首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary All total ozone observations ever made in the Northern polar region, including some from the 1930's, have been corrected and the basic climatology presented. The long-term ozone changes were considered in relation to the stratospheric temperatures. For each deviation from the monthly normal of the 100 hPa temperature by 1°C, there was found to be a corresponding 5–6 m atm-cm change in the monthly ozone deviation. A distinction between the ozone regimes over the Scandinavian, Canadian and East Siberian sectors of the polar region was noted. The strong appearance of the QBO (Quasi Biennial Oscillation) in the interannual ozone fluctuations was obvious. It is demonstrated that for the past three decades the total ozone experienced a few periods with positive and a few periods with negative deviations. In view of this, trends in ozone must obviously be based on greater than 10 years of data. During 1964–86, the weighted trend over the polar stations was (–0.9±0.4)% per decade. There have been, however, three periods (1958–64, 1968–76 and 1979–86), coinciding with the declining phase of the 11 year sunspot cycle, during which the ozone at all polar stations has been declining by about 0.5% per year (or less if the QBO component is filtered out). Some of the differences with Antarctic ozone are mentioned and the dominant role of the stratospheric circulation for the ozone variations is discussed. In general the Arctic ozone observations show no evidence of a major ozone decline similar to that over Antarctica.With 9 Figures  相似文献   

2.
2019-2020冬季北极平流层极涡异常并且持续的偏强,偏冷.利用NCEP再数据和OMI臭氧数据,本文分析了此次强极涡事件中平流层极涡的动力场演变及其对地面暖冬天气和臭氧低值的影响.此次强极涡的形成是由于上传行星波不活跃.持续的强极涡使得2020年春季的最后增温出现时间偏晚.平流层正NAM指数向下传播到地面,与地面AO指数和NAO指数相一致,欧亚大陆和北美地面气温均比气候态偏暖,在欧亚大陆的一些地区,2020年1月和2月的气温甚至偏高了 10K.2020年2月以来北极臭氧出现了2004年以来的最低值,2020年3-4月60°-90°N的平均臭氧柱总量比气候态偏低了 80DU.  相似文献   

3.
The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10–20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NO x from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.  相似文献   

4.
Total column ozone (TCO) over the Tibetan Plateau (TP) is lower than that over other regions at the same latitude, particularly in summer. This feature is known as the “TP ozone valley”. This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6 (CMIP6). The TP ozone valley consists of two low centers, one is located in the upper troposphere and lower stratosphere (UTLS), and the other is in the middle and upper stratosphere. Overall, the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley, with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2 (MSR2) TCO observations greater than 0.8 for all CMIP6 models. Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes. This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley. Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder (MLS) observations. However, the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley. Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.  相似文献   

5.
Based on oceanic and atmospheric parameters retrieved by satellite remote sensing using a neural network method, air-sea heat fluxes over the western Pacific warm pool area were calculated with the advanced the advanced Coupled Ocean-Atmosphere Response Experiment 3.0 (COARE3.0) bulk algorithm method. Then, the average annual and interannual characteristics of these fluxes were analyzed. The rela- tionship between the fluxes and the South China Sea (SCS) summer monsoon onset is highlighted. The results indicate that these fluxes have clear temporal and spatial characteristics. The sensible heat flux is at its maximum in the Kuroshio area, while the latent heat flux is at its maximum in the North Equatorial Current and Kuroshio area. The distribution of average annual air-sea heat fluxes shows that both sensible and latent heat fluxes are maximized in winter and minimized in summer. The air-sea heat fluxes have obvious interannual variations. Correlation analysis indicates a close lag-correlation between air-sea heat fluxes in the western Pacific warm pool area and at the SCS summer monsoon onset. The lagcorrelation can therefore predict the SCS summer monsoon onset, providing a reference for the study of precipitation related to the monsoon.  相似文献   

6.
Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February.  相似文献   

7.
Terry Deshler   《Atmospheric Research》2008,90(2-4):223-ICNAA07
Stratospheric aerosol, noted after large volcanic eruptions since at least the late 1800s, were first measured in the late 1950s, with the modern continuous record beginning in the 1970s. Stratospheric aerosol, both volcanic and non-volcanic are sulfuric acid droplets with radii (concentrations) on the order of 0.1–0.5 µm (0.5–0.005 cm− 3), increasing by factors of 2–4 (10–103) after large volcanic eruptions. The source of the sulfur for the aerosol is either through direct injection from sulfur-rich volcanic eruptions, or from tropical injection of tropospheric air containing OCS, SO2, and sulfate particles. The life cycle of non-volcanic stratospheric aerosol, consisting of photo-dissociation and oxidation of sulfur source gases, nucleation/condensation in the tropics, transport pole-ward and downward in the global planetary wave driven tropical pump, leads to a quasi steady state relative maximum in particle number concentration at around 20 km in the mid latitudes. Stratospheric aerosol have significant impacts on the Earth's radiation balance for several years following volcanic eruptions. Away from large eruptions, the direct radiation impact is small and well characterized; however, these particles also may play a role in the nucleation of near tropopause cirrus, and thus indirectly affect radiation. Stratospheric aerosol play a larger role in the chemical, particularly ozone, balance of the stratosphere. In the mid latitudes they interact with both nitrous oxides and chlorine reservoirs, thus indirectly affecting ozone. In the polar regions they provide condensation sites for polar stratospheric clouds which then provide the surfaces necessary to convert inactive to active chlorine leading to polar ozone loss. Until the mid 1990s the modern record has been dominated by three large sulfur-rich eruptions: Fuego (1974), El Chichón (1982) and Pinatubo (1991), thus definitive conclusions concerning the trend of non-volcanic stratospheric aerosol could only recently be made. Although anthropogenic emissions of SO2 have changed somewhat over the past 30 years, the measurements during volcanically quiescent periods indicate no long term trend in non-volcanic stratospheric aerosol.  相似文献   

8.
Record ozone loss was observed in the Arctic stratosphere in spring 2020. This study aims to determine what caused the extreme Arctic ozone loss. Observations and simulation results are examined in order to show that the extreme Arctic ozone loss was likely caused by record-high sea surface temperatures(SSTs) in the North Pacific. It is found that the record Arctic ozone loss was associated with the extremely cold and persistent stratospheric polar vortex over February–April, and the extremely cold vortex was a result of anomalously weak planetary wave activity. Further analysis reveals that the weak wave activity can be traced to anomalously warm SSTs in the North Pacific. Both observations and simulations show that warm SST anomalies in the North Pacific could have caused the weakening of wavenumber-1 wave activity, colder Arctic vortex, and lower Arctic ozone. These results suggest that for the present-day level of ozone-depleting substances, severe Arctic ozone loss could form again, as long as certain dynamic conditions are satisfied.  相似文献   

9.
Ozone loss rates from ozonesonde data reported in the Match experiments of winters 1994/95 and 1995/96 inside the Arctic polar vortex are compared with simulations of the same winters performed using the SLIMCAT 3D chemistry and transport model. For 1994/95 SLIMCAT reproduces the location and timing of the diagnosed ozone destruction, reaching 10 ppbv/sunlit hour in late January as observed. SLIMCAT underestimates the loss rates observed in February and March by 1–3 ppbv/sunlit hour. By the end of March, SLIMCAT ozone exceeds the observations by 25–35%. In January 1995 the ozonesonde-derived loss rates at levels above 525 K are not chemical in origin but due to poor conservation of air parcels. Correcting temperature biases in the model forcing data significantly improved the agreement between the model and observed ozone at the end of winter 1994/95, increasing ozone destruction in SLIMCAT in February and March. The SLIMCAT simulation of winter 1995/96 does not reproduce the maximum ozone loss rates diagnosed by Match of 13 ppbv/sunlit hour. Comparing the data for the two winters reveals that the SLIMCAT photochemistry is least able to reproduce observed losses at low temperatures or when low temperatures coincide with high solar zenith angles (SZA). When cold (T = 192 K), high SZA (90°)matches are excluded from the 1995/96 analysis, agreement between the diagnoses and SLIMCAT is better with ozone loss rates of up to 6 ppbv/sunlit hour. For the rest of the winter SLIMCAT consistently underestimates the Match rates of ozone loss by 1–3 ppbv/sunlit hour. In March 1996 the monthly mean SLIMCAT ozone is 50% greater than observations at 430–540 K. In both winters, ozone destruction rates peaked more rapidly and declined more slowly in the Match observations than in the SLIMCAT simulations. The differences between the observed and modelled cumulative ozone losses demonstrate that the total ozone destruction by the end of the winter is sensitive to errors in the instantaneous ozone loss rates of 1–3 ppbv/sunlit hour.  相似文献   

10.
Abstract

The 2009–10 Arctic stratospheric winter, in comparison with other recent winters, is mainly characterized by a major Sudden Stratospheric Warming (SSW) in late January associated with planetary wavenumber 1. This event led to a large increase in the temperature of the polar stratosphere and to the reversal of the zonal wind. Unlike other major SSW events in recent winters, after the major SSW in January 2010 the westerlies and polar vortex did not recover to their pre-SSW strength until the springtime transition. As a result, the depletion of the ozone layer inside the polar vortex over the entire winter was relatively small over the past 20 years. The other distinguishing feature of the 2010 winter was the splitting of the stratospheric polar vortex into two lobes in December. The vortex splitting was accompanied by an increase in the temperature of the polar stratosphere and a weakening of the westerlies but with no reversal. The splitting occurred when, in addition to the high-pressure system over northeastern Eurasia and the northern Pacific Ocean, the tropospheric anticyclone over Europe amplified and extended to the lower stratosphere. Analysis of wave activity in the extratropical troposphere revealed that two Rossby wave trains propagated eastward to the North Atlantic several days prior to the vortex splitting. The first wave train propagated from the subtropics and mid-latitudes of the eastern Pacific Ocean over North America and the second one propagated from the northern Pacific Ocean. These wave trains contributed to an intensification of the tropospheric anticyclone over Europe and to the splitting of the stratospheric polar vortex.  相似文献   

11.
In the winter of 1994/95 the TRANSALL research aircraft performed several flights in the region of the Arctic vortex during the period of low stratospheric temperatures. The results of simultaneous measurements of HNO3 column amounts by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and of aerosol backscatter profiles by the Ozone Lidar EXperiment (OLEX) are presented for two typical flight scenarios across the polar vortex boundary on December 17, 1994 and January 11/12, 1995. On December 17 and January 12, the column amounts of gaseous HNO3 decreased significantly in regions with low stratospheric temperatures. This decrease was correlated with the extent of the polar stratospheric clouds. Depolarisation measurements showed that type Ib PSCs were observed primarily, but equilibrium calculations for H2SO4/HNO3/H2O aerosols seem to underestimate the observed HNO3 sequestering.  相似文献   

12.
The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air from the troposphere to stratosphere, leading to a decrease of ozone inthe lower-middle stratosphere from 90~S to 90~N. These changes in ozone concentrations reduce stratospheric column ozone. The reduction in stratospheric column ozone during E1 Nifio Modoki events is more pronounced over the tropical eastern Pacific than over other tropical areas because transport of ozone-poor air from middle-high latitudes in both hemispheres to low latitudes is the strongest between 60°W and 120°W. Because of the decrease in stratospheric column ozone during E1 Nifio Modoki events more UV radiation reaches the tropical troposphere leading to significant increases in tropospheric column ozone An empirical orthogonal function (EOF) analysis of the time series from 1980 to 2010 of stratospheric and tropospheric ozone monthly anomalies reveals that: E1 Nifio Modoki events are associated with the primary EOF modes of both time series. We also found that E1 Nifio Modoki events can affect global ozone more significantly than canonical E1 Nifio events. These results imply that E1 Nifio Modoki is a key contributor to variations in global ozone from 1980 to 2010.  相似文献   

13.
14.
We investigate the Madden–Julian Oscillation(MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices — the all-season Real-Time multivariate MJO index(RMM) and outgoing longwave radiation-based MJO index(OMI) — are used to compare the MJOrelated ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies(mainly within 20–200 h Pa) over the subtropics. The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4–7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OMI are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies,i.e., the uplifted tropopause and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index(RMM) can better characterize the MJOrelated anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.  相似文献   

15.
The European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim) meteorology and measurements from the Microwave Limb Sounder, High Resolution Dynamics Limb Sounder, and Ozone Monitoring Instrument onboard the Earth Observing System Aura satellite were applied to analyze the dynamical and chemical features of a cutoff low (COL) event over northeast China in early July 2007. The results showed the polar stratospheric origin of an upper-level warm-core cyclone at 100--300 hPa, associated with a funnel-shaped tropopause intruding into the mid-troposphere just above the COL center. The impacts of the stratospheric intrusion on both column ozone and ozone profiles were investigated using satellite measurements. When the intensity of the COL peaked on 10 July 2007, the total column ozone (TCO) increase reached a maximum (40--70 DU). This could be dynamically attributed to both the descent of the tropopause (~75%) and the downward transport of stratospheric ozone across the tropopause (~25%). Analysis of the tropospheric ozone profiles provided evidence for irreversible transport/mixing of ozone-rich stratospheric air across the tropopause near the upper-level front region ahead of the COL center. This ozone intrusion underwent downstream transport by the upper tropospheric winds, leading to further increase in TCO by 12--16 DU over broad regions extending from east China toward the northern Japan Sea via South Korea. Meteorological analysis also showed the precedence of the stratospheric intrusion ahead of the development of cyclones in the middle and lower troposphere.  相似文献   

16.
北半球100 hPa等压面经向风与臭氧总量年变化   总被引:2,自引:0,他引:2  
吴统文  郑光  瞿章 《大气科学》1992,16(4):508-512
本文用多年平均的北半球100hPa经向风和臭氧总量资料分析了两者的关系,结果发现:臭氧总量的变化与100 hPa经向风密切相关,与100 hPa面上北风相对应的是臭氧高值区,与南风对应的是低值区,前者支配后者.充分说明了臭氧总量变化主要受低层平流层环流影响.  相似文献   

17.
Increasing greenhouse gases and likely ozone recovery will be the two most important factors influencing changes in stratospheric temperatures in the 21st century. The radiative effect of increasing greenhouse gases will cause cooling in the stratosphere, while ozone recovery will lead to stratospheric warming. To investigate how stratospheric temperatures change under the two opposite forcings in the 21st century, we use observed ozone and reanalysis data as well as simulation results from four coupled oceanic and atmo- spheric general circulation models (GISS-ER, GFDL-CM20, NCAR-CCSM3, and UKMO-HadCM3) used in the IPCC (Intergovernment Panel for Climate Change) Fourth Assessment Report (AR4). Observational analysis shows that total column ozone and lower stratospheric temperatures all show increasing in the past 10 years, while middle stratospheric temperatures demonstrate cooling. IPCC AR4 simulations show that greenhouse forcing alone will lead to stratospheric cooling. However, with forcing of both increasing greenhouse gases and ozone recovery, the middle stratosphere will be cooled, while the lower stratosphere will be warmed. Warming magnitudes vary from one model to another. UKMO-HadCM3 generates relatively strong warming for all three greenhouse scenarios, and warming extends to 40 hPa. GFDL-CM20 and NCAR-CCSM3 produce weak warming, and warming mainly exists at lower levels, below about 60 hPa. In addition, we also discuss the effect of temperature changes on ozone recovery.  相似文献   

18.
Summary The study of the regime of ozone variations in the huge tropical belt (25° S to 25° N), which are, in general, very small and zonally nearly symmetric, permits to establish a statistical model for estimating the ozone deviations using Total Ozone Mapping Spectrometer (TOMS) data. The equatorial stratospheric winds at 25 and 50hPa and the solar flux at 10.7 cm are used as major predictors and the linear trend was also estimated. The 10m/sec stratospheric wind change is related to1.2% ozone change at the equator, to practically no change in the 8–15° belts and up to 1.4% change with opposite phase over the tropics in spring but nearly zero change in fall. The solar cycle related amplitude is about 1.4% per 100 units of 10.7 cm solar flux. The ozone trends are negative: not significant over the equator and about –2% per decade (significant at 95% level) over the tropics. The latter could have been enforced by the 2 to 4% lower ozone values during 1991–1993, part of which might be related to the effects of the Mt. Pinatubo eruption, but might also be due to the strong QBO. The estimated deviations are verified versus reliable observations and the very good agreement permits applying the model for quantitative quality control of the reported ozone data from previous years. The standard deviation of the difference between observed ozone deviations and those estimated from the model is only 0.9–1.6% for yearly mean, that means instruments used for total ozone observations in the tropical belt should have systematic error of less than 1%. Cases when the discrepancies between the model and reported observations at a given station exceed 2–3% for time interval of 2 or more years should be verified.With 17 Figures  相似文献   

19.
Recent studies demonstrate that the Antarctic Ozone Hole has important influences on Antarctic sea ice.While most of these works have focused on effects associated with atmospheric and oceanic dynamic processes caused by stratospheric ozone changes,here we show that stratospheric ozone-induced cloud radiative effects also play important roles in causing changes in Antarctic sea ice.Our simulations demonstrate that the recovery of the Antarctic Ozone Hole causes decreases in clouds over Southern Hemisphere(SH)high latitudes and increases in clouds over the SH extratropics.The decrease in clouds leads to a reduction in downward infrared radiation,especially in austral autumn.This results in cooling of the Southern Ocean surface and increasing Antarctic sea ice.Surface cooling also involves ice-albedo feedback.Increasing sea ice reflects solar radiation and causes further cooling and more increases in Antarctic sea ice.  相似文献   

20.
The variability of Antarctic total column ozone in 1980–2018 is considered. The study analyzes trends in Antarctic total column ozone during the study period as well as the physical and chemical processes affecting the seasonal variability of total column ozone. The main attention is paid to the influence of dynamical processes on the stability of the Antarctic polar vortex, to the formation of polar stratospheric clouds, and to the influence of gas-phase and heterogeneous processes on the surface of polar stratospheric clouds and sulfate aerosol. The method of research is the analysis of the results of ground and satellite observations and numerical modeling of physical and chemical processes over the Antarctic using a global chemistry transport model with the dynamical parameters specified from reanalysis data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号