首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A regional ocean circulation model was used to project Baltic Sea climate at the end of the twenty-first century. A set of four scenario simulations was performed utilizing two global models and two forcing scenarios. To reduce model biases and to spin up future salinity the so-called Δ-change approach was applied. Using a regional coupled atmosphere–ocean model 30-year climatological monthly mean changes of atmospheric surface data and river discharge into the Baltic Sea were calculated from previously conducted time slice experiments. These changes were added to reconstructed atmospheric surface fields and runoff for the period 1903–1998. The total freshwater supply (runoff and net precipitation) is projected to increase between 0 and 21%. Due to increased westerlies in winter the annual mean wind speed will be between 2 and 13% larger compared to present climate. Both changes will cause a reduction of the average salinity of the Baltic Sea between 8 and 50%. Although salinity in the entire Baltic might be significantly lower at the end of the twenty-first century, deep water ventilation will very likely only slightly change. The largest change is projected for the secondary maximum of sea water age within the halocline. Further, the average temperature will increase between 1.9 and 3.2°C. The temperature response to atmospheric changes lags several months. Future annual maximum sea ice extent will decrease between 46 and 77% in accordance to earlier studies. However, in contrast to earlier results in the warmest scenario simulation one ice-free winter out of 96 seasons was found. Although wind speed changes are uniform, extreme sea levels may increase more than the mean sea level. In two out of four projections significant changes of 100-year surge heights were found.  相似文献   

2.
3.
Simulations performed with the climate model LOVECLIM, aided with a simple data assimilation technique that forces a close matching of simulated and observed surface temperature variations, are able to reasonably reproduce the observed changes in the lower atmosphere, sea ice and ocean during the second half of the twentieth century. Although the simulated ice area slightly increases over the period 1980–2000, in agreement with observations, it decreases by 0.5 × 106 km2 between early 1960s and early 1980s. No direct and reliable sea ice observations are available to firmly confirm this simulated decrease, but it is consistent with the data used to constrain model evolution as well as with additional independent data in both the atmosphere and the ocean. The simulated reduction of the ice area between the early 1960s and early 1980s is similar to the one simulated over that period as a response to the increase in greenhouse gas concentrations in the atmosphere while the increase in ice area over the last decades of the twentieth century is likely due to changes in atmospheric circulation. However, the exact contribution of external forcing and internal variability in the recent changes cannot be precisely estimated from our results. Our simulations also reproduce the observed oceanic subsurface warming north of the continental shelf of the Ross Sea and the salinity decrease on the Ross Sea continental shelf. Parts of those changes are likely related to the response of the system to the external forcing. Modifications in the wind pattern, influencing the ice production/melting rates, also play a role in the simulated surface salinity decrease.  相似文献   

4.
The instrumental temperature record is of insufficient length to fully express the natural variability of past temperature. High elevation tree-ring widths from Great Basin bristlecone pine (Pinus longaeva) are a particularly useful proxy to infer temperatures prior to the instrumental record in that the tree-rings are annually dated and extend for millennia. From ring-width measurements integrated with past treeline elevation data we infer decadal- to millennial-scale temperature variability over the past 4,500 years for the Great Basin, USA. We find that twentieth century treeline advances are greater than in at least 4,000 years. There is also evidence for substantial volcanic forcing of climate in the preindustrial record and considerable covariation between high elevation tree-ring widths and temperature estimates from an atmosphere–ocean general circulation model over much of the last millennium. A long-term temperature decline of ~?1.1 °C since the mid-Holocene underlies substantial volcanic forcing of climate in the preindustrial record.  相似文献   

5.
The ocean and sea ice in both polar regions are important reservoirs of freshwater within the climate system. While the response of these reservoirs to future climate change has been studied intensively, the sensitivity of the polar freshwater balance to natural forcing variations during preindustrial times has received less attention. Using an ensemble of transient simulations from 1500 to 2100 AD we put present-day and future states of the polar freshwater balance in the context of low frequency variability of the past five centuries. This is done by focusing on different multi-decadal periods of characteristic external forcing. In the Arctic, freshwater is shifted from the ocean to sea ice during the Maunder Minimum while the total amount of freshwater within the Arctic domain remains unchanged. In contrast, the subsequent Dalton Minimum does not leave an imprint on the slow-reacting reservoirs of the ocean and sea ice, but triggers a drop in the import of freshwater through the atmosphere. During the twentieth and twenty-first century the build-up of freshwater in the Arctic Ocean leads to a strengthening of the liquid export. The Arctic freshwater balance is shifted towards being a large source of freshwater to the North Atlantic ocean. The Antarctic freshwater cycle, on the other hand, appears to be insensitive to preindustrial variations in external forcing. In line with the rising temperature during the industrial era the freshwater budget becomes increasingly unbalanced and strengthens the high latitude’s Southern Ocean as a source of liquid freshwater to lower latitude oceans.  相似文献   

6.
Temperature variations on the Tibetan Plateau during the last millennium are revealed by comparing a Qamdo tree-ring δ13C, the Dasuopu ice-core δ18O series, and a previous composite temperature reconstruction. Results show that an obvious warm period during 1200-1400 AD corresponds to the Medieval Warm Period (MWP) when summer temperature was 1.2℃ higher than the recent 1000 years average, and a cool phase from 1400 to 1700 AD, with summer temperature being 0.5℃lower than long-term average, can be correlated to the Little Ice Age (LIA). The 13th century was the warmest phase during the past 1000 years, while the coldest period occurred during 1000-1200 AD. The 20th century warming was characterized by rapid winter temperature rise while summer temperature at that time displayed a slight downward trend.  相似文献   

7.
利用PW1979海冰热力模式,考虑渤海的地理特点和气候特征,假设渤海为薄层海洋,引入二分法求解海冰表面温度。用该地区气候平均的云量、湿度、海平面气压和风速以及附近4站的月平均气温资料作为强迫场,模拟了渤海海冰的气候变化。模拟结果与逐年的海冰级数资料具有一致的变率,表明气温对海冰年际变化有重要影响。  相似文献   

8.
Changes in indices related to frost and snow in Europe by the end of the twenty-first century were analyzed based on experiments performed with seven regional climate models (RCMs). All the RCMs regionalized information from the same general circulation model (GCM), applying the IPCC-SRES A2 radiative forcing scenario. In addition, some simulations used SRES B2 radiative forcing and/or boundary conditions provided by an alternative GCM. Ice cover over the Baltic Sea was examined using a statistical model that related the annual maximum extent of ice to wintertime coastal temperatures. Fewer days with frost and snow, shorter frost seasons, a smaller liquid water equivalent of snow, and milder sea ice conditions were produced by all model simulations, irrespective of the forcing scenario and the driving GCM. The projected changes have implications across a diverse range of human activities. Details of the projections were subject to differences in RCM design, deviations between the boundary conditions of the driving GCMs, uncertainties in future emissions and random effects due to internal climate variability. A larger number of GCMs as drivers of the RCMs would most likely have resulted in somewhat wider ranges in the frost, snow and sea ice estimates than those presented in this paper.  相似文献   

9.
From multi-ensembles of climate simulations using the Community Climate System Model version 3, global climate changes have been investigated focusing on long-term responses to stabilized anthropogenic forcings. In addition to the standard forcing scenarios for the current international assessment, an overshoot scenario, where radiative forcings are decreased from one stabilized level to another, is also considered. The globally-averaged annual surface air temperature increases during the twenty-first century by 2.58 and 1.56°C for increased forcings under two future scenarios denoted by A1B and B1, respectively. These changes continue but at much slower rates in later centuries under forcings stabilized at year 2100. The overshoot scenario provides a different pathway to the lower B1 level by way of the greater A1B level. This scenario results in a surface climate similar to that in the B1 scenario within 100 years after the forcing reaches the B1 level. Contrasting to the surface changes, responses in the ocean are significantly delayed. It is estimated from the linear response theory that temperature changes under stabilized forcings to a final equilibrium state in the A1B (B1) scenario are factors of 0.3–0.4, 0.9, and 17 (0.3, 0.6, and 11) to changes during the twenty-first century, respectively, for three ocean layers of the surface to 100, 100–500, and 500 m to the bottom. Although responses in the lower ocean layers imply a nonlinear behavior, the ocean temperatures in the overshoot and B1 scenarios are likely to converge in their final equilibrium states.  相似文献   

10.
This paper provides a review of paleoclimate modeling activities in China. Rather than attempt to cover all topics, we have chosen a few climatic intervals and events judged to be particularly informative to the international community. In historical climate simulations, changes in solar radiation and volcanic activity explain most parts of reconstructions over the last millennium prior to the industrial era, while atmospheric greenhouse gas concentrations play the most important role in the20 th century warming over China. There is a considerable model–data mismatch in the annual and boreal winter temperature change over China during the mid-Holocene [6000 years before present(ka BP)], while coupled models with an interactive ocean generally perform better than atmospheric models. For the Last Glacial Maximum(21 ka BP), climate models successfully reproduce the surface cooling trend over China but fail to reproduce its magnitude, with a better performance for coupled models. At that time, reconstructed vegetation and western Pacific sea surface temperatures could have significantly affected the East Asian climate, and environmental conditions on the Qinghai–Tibetan Plateau were most likely very different to the present day. During the late Marine Isotope Stage 3(30–40 ka BP), orbital forcing and Northern Hemisphere glaciation, as well as vegetation change in China, were likely responsible for East Asian climate change. On the tectonic scale,the Qinghai–Tibetan Plateau uplift, the Tethys Sea retreat, and the South China Sea expansion played important roles in the formation of the East Asian monsoon-dominant environment pattern during the late Cenozoic.  相似文献   

11.
The evolution in time of the thermal vertical stratification of the Baltic Sea in future climate is studied using a 3D ocean model. Comparing periods at the end of the twentieth and twenty first centuries we found a strong increase in stratification at the bottom of the mixed layer in the northern Baltic Sea. In order to understand the causes of this increase, a sensitivity analysis is performed. We found that the increased vertical stratification is explained by a major change in re-stratification during spring solely caused by the increase of the mean temperature. As in present climate winter temperatures in the Baltic are often below the temperature of maximum density, warming causes thermal convection. Re-stratification during the beginning of spring is then triggered by the spreading of freshwater. This process is believed to be important for the onset of the spring bloom. In future climate, temperatures are expected to be usually higher than the temperature of maximum density and thermally induced stratification will start without prior thermal convection. Thus, freshwater controlled re-stratification during spring is not an important process anymore. We employed a simple box model and used sensitivity experiments with the 3D ocean model to delineate the processes involved and to quantify the impact of changing freshwater supply on the thermal stratification in the Baltic Sea. It is suggested that these stratification changes may have an important impact on vertical nutrient fluxes and the intensity of the spring bloom in future climate of the Baltic Sea.  相似文献   

12.
To investigate climate variability in Asia during the last millennium, the spatial and temporal evolution of summer (June–July–August; JJA) temperature in eastern and south-central Asia is reconstructed using multi-proxy records and the regularized expectation maximization (RegEM) algorithm with truncated total least squares (TTLS), under a point-by-point regression (PPR) framework. The temperature index reconstructions show that the late 20th century was the warmest period in Asia over the past millennium. The temperature field reconstructions illustrate that temperatures in central, eastern, and southern China during the 11th and 13th centuries, and in western Asia during the 12th century, were significantly higher than those in other regions, and comparable to levels in the 20th century. Except for the most recent warming, all identified warm events showed distinct regional expressions and none were uniform over the entire reconstruction area. The main finding of the study is that spatial temperature patterns have, on centennial time-scales, varied greatly over the last millennium. Moreover, seven climate model simulations, from the Coupled Model Intercomparison Project Phase 5 (CMIP5), over the same region of Asia, are all consistent with the temperature index reconstruction at the 99 % confidence level. Only spatial temperature patterns extracted as the first empirical orthogonal function (EOF) from the GISS-E2-R and MPI-ESM-P model simulations are significant and consistent with the temperature field reconstruction over the past millennium in Asia at the 90 % confidence level. This indicates that both the reconstruction and the simulations depict the temporal climate variability well over the past millennium. However, the spatial simulation or reconstruction capability of climate variability over the past millennium could be still limited. For reconstruction, some grid points do not pass validation tests and reveal the need for more proxies with high temporal resolution, accurate dating, and sensitive temperature signals, especially in central Asia and before AD 1400.  相似文献   

13.
Sea ice is an important component in the Earth’s climate system. Coupled climate system models are indispensable tools for the study of sea ice, its internal processes, interaction with other components, and projection of future changes. This paper evaluates the simulation of sea ice by the Flexible Global Ocean-Atmosphere-Land System model Grid-point Version 2 (FGOALS-g2), in the fifth phase of the Coupled Model Inter-comparison Project (CMIP5), with a focus on historical experiments and late 20th century simulation. Through analysis, we find that FGOALS-g2 produces reasonable Arctic and Antarctic sea ice climatology and variability. Sea ice spatial distribution and seasonal change characteristics are well captured. The decrease of Arctic sea ice extent in the late 20th century is reproduced in simulations, although the decrease trend is lower compared with observations. Simulated Antarctic sea ice shows a reasonable distribution and seasonal cycle with high accordance to the amplitude of winter-summer changes. Large improvement is achieved as compared with FGOALS-g1.0 in CMIP3. Diagnosis of atmospheric and oceanic forcing on sea ice reveals several shortcomings and major aspects to improve upon in the future: (1) ocean model improvements to remove the artificial island at the North Pole; (2) higher resolution of the atmosphere model for better simulation of important features such as, among others, the Icelandic Low and westerly wind over the Southern Ocean; and (3) ocean model improvements to accurately receive freshwater input from land, and higher resolution for resolving major water channels in the Canadian Arctic Archipelago.  相似文献   

14.
Abstract

Changes to the Beaufort Sea shoreline occur due to the impact of storms and rising relative sea level. During the open‐water season (June to October), storm winds predominantly from the north‐west generate waves and storm surges which are effective in eroding thawing ice‐rich cliffs and causing overwash of gravel beaches. Climate change is expected to be enhanced in Arctic regions relative to the global mean and include accelerated sea‐level rise, more frequent extreme storm winds, more frequent and extreme storm surge flooding, decreased sea‐ice extent, more frequent and higher waves, and increased temperatures. We investigate historical records of wind speeds and directions, water levels, sea‐ice extent and temperature to identify variability in past forcing and use the Canadian Global Coupled Model ensembles 1 and 2 (CGCM1 and CGCM2) climate modelling results to develop a scenario forcing future change of Beaufort Sea shorelines. This scenario and future return periods of peak storm wind speeds and water levels likely indicate increased forcing of coastal change during the next century resulting in increased rates of cliff erosion and beach migration, and more extreme flooding.  相似文献   

15.
Simulations of late 20th and 21st century Arctic cloud amount from 20 global climate models (GCMs) in the Coupled Model Intercomparison Project phase 3 (CMIP3) dataset are synthesized and assessed. Under recent climatic conditions, GCMs realistically simulate the spatial distribution of Arctic clouds, the magnitude of cloudiness during the warmest seasons (summer–autumn), and the prevalence of low clouds as the predominant type. The greatest intermodel spread and most pronounced model error of excessive cloudiness coincides with the coldest seasons (winter–spring) and locations (perennial ice pack, Greenland, and the Canadian Archipelago). Under greenhouse forcing (SRES A1B emissions scenario) the Arctic is expected to become cloudier, especially during autumn and over sea ice, in tandem with cloud decreases in middle latitudes. Projected cloud changes for the late 21st century depend strongly on the simulated modern (late 20th century) annual cycle of Arctic cloud amount: GCMs that correctly simulate more clouds during summer than winter at present also tend to simulate more clouds in the future. The simulated Arctic cloud changes display a tripole structure aloft, with largest increases concentrated at low levels (below 700 hPa) and high levels (above 400 hPa) but little change in the middle troposphere. The changes in cloud radiative forcing suggest that the cloud changes are a positive feedback annually but negative during summer. Of potential explanations for the simulated Arctic cloud response, local evaporation is the leading candidate based on its high correlation with the cloud changes. The polar cloud changes are also significantly correlated with model resolution: GCMs with higher spatial resolution tend to produce larger future cloud increases.  相似文献   

16.
The global summer monsoon precipitation (GSMP) provides a fundamental measure for changes in the annual cycle of the climate system and hydroclimate. We investigate mechanisms governing decadal-centennial variations of the GSMP over the past millennium with a coupled climate model’s (ECHO-G) simulation forced by solar-volcanic (SV) radiative forcing and greenhouse gases (GHG) forcing. We show that the leading mode of GSMP is a forced response to external forcing on centennial time scale with a globally uniform change of precipitation across all monsoon regions, whereas the second mode represents internal variability on multi-decadal time scale with regional characteristics. The total amount of GSMP varies in phase with the global mean temperature, indicating that global warming is accompanied by amplification of the annual cycle of the climate system. The northern hemisphere summer monsoon precipitation (NHSMP) responds to GHG forcing more sensitively, while the southern hemisphere summer monsoon precipitation (SHSMP) responds to the SV radiative forcing more sensitively. The NHSMP is enhanced by increased NH land–ocean thermal contrast and NH-minus-SH thermal contrast. On the other hand, the SHSMP is strengthened by enhanced SH subtropical highs and the east–west mass contrast between Southeast Pacific and tropical Indian Ocean. The strength of the GSMP is determined by the factors controlling both the NHSMP and SHSMP. Intensification of GSMP is associated with (a) increased global land–ocean thermal contrast, (b) reinforced east–west mass contrast between Southeast Pacific and tropical Indian Ocean, and (c) enhanced circumglobal SH subtropical highs. The physical mechanisms revealed here will add understanding of future change of the global monsoon.  相似文献   

17.
The dry-wet variability in western China and its spatiotemporal structure during the last 4-5 centuries was examined using 24 climate proxies from sediments, ice cores, historical documents, and tree rings. Spatial patterns and temporal evolutions of dryness and wetness were not only extracted from the proxy data using rotated empirical orthogonal function (REOF) analysis for the last 4 centuries, but also for instrumental data in the last 40 years. The leading five REOF modes indicate that 5 dry-...  相似文献   

18.
Reconstructing the temporal and spatial climate development on a seasonal basis during the last few centuries, including the ‘Little Ice Age’, may help us better understand modern-day interplay between natural and anthropogenic climate variability. The conventional view of the climate development during the last millennium has been that it followed a sequence of a Medieval Warm Period, a cool ‘Little Ice Age’ and a warming during the later part of the 19th century and in particular during the late 20th/early 21st centuries. However, recent research has challenged this rather simple sequence of climate development. Up to the present, it has been considered most likely that the ‘Little Ice Age’ glacial expansion in western Scandinavia was due to lower summer temperatures. Data presented here, however, indicate that the main cause of the early 18th century glacial advance in western Scandinavia was mild and humid winters associated with increased precipitation and high snowfall on the glaciers.  相似文献   

19.
A global fine resolution curvilinear ocean model, forced by NCEP Re-Analysis fluxes, is used to study changes in the circulation of the Nordic Seas and surrounding ocean basins during 1994-2001. The model fields exhibit regionally distinct temporal variability, mostly determined by atmospheric forcing but in regions of significant sea-ice longer timescale variability is found. Some abrupt circulation changes accompany the relaxation of the westerlies following the peak North Atlantic Oscillation Index phase of the mid 1990s. The Greenland gyre spins up over the following years, with the increased circulation partially exiting through the Denmark Strait into the northern Atlantic as well as re-circulating within the Nordic Seas. This resulted in a distinct freshening around northern Iceland and an increase in the East Icelandic Current. However, these latter increases steadied after 1998, as the increased Greenland Sea gyre circulation led to a greater proportion of water leaving through the Denmark Strait, rather than re-circulating. The model Denmark Strait Outflow therefore doubles during the latter half of the 1990s. Increased convection in the Icelandic Sea in the model in 1998-2001 acted to obliterate the anomalies that would otherwise have fed into the East Icelandic Current. A fresh, cold anomaly from the Arctic during 1998/1999 is shown to propagate through the system. Model and observations show good agreement generally, but diverge at depth more in the last few years of the simulation. The model shows that density anomalies within the East Greenland Current do not exclusively derive from the Arctic but may also arise from air-sea interaction within the Greenland Sea. Convection is a major means of limiting anomaly propagation within the model. The contrast of climatological with daily forcing shows the inherent strength of the variability in the ocean circulation on sub-decadal timescales.  相似文献   

20.
We present an analysis of the inter-annual variability of hydrography—temperature and salinity – and ice conditions at the coastal site of Tvärminne, Gulf of Finland, Baltic Sea during the period 1927–2012. The aim is to analyze the natural variability and trends of the hydrographic characteristics, freezing and breakup dates, ice thickness, and the heat content during the last century. The study also includes the inter-connections between the ice season and the surface temperature and salinity in the open water season. The results showed a significant decrease of the ice season length, by almost 30 days. The maximum annual ice thickness decreased by 8 cm in the last 40 years. The surface water temperature increased by almost 1 °C and there was also an increasing trend in the heat content. The thermal memory of the system was 2–2.5 months. The surface salinity increased by 0.5 psu in the last 85 years. The results are discussed and compared to related studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号