasting hypabyssal skarn aureoles: magnesian at contacts with granite magmas and calcic at contacts with melts of high basicity. The peripheral parts of the aureoles ubiquitously contain preserved zones of forsterite calciphyres and periclase marbles, whereas skarns at mafic intrusions consist of high-temperature silicates of decreasing Mg contents: monticellite, merwinite, melilite, and spurrite. Prograde and retrograde mineralforming processes in the metasomatic rocks and their facies affiliation are analyzed, and the chemical composition of the minerals are examined. The Riverside skarn aureoles are compared with other compositionally contrasting skarn aureoles that developed in contacts with granite magmas and melts of increasing basisity.  相似文献   

17.
攀枝花岩体钛铁矿成分特征及其成因意义   总被引:2,自引:1,他引:1  
峨眉大火成岩省是全球最大的钒钛磁铁矿床聚集区,攀枝花岩体是其中的典型代表。根据岩性特点,攀枝花岩体主体可划分为上、中、下三个岩相带,其中中部岩相带和下部岩相带岩性旋回非常发育,每个旋回从下向上铁钛氧化物和暗色硅酸盐矿物逐渐减少,块状铁钛氧化物矿石或磁铁矿辉长岩都出现在每个旋回的底部和下部。然而,尽管钛铁矿固相线以下固溶体出溶远弱于磁铁矿,从而能更好地保留成因信息,但其成分变化的成因意义没有受到足够重视。本次研究发现作为主要金属氧化物之一的钛铁矿的成分不仅在不同岩性中有明显差异,同时,中、下部岩相带的各岩性旋回中钛铁矿成分也具有周期性变化。例如,块状矿石中钛铁矿具有最高的MgO和TiO2及最低的FeO、Fe2O3和MnO,而辉长岩中钛铁矿则具有相反的成分特征。同时,钛铁矿的MgO含量与磁铁矿的MgO含量及橄榄石的Fo牌号具有显著的正相关关系。这种规律性变化说明每个旋回可以代表一次比较明显的岩浆补充,每次新岩浆补充后,钛铁矿和磁铁矿及橄榄石都是结晶较早的矿物。与Skaergaard岩体相比,攀枝花岩体钛铁矿的MgO含量较高,表明攀枝花岩体分离结晶过程中铁钛氧化物结晶较早;与挪威Tellnes斜长岩套铁钛矿床中的钛铁矿相比,攀枝花岩体的钛铁矿不仅具有较高的MgO和FeO,还具有极高的TiO2和MnO,但Fe2O3却很低,说明地幔柱背景下形成的钛铁矿与斜长岩套中钛铁矿的成分有显著的区别。  相似文献   

18.
《International Geology Review》2012,54(15):1721-1745
The Panzhihua layered intrusion hosts a giant V–Ti–iron oxide deposit with ore reserves estimated at 1333 Mt. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb zircon dating of comagmatic anorthosite yields a crystallization age of 259.77 ± 0.79 million years, coeval with the Emeishan flood basalts. Recently, we identified a small wehrlite dike in microgabbroic rocks and marbles. The wehrlite consists of high-Mg olivine phenocrysts with up to 90.44 wt.% Fo. Incompatible element-normalized patterns between bulk wehrlite and clinopyroxenes in gabbro suggest that they are cogenetic. The Panzhihua parental magma is estimated to have been picritic (~10 wt.% FeO and ~16 wt.% MgO), produced by partial fusion of garnet peridotite. Much of the melting occurred in garnet-facies mantle at an initial melting temperature of about 1530°C and pressure of ~3.4 GPa, suggesting involvement of a mantle plume. The degree of partial melting was rather modest and could have been generated by plume–lithosphere interaction or ascending plume-derived melting contaminated by lithospheric mantle. Field relationships show sharp contacts between the massive ores and gabbro, between wehrlite and fine-grained gabbro, and between disseminated ores and gabbro. Considering the entire intrusion, which is locally cut by dikes or veins of anorthosite, together with the occurrence of a breccia made up of gabbro clasts cemented by disseminated ores, we suggest that different types of magmas were generated by liquid differentiation in a deeper-level chamber. This differentiation could have resulted from double-diffusive convection cells, with melt later intruding into a higher-level chamber, rather than by crystal settling or in situ growth on the floor of the intrusion. However, rhythmic layering produced by in situ crystallization only occurs in the middle of the Panzhihua intrusion and was caused by periodic fluctuation in water pressure.  相似文献   

19.
Periclase formed in steeply dipping marbles from the Beinn an Dubhaich aureole, Scotland, and the Silver Star aureole, Montana, by the reaction dolomite = periclase + calcite + CO2. Equilibrium between rock and fluids with X CO 2 < 1 requires that reaction was infiltration-driven. Brucite pseudomorphs after periclase occur in the Beinn an Dubhaich aureole either as bed-by-bed replacement of dolomite or in a lens along the contact between dolomite and a pre-metamorphic dike. Transport theory predicts that infiltration drove both periclase reaction and 18O-depletion fronts which moved at significantly different velocities along the flow path. The distributions of brucite and 18O-depleted rocks are identical in surface exposures, thus indicating upward flow. Time-integrated flux (q) was <500 mol/cm2 and the fluid source was magmatic. Because periclase and its hydrated equivalent brucite are unaltered to dolomite by retrograde reactions, the exposure of brucite marbles accurately images the flow paths of peak metamorphic fluids. In the Silver Star aureole brucite pseudomorphs after periclase exclusively occur in tabular bodies that are beds with elevated Mg/Ca. The spatial pattern of 18O-depletion requires upward vertical fluid flow. Estimated prograde q ≈ 103–104 mol/cm2 and the fluid source was magmatic. Low Mg/Ca, 18O-depleted, brucite-free rocks pose a dilemma because the periclase reaction front should have traveled ≈18 times further through them than the isotope alteration front. The dilemma is resolved by reaction textures that indicate periclase and brucite were destroyed in low Mg/Ca rocks by infiltration-driven retrograde carbonation reactions. Values of retrograde q were ≈103–104 mol/cm2. Brucite (after periclase) was preserved only in high Mg/Ca layers where periclase developed in greater abundance. The geometry of brucite marbles at Silver Star thus reflects the location of high Mg/Ca beds rather than the geometry of fluid flow. Retrograde reactions must be considered before the mineralogical record of prograde fluid flow can correctly be interpreted. In both aureoles fluid flow, mineral reaction, and isotope depletion were structurally controlled by bedding and lithologic contacts. Received: 30 July 1996 / Accepted: 21 March 1997  相似文献   

20.
In southwestern China, several large magmatic Fe–Ti–V oxide ore deposits are hosted by gabbroic intrusions associated with the Emeishan flood basalts. The Panzhihua gabbroic intrusion, a little deformed sill that contains a large titanomagnetite deposit at its base, concordantly intrudes late-Proterozoic dolostones. Mineralogical and chemical studies of the contact aureole in the footwall dolostones demonstrate that the metamorphism was largely isochemical but released large quantities of CO2 as the rocks were converted to marble and skarns during intrusion of the gabbroic magma. Petrological modelling of the crystallization of the intrusion, using H2O-poor Emeishan basalt as parent magma, shows that under normal conditions, Fe–Ti oxides crystallize at a late stage, after the crystallization of abundant olivine, clinopyroxene and plagioclase. In order for titanomagnetite to separate efficiently to form the ore deposit, this mineral must have crystallized earlier and close to the liquidus. We propose that CO2-rich fluids released during decarbonatization of sedimentary floor rocks passed up through the magma. Redox equilibria calculations show that when magma with the composition of Emeishan basalt is fluxed by a CO2-rich gas phase, its equilibrium oxygen fugacity (fO2) increases from the fayalite–magnetite–quartz buffer (FMQ) to FMQ + 1.5. From experimental constraints on magnetite saturation in basaltic magma under controlled fO2, such an oxidizing event would allow magnetite to crystallize near to the liquidus, leading to the formation of the deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号