首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
龙门山构造带及汶川震源区的S波速度结构   总被引:22,自引:9,他引:13       下载免费PDF全文
利用四川地震台网的观测资料和体波地震层析成像方法反演了龙门山地区的S波速度结构,据此分析了龙门山断裂带的地壳结构和汶川震源区的深部构造特征.反演结果表明,地震破裂与龙门山断裂及其两侧的地壳结构差异存在明显的对应关系,汶川以北的龙门山上地壳具备较高的强度且明显抬升,灌县至江油是龙门山西侧应力积累的主要地区,汶川8.0级地震位于其南部边缘;四川盆地的刚性地壳向西俯冲于龙门山之下,其凸出部与造山带古老基底在汶川附近发生碰撞是汶川成为8.0级地震破裂起始点的主要原因.汶川以南的龙门山地区地壳上层具有较大的韧性,岩石强度相对减弱,与龙门山北部相比不易于应力积累和产生破裂,因而汶川以南的龙门山断裂缺少余震活动.龙门山地区地壳厚度明显增加,其原因与中下地壳具备较大的柔韧性有关.由于青藏东部向东挤出时受到四川盆地刚性岩石层的阻挡,龙门山中下地壳的塑性变形和垂向物质的增加导致地壳厚度加大和莫霍面下沉,以此方式吸收了龙门山地区的大部分地壳缩短量,地表则强烈褶皱抬升形成数千米的龙门山脉.  相似文献   

2.
2008汶川Ms8.0地震发生的深层过程和动力学响应   总被引:48,自引:17,他引:31       下载免费PDF全文
汶川Ms8.0强烈地震发生在一条现今并不活动的龙门山构造带上,造成了以汶川、映秀为中心及其周边地域的严重破坏和人员的重大伤亡.然而强烈震发生前却未见有可能的确切征兆或浅表层异常活动,即浅层过程与地震发生的深层过程并不匹配.为此对这次强烈地震"孕育"、发生和发展的深层过程进行了分析和探讨,初步研究表明:①在印度洋板块与欧亚板块陆—陆碰撞、挤压作用下,喜马拉雅造山带东构造结向NNE方向顶挤、楔入青藏高原东北缘,迫使高原深部物质向东流展,在受到以龙门山为西北边界的四川盆地阻隔下,一部分物质则转而向东南侧向运移;②龙门山地带在地形上差达3500±500m左右,而地壳厚度在龙门山西北部为60±5km左右,四川盆地为40±2km左右,而龙门山地带与其东、西两侧相比则为地壳厚度变化幅度达15~20km的突变地域,即为应力作用的耦合地带;③中、下地壳和地幔盖层物质以地壳低速层、低阻层(深20~25km)为第一滑移面,以上地幔软流层顶面为第二滑移面,且在四川盆地深部"刚性"物质阻隔下,深部壳、幔物质以高角度在龙门山构造带和四川盆地的耦合地带向上运移(或称逆冲),且在龙门山地表三条断裂构成的断裂系向下延伸到20km左右深处汇聚,二者强烈碰撞、挤压、震源介质破裂;在物质与能量的强烈交换下,应力得到释放,故形成了这次Ms8.0强烈地震.为此从深部初步揭示了这次强烈地震"孕育"、发生和发展的深层动力过程.  相似文献   

3.
青藏高原东缘低地形变速率的龙门山断裂带上相继发生了2008汶川Mw7.9级地震和2013芦山Mw6.6级地震.地震勘探与震源定位结果揭示了龙门山区域地震空间分布特征:纵向上,龙门山断裂带这两次地震主震均发生在龙门山断裂带上地壳的底部(14~19 km),绝大部分余震均发生在上地壳范围(5~25 km),而在其中、下地壳深度范围内鲜见余震发生;横向上,地震(Mw>3)在龙门山断裂带青藏高原一侧密集分布且曾有大震发生,而四川盆地地震稀少(Mw>3).为探讨龙门山断裂带地震发生机理,并解释以上龙门山区域地震空间分布特征,本文建立了龙门山断裂带西南段跨芦山地震震中区域的四种不同流变结构的龙门山断裂带三维岩石圈模型,以地表GPS观测资料为约束边界条件,数值模拟龙门山断裂带岩石圈在数千年以上长期匀速构造挤压作用下的应力积累特征,探讨了地壳分层流变性质对地壳应力积累的影响,分析了该区域地震空间分布与构造应力积累速率的关系.计算结果表明:该区域在数千年的应力积累过程中,脆性上地壳中应力表现近于恒定值的线性增长趋势,龙门山断裂带上地壳底部出现应力集中积累现象,这一应力集中现象可以解释龙门山断裂带汶川地震与芦山地震主震的发生,及其大部分余震在脆性上地壳中的触发;青藏高原一侧上地壳应力积累速率远远高于四川盆地的应力积累速率,这一应力积累分布现象可以解释龙门山区域青藏高原一侧地震密集而四川盆地地震稀少的地震空间分布特征;通过比较不同流变结构模型中的应力积累状态,认为导致这一应力积累空间分布状态的重要控制因素在于青藏高原中、下地壳较低的黏滞系数与四川盆地中、下地壳较高的黏滞系数的差异.在柔性的中、下地壳内,应力增长近于指数形式,稳定状态之后其应力增长速率近于零,构造应力积累难以达到岩石破裂强度,因而鲜见地震发生.地壳各层位的应力增长率差异与地震成层分布的现象共同揭示了龙门山区域岩石圈分层流变结构:脆性上地壳、韧性中、下地壳(青藏高原一侧较弱,四川盆地一侧较强)、韧性岩石圈上地幔.  相似文献   

4.
四川西部暨龙门山地区的Pn波速度和各向异性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用天然地震的走时数据和层析成像方法反演了四川西部及邻近地区的Pn波速度和各向异性,据此分析了龙门山的上地幔结构和汶川地震的深部构造特征.研究结果揭示了龙门山断裂两侧Pn波速度的差异:松潘-甘孜造山带速度偏低,四川盆地速度偏高;前者易于发生流动和韧性变形,后者显示出较强的刚性,反映出活动造山带和稳定地块岩石层地幔的不同性质.高速区和低速区的分界对应于龙门山断裂,大体上以汶川为界,北段相对平直且与余震的震中分布相一致,南段向四川盆地一侧凹进弯曲,汶川8级地震的震中位于北段和南段之间速度结构横向变化最大的区域,也是龙门山深层构造应力最易于集中和最易于产生应力差的地区,具有十分明显的深部构造特征.Pn波各向异性反映出的深部物质流动与青藏高原的向东运动相吻合,但是明显受到四川盆地刚性岩石层的阻挡,这一作用过程为龙门山地区的应力积累和汶川8级地震的发生提供了深部动力来源.龙门山断裂与上地幔顶部的各向异性无明显的对应关系,估计该断裂的活动仅限于地壳内部,而深部物质的流动与川滇地块沿着鲜水河断裂的旋转挤出有一定的相关性,据此推测龙门山断裂和鲜水河断裂具备不同的深层动力条件.  相似文献   

5.
沈旭章 《地球物理学报》2013,56(6):1895-1903
地壳和岩石圈变形特征研究对于深入了解中强地震的深部孕震环境具有重要科学意义.本文联合P和S波远震接收函数偏移成像结果,对发生过芦山7.0地震和汶川8.0地震的龙门山断裂带及附近区域地壳和岩石圈结构进行分析.结果揭示出在青藏高原向四川盆地过渡的龙门山断裂带,Moho面和岩石圈底界面(LAB)呈现出强烈变形,特别是芦山地震和汶川地震震源区下方地壳出现了错断、下凹,岩石圈也呈现下凹变形特征.这种地壳及岩石圈变形所代表的高应力的积累可能是汶川和芦山地震发生的重要深部地球动力学背景.  相似文献   

6.
本文利用龙门山地区的地质、地球物理剖面、弹性波速和流变实验数据等,建立了汶川地震相关构造单元的地壳流变结构.川西高原和龙门山构造带的地壳流变结构中存在多个塑性流变层,而四川盆地地壳基本没有出现塑性流变层,这种复杂的流变结构是汶川地震孕育和发生的基础.岩石破裂-黏滑-摩擦实验表明,以二长花岗岩为代表的震源区岩石具有很高的破裂强度和摩擦强度,能够承受极大的差应力和积累巨大的能量,这是高角度逆断层能够滑动和汶川地震强度大的原因之一.高流体压力是高角度逆断层滑动和触发汶川地震的另一个必要条件,而龙门山断层带内可能存在这种比较高的流体压力.  相似文献   

7.
2008汶川Ms8.0地震发生的深层过程和动力学响应   总被引:1,自引:0,他引:1       下载免费PDF全文
汶川Ms8.0强烈地震发生在一条现今并不活动的龙门山构造带上,造成了以汶川、映秀为中心及其周边地域的严重破坏和人员的重大伤亡.然而强烈震发生前却未见有可能的确切征兆或浅表层异常活动,即浅层过程与地震发生的深层过程并不匹配.为此对这次强烈地震“孕育”、发生和发展的深层过程进行了分析和探讨,初步研究表明:①在印度洋板块与欧亚板块陆—陆碰撞、挤压作用下,喜马拉雅造山带东构造结向NNE方向顶挤、楔入青藏高原东北缘,迫使高原深部物质向东流展,在受到以龙门山为西北边界的四川盆地阻隔下,一部分物质则转而向东南侧向运移;②龙门山地带在地形上差达3500±500 m左右,而地壳厚度在龙门山西北部为60±5 km左右,四川盆地为40±2 km左右,而龙门山地带与其东、西两侧相比则为地壳厚度变化幅度达15~20 km的突变地域,即为应力作用的耦合地带;③中、下地壳和地幔盖层物质以地壳低速层、低阻层(深20~25 km)为第一滑移面,以上地幔软流层顶面为第二滑移面,且在四川盆地深部“刚性”物质阻 隔下,深部壳、幔物质以高角度在龙门山构造带和四川盆地的耦合地带向上运移(或称逆冲),且在龙门山地表三条断裂构成的断裂系向下延伸到20 km左右深处汇聚,二者强烈碰撞、挤压、震源介质破裂;在物质与能量的强烈交换下,应力得到释放,故形成了这次Ms.0强烈地震.为此从深部初步揭示了这次强烈地震“孕育”、发生和发展的深层动力过程.  相似文献   

8.
汶川8.0级大地震的孕育和发生的深层过程与动力成因探讨   总被引:1,自引:1,他引:0  
汶川8.0级大地震发生在由3条NE向断裂带组成的龙门山逆冲走滑断裂系上,造成了以汶川、映秀为中心和其周边地域的严重破坏和人员的重大伤亡。然而强烈地震发生前却未见有可能的确切征兆或浅表层异常活动的迹象(相对于短期和临震预测),即浅层过程与地震发生的深层过程并不匹配。那么为什么在龙门山地区突然发生了这次大地震,它具有哪些特征?其成因机制又是什么?为此必须对这次大地震孕育、发生和发展的壳幔速度结构和其深层动力过程进行深入研究和探讨。通过松藩—甘孜,龙门山造山带和四川盆地地域人工源地震深部探测、天然地震层析成像、接收函数与面波频散反演、大地电磁测深和重力场研究,所得初步结果表明:①在印度洋板块与欧亚板块陆-陆板块碰撞、挤压作用下,形成了喜马拉雅造山带和东构造结,该东构造结似一尖楔向NNE方向顶挤并插入青藏高原东北缘,故迫使高原深部物质向东流展,在受到以龙门山为西北边界的四川盆地刚性物质阻隔下,一部分物质则转而向东南侧运移;②龙门山造山带与其西北侧地带地形高差达3500±500m左右,而地壳厚度在龙门山西北部为65±5km左右,四川盆地为40±2km,而龙门山地带与其东、西两侧相比则其地壳厚度变化幅度可达15~20km。这里恰为应力作用的耦合与集中地带;③下地壳和地幔盖层物质以上、中地壳(深20~25km)中的低速层为第一滑移面(并与上地壳解耦),以上地幔软流层顶面为第二滑移面,且在四川盆地深部壳、幔"刚性"物质阻隔下,下地壳和上地幔盖层物质以高角度在龙门山断裂系与四川盆地的耦合地带向上运移(或称逆冲),且在龙门山地表三条断裂构成的断裂系向下收敛到15±5km左右深处汇聚,二者强烈碰撞、挤压、震源介质破裂;即在物质与能量的强烈交换下,高度集中的应力得到急速释放,故形成了这次8.0级大地震;④汶川8.0级大地震的发震断裂是深部15±5km处的汇聚断裂带,且为在15±5km深处、半径为5km左右的柱状震源体积。为此通过该区的壳、幔速度结构变异,初步揭示了这次8.0级大地震孕育、发生和发展的深部介质和构造环境及其深层动力过程。  相似文献   

9.
利用跨龙门山后山和前山断裂的短水准监测资料、龙门山区域GPS和水准测量资料,结合龙门山及邻近区域的地震构造、以及2008年汶川8.0级地震前的中小地震活动等信息进行分析,研究汶川地震前横跨龙门山断裂带的震间(震前)地壳形变特征,探讨引起发震断裂近场和远场形变的构造活动与动力学模式,并由此认识汶川地震的孕育与成因机制,以及该地震破裂的发生机理.  相似文献   

10.
利用中国地震局在汶川地震前后对四川盆地以及龙门山断裂进行的水压致裂绝对应力测量数据、近断层强震记录、以及由美国USGS公布的包括地震矩和地震波能量等在内的远场震源参数解,从简单断层模型出发,应用地震能量分配原理和库仑摩擦准则,初步估算和判断了2008年Ms8.0汶川地震断层破裂过程和震源参数,以及滑移弱化模型下应力变化...  相似文献   

11.
龙门山后山断裂汶川M_S8.0地震地表破裂带   总被引:2,自引:0,他引:2  
2008年汶川Ms8.0地震发生之后,多方研究者开展了汶川震区地表破裂实地调查。已发表的调查结果论证汶川地震地表破裂带沿龙门山构造带中央断裂和前山断裂分布。本文作者近期沿龙门山后山活动断裂开展了踏勘性调查。调查结果表明,除龙门山中央断裂带和前山断裂带出现汶川地震的地表破裂带之外,位于龙门山构造带后山断裂(汶川-茂县断裂)存在另一条长约100km、  相似文献   

12.
综合利用川西流动地震台阵观测数据和震后应急地震观测台站的震相数据,采用双差地震定位方法对汶川地震的余震序列进行了精确重新定位,并对汶川地震的地震构造进行了深入研究.其结果显示,汶川地震序列从彭灌杂岩南缘开始破裂,主震及其余震破裂带长约350 km,在大部分区域宽约20~30 km,其宽度和空间形态沿破裂带显示了强烈的分段和非均匀特征.坚硬的彭灌杂岩对余震的非均匀性分布和汶川地震复杂的破裂过程起到了重要的控制作用.以松潘—甘孜地块中地壳低速层顶部为底边界,余震主要分布在4~24 km深度范围内的龙门山东缘上地壳高速层内.余震深度分布剖面清晰地显示了映秀—北川断裂和灌县—江油断裂以及汶川—茂汶断裂在20~22 km深度合并为剪切带的特征.小鱼洞到理县方向存在一条长度超过60 km的垂直于龙门山走向的余震分布条带,综合震源机制解和地震破裂过程的研究结果,我们推测,这是坚硬的彭灌杂岩体底部在长期应力积累作用下发生破裂的反映,并成为汶川地震释放出巨大能量的主要原因.  相似文献   

13.
汶川Ms8.0地震余震序列重新定位及其地震构造研究   总被引:27,自引:9,他引:18       下载免费PDF全文
综合利用川西流动地震台阵观测数据和震后应急地震观测台站的震相数据,采用双差地震定位方法对汶川地震的余震序列进行了精确重新定位,并对汶川地震的地震构造进行了深入研究.其结果显示,汶川地震序列从彭灌杂岩南缘开始破裂,主震及其余震破裂带长约350 km,在大部分区域宽约20~30 km,其宽度和空间形态沿破裂带显示了强烈的分段和非均匀特征.坚硬的彭灌杂岩对余震的非均匀性分布和汶川地震复杂的破裂过程起到了重要的控制作用.以松潘-甘孜地块中地壳低速层顶部为底边界,余震主要分布在4~24 km深度范围内的龙门山东缘上地壳高速层内.余震深度分布削面清晰地显示了映秀-北川断裂和灌县江油断裂以及汶川-茂汶断裂在20~22 km深度合并为剪切带的特征.小鱼洞到理县方向存在一条长度超过60 km的垂直于龙门山走向的余震分布条带,综合震源机制解和地震破裂过程的研究结果,我们推测,这是坚硬的彭灌杂岩体底部在长期应力积累作用下发生破裂的反映,并成为汶川地震释放出巨大能量的主要原因.  相似文献   

14.
为剖析2008年汶川MS8.0地震对后期地震的影响及发震区域构造应力场特征,首先利用2008年5月12日—2013年4月19日汶川地震及其邻区的1660条震源机制解,同时采用同一地震多个震源机制中心解的方法筛去重复地震事件的震源机制解,最终获得911个震源机制解。其次,通过网格搜索法分段反演出区域构造应力场。结果显示:东北区主要受WNW-ESE向的挤压,西南区受W-E向的挤压,中区受WSW-ENE向的挤压。西南到东北主压应力轴方向有所变化,这可能与龙门山地区受到来自印度板块北北东方向的俯冲推挤、四川盆地的阻挡和巴颜喀拉块体东南向挤压的联合作用有关。然后,基于USGS给出的汶川MS8.0地震的破裂模型,计算出该地震对附近强震的触发关系,结果表明,本次汶川地震对同属龙门山断裂西南端的芦山地震触发作用明显,对位于东昆仑断裂上的玛多地震也有一定的触发作用。最后,计算汶川MS8.0地震对周围断层的同震库仑应力变化,发现本次地震造成龙门山断裂南北两端、秦岭南缘断裂、鲜水河断裂东南端、东昆仑断裂、白玉断裂的库仑破裂应力增加,龙门山断裂南北两端和秦岭南缘断裂增加最为明显,对分析地震危险性有一定的参考意义。   相似文献   

15.
青藏高原东缘龙门山构造带是研究青藏高原地壳物质向东侧向挤出的焦点地区.为探索龙门山构造带活动构造特征及其与发震构造的关系,本文通过布置垂直龙门山构造带南段芦山地震震源区的大地电磁测深剖面,运用多种数据处理手段,得到研究区可靠的电性结构,并通过与已有龙门山中段和北段剖面进行对比分析.研究表明:(1)青藏高原东缘岩石圈存在明显的低阻异常带--松潘岩石圈低阻带,该低阻异常带沿龙日坝断裂-岷山断裂-龙门山后山断裂分布,形成松潘-甘孜地块向扬子地块俯冲的深部动力学模式,通过统计研究区的历史强震,发现震源主要沿低阻异常带东侧分布,同时,低阻异常带也是低速度、低密度异常带,松潘岩石圈低阻带可能是扬子地块的西缘边界;(2)青藏高原物质东移过程中,受到克拉通型四川盆地的强烈阻挡,龙门山构造带表层岩块和物质发生仰冲推覆,表现为逆冲推覆特征的薄皮构造,中下地壳和上地幔顶部物质向龙门山构造带岩石圈深部俯冲,印支运动晚期,扬子古板块持续向华北板块俯冲,在上述构造运动作用下,呈现出刚性的上扬子地块西缘高阻楔形体向西插入柔性青藏块体的楔状构造;(3)根据电性结构推断,芦山地震受到深部上里隐伏壳幔韧性剪切带向上扩展的影响,构成芦山地震的深部主要动力来源;汶川地震的发生,在龙门山南段形成应力加载区,是触发或加快芦山地震孕育发生的另一个动力来源.  相似文献   

16.
青藏高原东缘的地壳结构是两种主流青藏高原隆升模式争辩的焦点之一.中下地壳流曾经被认为是高原东缘隆升的主要构造驱动力,但是中上地壳之间低阻低速层的发现及其与2008 Ms8.0汶川地震良好的对应关系表明,高原东缘具有向东刚性挤出的可能性.然而大部分关于龙门山断裂的数值模拟仍建立在下地壳流的基础上,仅将低阻低速层作为断裂的延续或是弱化地壳物性参数的软弱层,而非能够控制块体滑动的“解耦层”,也没有考虑到刚性块体变形中的断裂相互作用.本文建立了包含相互平行的龙门山断裂与龙日坝断裂的刚性上地壳模型,用极薄的低阻低速层作为块体滑动的解耦带,采用速率相关的非线性摩擦接触有限元方法,基于R最小策略控制时间步长,计算了在仅有侧向挤压力作用下,低阻低速层对青藏高原东缘的刚性块体变形和断裂活动的作用.计算结果显示,低阻低速层控制了刚性块体的垂直变形和水平变形分布特征.在侧向挤压力的持续作用下,在低阻低速层控制下的巴颜喀拉块体能够快速隆升,而缺乏低阻低速层的四川盆地隆升速度和隆升量均极小,隆升差异集中在龙门山断裂附近,使其发生应力积累乃至破裂.龙日坝断裂被两侧的刚性次级块体挟持着一起向南东方向运动,但该断裂的走滑运动分解了绝大部分施加在块体边界上的走滑量,使得相邻的龙门山次级块体的走滑分量遽然减少,也使得龙门山断裂表现出以逆冲为主,兼有少量走滑的运动性质.本文所得的这些计算结果显示了在缺乏中下地壳流,仅在低阻低速层解耦下刚性块体隆升过程及相关断裂活动,提供了青藏高原东缘刚性块体挤出的可行性,为青藏高原东缘隆升机制的研究讨论提供了重要依据.  相似文献   

17.
利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据,分别采用波形互相关和加权叠加方法研究了地壳各向异性。作为初步结果,得到了龙门山断裂两侧4个宽频带流动台站的接收函数莫霍面Ps转换震相快波方向和分裂时间延迟。结果表明:1)波形互相关方法总体上优于方位加权叠加方法,它不但可以给出快波方位,而且可以给出快慢波的时间延迟;方位加权叠加方法测量结果存在不确定性,其原因在于难以确定介质各向异性对称轴的方位;同时采用上述2种不同方法研究地壳各向异性参数有助于判断测量结果的可靠性;2)四川盆地内快波偏振方位基本一致,表明四川盆地地壳整体性较好,横向非均匀变形较弱;3)以汶川地震主震的震中区为界,松潘-甘孜地块北侧快波偏振方位与龙门山断裂近于平行,表明在四川盆地坚硬地壳的阻挡作用下,龙门山断裂附近松潘-甘孜地块北侧可能存在中下地壳软弱物质沿断层向NE方向的扩张变形,而其南侧处于正向挤压的状态。该结果有助于解释汶川MS8.0地震的单侧破裂过程及其余震发育的特征  相似文献   

18.
汶川Ms8.0地震:地壳上地幔S波速度结构的初步研究   总被引:27,自引:11,他引:16       下载免费PDF全文
2008年5月12日我国四川省汶川地区发生了震惊世界的Ms8.0地震.历史上,同类地震在大陆内部极为罕见.该地震深部构造背景的研究对理解其成因极为重要.本文利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据和接收函数非线性反演方法,得到了沿北纬31°线的19个台站下方120 km深度范围内的S泼速度结构及台站下方地壳的平均泊松比.该观测剖面穿越了主震区,总长度约为420 km.我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异.上述三个地块的地壳结构特征口J以概括为:(1)四川盆地前陆壳幔界面向西侧倾斜井有较为明显的横向变肜,地壳厚度存在46~52 km的横向变化,中下地壳S波速度存在横向变化,地壳平均泊松比值较高(0.28~0.31),但在龙门山断裂带附近,显示了坚硬地壳的特征,地壳平均泊松比仪为0.2;(2)松潘-甘孜地块地壳厚度由西侧靠近鲜水河断裂的60 km,向东减薄为52 km,在14~50 km深度范围内存在S波速度2.75~3.15 km/s的楔状低速区,其厚度由西侧的~30 km向东逐渐减薄为~15 km,相应区域的地壳平均泊松比高达0.29~0.31;(3)鲜水河断裂西侧,川滇地块地壳结构相对简单,地壳厚度为58 km,并在26 km深度存在约10 km厚度的高速层,地壳内平均泊松比约为0.25;(4)汶川大震区在12~23 km深度上具有近乎4.0 km/s的S波高速结构,而其下方的地壳为低速结构,地壳平均泊松比0.31~0.32,汶川大震的余震序列主要分布在高速介质区域内.本文的结果表明松潘-甘孜地块的地壳相对软弱;而且并不仔在四川盆地向西侧的俯冲,我们认为在青藏高原东向挤压的长期作用下,四川盆地强硬地壳的阻挡作用可导致松潘-甘孜地块内部蓄积很大的应变能量以及上、下地壳存壳内低速层顶部边界的解耦,在龙门山断裂带附近形成上地壳的铲形逆冲推覆.汶川大地震及其邻近区域所具有的坚硬上地壳和四川盆地的阻挡作用为低应变率下的高慢度应力积累创造了必要条件,而松潘-甘孜地块长期变形积累的高应变能构成了孕育汶川大地震的动力来源.  相似文献   

19.
青藏高原东缘及四川盆地的壳幔导电性结构研究   总被引:24,自引:16,他引:8  
自从2008年MS8.0级汶川大地震发生以来,青藏高原东缘便成为地质与地球物理研究的热点区域.该区域的龙门山断裂带标志着青藏高原东缘与四川盆地的边界.汶川地震即发生于龙门山断裂带内的映秀-北川断裂上.该地区现有的研究工作多集中于青藏高原东缘及四川盆地的西部,对四川盆地东部构造情况的研究目前较少.在SinoProbe项目的资助下,完成了一条跨越青藏高原东缘及整个四川盆地的大地电磁测深剖面.该剖面自西北始于青藏高原内部的松潘-甘孜地块,向东南延伸穿过龙门山断裂带、四川盆地内部及四川盆地东部的华蓥山断裂,最终止于重庆东南的川东滑脱褶皱带附近.维性分析表明剖面数据整体二维性较好,通过二维反演得到了最终的电性结构模型.该模型表明,从电性结构上看,沿剖面可分为三个主要的电性结构单元,分别为:浅部高阻、中下地壳低阻的松潘-甘孜地块,浅部低阻、中下地壳相对高阻的四川盆地,以及华蓥山以东整体为高阻特征的扬子克拉通地块.龙门山断裂带在电性结构上表现为倾角较缓、北西倾向的逆冲低阻体,反映了青藏高原东缘相对四川盆地的推覆作用.其在地下向青藏高原内部延伸,深度约为20 km左右.在标志逆冲推覆滑脱面的低阻层下存在一电性梯度带,表征着低阻的青藏高原中下地壳与高阻的扬子地壳之间的电性转换.位于四川盆地东边界的华蓥山断裂在电性结构上表现为一倾向为南东向的低阻体插入高阻的扬子克拉通结晶基底,切割深度约为30 km左右.这一结构反映出华蓥山向西的推覆作用.在电性结构模型的基础上,进一步讨论了青藏高原东缘的壳内物质流、青藏块体与扬子块体的深部关系以及青藏高原东部的隆升机制等构造问题.  相似文献   

20.
对龙门山及其邻近地区20个宽频带地震台站的记录提取远震P波接收函数,并应用H-k叠加方法,求得每个台站下方的地壳厚度和波速比.以此为约束,进一步作接收函数反演,获得各个台站下方的S波速度结构.后龙门山与松潘-甘孜地块的地壳速度结构相似,而前龙门山的地壳速度结构则与四川盆地相似.由此说明,中央主断裂带是青藏高原东部与扬子地块之间主要的边界断裂.松潘甘孜地块至后龙门山中南部地区存在下地壳低速层,有利于中上地壳物质的滑脱作用.远震接收函数和布格重力异常的分析结果支持龙门山断裂带深部构造为滑脱-逆冲型的论断.在松潘-甘孜地块内可能具有双层的滑脱构造.上层滑脱发生在10~15km的深度上,该滑脱带表现为高温韧性滑脱剪切带.下层滑脱则发生在30km左右的深度上,其下方为青藏高原东部广泛存在的下地壳流.布格重力异常的分析表明,在中上地壳,四川盆地的密度较高,松潘-甘孜地块密度相对较低.龙门山断裂带位于密度较高的一侧,是松潘-甘孜地块向东南方的四川盆地逆冲的结果.在地壳下部,四川盆地为高P波速度和高密度区,表明地壳物质是坚硬的.松潘-甘孜块体是低S波速度和低密度区,表明物质比较软弱.高密度块体阻挡了青藏高原东部下地壳物质向四川盆地下方的流动.受印度板块往北运动的影响,青藏高原下地壳物质向东流动.中上地壳物质向东运动受到刚性强度较大的扬子地块的阻挡,在龙门山断裂带上产生应力集中,导致中央断裂带上应力突然释放,产生汶川Ms8.0级地震.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号