首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
The currently available experimental data, among which the series of particle flux measurements on satellites are of crucial importance, have revealed a number of regularities pertaining to solar cosmic rays (SCRs). Based on these regularities, we have developed a probabilistic model of particle fluxes. This model not only provides a basis for determining radiation conditions in space flights and space weather impacts but also allows such situations as the occurrence of extreme SCR events in the quiet-Sun period in 2005–2006 to be predicted.  相似文献   

2.
Modulation of galactic cosmic rays in cycles 19–23 of solar activity has been determined based on observations of their long-term variations on the ground and in the near-Earth space. The extreme values of long-term variations in cosmic rays, obtained from the data of continuous cosmic radiation monitoring on the ground and in the near-Earth space in the last five solar cycles, have been analyzed. The results are compared with the extrema in the characteristics of solar magnetic fields and the sunspot numbers in these cycles. The similarities and differences in cosmic ray modulation between different cycles are discussed.  相似文献   

3.
FY 1C星空间粒子成分探测器能够实现对质子能谱、电子积分通量及重离子成分的同时测量.在第23周太阳活动峰年期间,空间粒子成分探测器对860km高度的南大西洋负磁异常区高能粒子辐射进行了长达3年的连续探测.本文根据实测结果,得出了南大西洋负磁异常区粒子辐射特征,分析了太阳质子事件和地磁暴对南大西洋负磁异常区粒子辐射的影响.  相似文献   

4.
Humans are exposed to ionizing radiation all the time, and it is known that it can induce a variety of harmful biological effects. Consequently, it is necessary to quantitatively assess the level of exposure to this radiation as the basis for estimating risks due to ionization radiation. During the Work Package 2400 of the COST-724/WG-2 action, a number of spacecraft and aircraft experiments have been performed with both active and passive detectors. A large data base has been created. In this contribution we would like to stress the results obtained and their importance in three particular directions: (i) Simultaneous investigation of galactic cosmic rays on aircraft and on the International Space Station (ISS); (ii) Onboard spacecraft neutron contribution as estimated on the basis of the comparison of results measured with MDU/Liulin equipment onboard ISS, foton capsule and a commercial aircraft flying at subsonic altitudes; (iii) Complex analysis of the results of long term measurements onboard a Czech Airlines aircraft. The results obtained are presented, analyzed, and discussed, and their complementary nature is underlined. The contribution represents a version of the Final Report of the Work Package 2400 of the COST-724/WG-2: Radiation Environment of the Earth.  相似文献   

5.
风云二号03批卫星空间环境监测器   总被引:4,自引:2,他引:2       下载免费PDF全文
风云二号卫星以自旋稳定方式工作于地球静止轨道,自1997年以来,01批与02批卫星空间环境监测器成功的业务运行获得了大量重要探测成果;在继承01批与02批产品研制技术的基础上,提高了03批空间环境监测器的探测性能指标和技术设计,更好地满足空间天气预警业务发展的新需求.本文对风云二号03批卫星空间环境监测器的新设计、关键技术研制和发射前的定标试验结果进行分析和讨论.  相似文献   

6.
本文比较了在太阳平静和扰动时期“资源一号”卫星星内粒子探测器对卫星舱内高能粒子的观测结果,发现在平静时期观测结果很好地反映了辐射带高能粒子在该高度上的分布情况.在扰动时期,粒子探测器观测到高能粒子分布出现重大变化,本文进一步讨论了影响高能粒子在近地空间分布的可能因素.  相似文献   

7.
More than one hundred years ago Kristian Birkeland (1867–1917) first addressed the question as to why auroras appear overhead when the Earth's magnetic field is disturbed. He laid foundations for our current understanding of geomagnetism and polar auroras. For the first time cosmic phenomena were scaled and simulated in a laboratory. Birkeland's terrella experiments were ingenious. Even though the famous Lord Kelvin, in 1892, wrote that no matter passes between the Sun and the Earth, Birkeland's first auroral theory from 1896 is based on charged particle of solar origin, illustrated by the following quotation: “the auroras are formed by corpuscular rays drawn in from space, and coming from the sun”. Thus, the year 1896 marks the founding of space plasma physics. His most enduring contribution to auroral physics was his recognition that field-aligned currents are needed to couple auroral phenomena in the upper atmosphere to interplanetary space. The existence of field-aligned currents was controversial and disputed vigorously among scientists for more than 50 years. During The Birkeland Symposium in 1967 it was unanimously proposed that field-aligned currents in space should be called “Birkeland currents”, which was accepted by the International Union for Geomagnetism and Aeronomy. Today, plasma physicists strongly believe that many significant cosmic phenomena result from streams of Birkeland currents.  相似文献   

8.
One of the variants of the global survey method developed and used for many years at the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences is described. Data from the world network of neutron monitors for every hour from July 1957 to the present has been processed by this method. A consistent continuous series of hourly characteristics of variation of the density and vector anisotropy of cosmic rays with a rigidity of 10 GV is obtained. A database of Forbush decreases in galactic cosmic rays caused by large-scale disturbances of the interplanetary medium for more than half a century has been created based on this series. The capabilities of the database make it possible to perform a correlation analysis of various parameters of the space environment (characteristics of the Sun, solar wind, and interplanetary magnetic field) with the parameters of cosmic rays and to study their interrelationships in the solar–terrestrial space. The features of reception coefficients for different stations are considered, which allows the transition from variations according to ground measurements to variations of primary cosmic rays. The advantages and disadvantages of this variant of the global survey method and the opportunities for its development and improvement are assessed. The developed method makes it possible to minimize the problems of the network of neutron monitors and to make significant use of its advantages.  相似文献   

9.
The propagation of cosmic rays in the Earth??s atmosphere is simulated. Calculations of the omnidirectional differential flux of neutrons for different solar activity levels are illustrated. The solar activity effect on the production rate of cosmogenic radiocarbon by the nuclear-interacting and muon components of secondary cosmic radiation in polar ice is studied. It has been obtained that the 14C production rates in ice by the cosmic ray nuclear-interacting component are lower or higher than the average value by 30% during periods of solar activity maxima or minima, respectively. Calculations of the altitudinal dependence of the radiocarbon production rate in ice by the cosmic radiation components are illustrated.  相似文献   

10.
The distinguished directions, dependent on the solar wind velocity and IMF line position, exist in the interplanetary space, which results in the nonuniform distribution of phases and the amplitude-phase interrelation of the first cosmic ray anisotropy harmonic. The characteristics of the first anisotropy harmonics, determined for each hour using the global survey method based on the worldwide neutron monitor network from 1957 to 2010, were used to study long-period variations in the cosmic ray anisotropy. The longitudinal distributions of the cosmic ray vector anisotropy and the interrelation between the anisotropy amplitude and phase have been obtained for each year in this time interval. The results evidently demonstrate the anisotropy variations caused by the solar magnetic and activity cycles. The anisotropy distributions at different solar wind velocities have also been studied. Periods with a specific cosmic ray anisotropy behavior are distinguished and discussed. The obtained cosmic ray anisotropy variations agree with the convection-diffusion anisotropy model.  相似文献   

11.
We evaluate the potential of imaging for the first time, the near-earth space plasma environment seamlessly from the ionosphere through the magnetosphere by remotely sensing Thomson scattering of solar visible light by geospace electrons. Using state of the art first principles models of the magnetosphere/ionosphere system, we show that the column emission rates are weak, generally less than 10 Rayleighs, but detectable with currently available instrument technology recently deployed for heliospheric imaging. We demonstrate that distinct features such as the bow shock, magnetosheath and magnetopause are detectable in synthetic images simulated using modified solar coronagraphs and white light imagers, providing that the large background signals are properly quantified. The availability of global geospace images of the electron concentration will enable major advances in our understanding of how Earth's near-space environment responds as a coupled system to changing solar forcings. Such images are expected to play a central role in space weather assessment and forecasting, from which significant capabilities will accrue, much as the imaging of the Earth's surface and lower atmosphere has advanced understanding and forecasting of tropospheric weather.  相似文献   

12.
During the prolonged and deep minimum of solar activity between cycles 23 and 24, an unusual behavior of the heliospheric characteristics and increased intensity of galactic cosmic rays (GCRs) near the Earth’s orbit were observed. The maximum of the current solar cycle 24 is lower than the previous one, and the decline in solar and, therefore, heliospheric activity is expected to continue in the next cycle. In these conditions, it is important for an understanding of the process of GCR modulation in the heliosphere, as well as for applied purposes (evaluation of the radiation safety of planned space flights, etc.), to estimate quantitatively the possible GCR characteristics near the Earth in the upcoming solar minimum (~2019–2020). Our estimation is based on the prediction of the heliospheric characteristics that are important for cosmic ray modulation, as well as on numeric calculations of GCR intensity. Additionally, we consider the distribution of the intensity and other GCR characteristics in the heliosphere and discuss the intercycle variations in the GCR characteristics that are integral for the whole heliosphere (total energy, mean energy, and charge).  相似文献   

13.
地球空间环境及预报   总被引:1,自引:0,他引:1       下载免费PDF全文
地球空间是人类赖以生存、发展的重要保护层.地球空间环境的变化,特别是爆发性活动──空间暴,对输电系统、航天安全、无线电通信、导航、全球定位系统、生产活动及生态环境有很大影响.因此,对地球空间环境变化进行预报有重要意义.这项工作已引起不少国家学者和政府部门的重视,在环境探测和理论研究方面已取得不少成果.中国应抓住机遇,加强组织和规划,加强国际合作,发挥自己的优势,建立和完善地面观测系统,争取在21世纪初实现准确实时的地球空间环境预报.  相似文献   

14.
提出了一个新的太阳宇宙线日 -地传输的数学模型 ,它包括日冕粒子分布源和行星际传播方程 .根据对太阳宇宙线耀斑黑子群特征和耀斑相的观测 ,提出了多极性黑子湮没的两阶段日冕传输过程和传输方程 ,得到了与观测特征一致的日冕粒子分布源 .日冕传输的第一阶段 ,和太阳耀斑脉冲相的时间相当 ,加速粒子通过扩散很快均匀地分布在耀斑区 ,形成所谓快传播区 .第二阶段 ,加速粒子向快传播区以外的日冕区扩散并向行星际空间逃逸 ,形成慢传播过程 .日冕传输模型的数值结果和日冕传输的观测特征符合 .太阳宇宙线的行星际传播采用三维正交均匀各向异性方程描述 .最后把模型的数值结果与 1 997年 9月 2 4日事件的SOHO(SolarandHeliosphericObservatory)观测资料作了比较 .能较好地符合 .  相似文献   

15.
A cosmic dust detector for installation on a satellite is currently being developed using piezoelectric lead zirconate titanate (PZT), which can possess both functions of the collector and the transducer. The characteristics of the PZT detector have been studied by bombarding it with hypervelocity particles supplied by a Van de Graaff accelerator. The front surface of the detector used in this study was covered with a white paint to reduce any increase in the temperature due to the solar radiation. There was a linear relationship between the rise time of the signal produced by the detector and the particle's velocities, which were above 10 km/s on impact. This implies that individual particle velocities on impact can be inferred through the empirical formula derived from the data obtained from the PZT detector.  相似文献   

16.
Agricultural production from steep terrain is frequently limited to pasture systems, where forage harvesting is done by grazing animals. Intercepted solar radiation determines the energy available for forage production. A model was developed for estimating potential direct beam radiation in areas with a wide range of aspects, landscape positions, and various shadow sources. The model was applied to a small, steep pasture watershed in central Appalachia to determine the spatial distribution of potential direct beam radiation. Effective horizon was an important parameter affecting the energy budget of the study watershed. A simple means for estimating global radiation from the modelled potential direct beam radiation, given atmospheric transmissivity and cloudiness, was presented. When the proportion of global radiation that was diffuse radiation was increased the effective horizon was less important and the spatial variability of modelled radiation decreased.  相似文献   

17.
We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.  相似文献   

18.
介绍了风云二号气象卫星空间环境探测资料的处理、显示技术。研究了如何利用风云二号X射线探测数据计算短波通讯最低可用频率及电离层D层的电波吸收,并设计了一个基于风云二号X射线探测数据的短波通讯最低可用频率经验预报模式。  相似文献   

19.
The negative CG lightning discharges neutralizing negative charges in cloud usually dominate for most of thunderstorms. However, a lot of positive CG light-ning discharges often occur in the disappearing stage of thunderstorms, in the stratiform region of mesoscale convective systems and some supercells producing hail and tornado. Because the positive CG lightning discharges produce larger current of the return stroke and neutralize more charges due to the continuing currents with longer las…  相似文献   

20.
FY2G卫星新一代高能带电粒子探测器观测数据分析   总被引:1,自引:0,他引:1       下载免费PDF全文
风云二号系列卫星是我国开展动态空间天气事件和空间环境监测及预警业务的重要观测平台,各系列星上均安装有高能带电粒子探测仪器开展卫星轨道空间带电粒子辐射环境连续实时的动态监测.FY2G卫星于2015年1月发射,星上采用了全新的高能粒子探测器,包括:一台高能电子探测器可监测200keV-4 MeV的高能电子,一台高能质子重离子探测器可监测4~300 MeV的高能质子,从而实现对带电粒子更宽、更精细能谱的监测.本文给出了FY2G高能带电粒子探测器在2015年1月至2015年10月期间几起典型的带电粒子动态观测结果,结合太阳和地磁活动相关参数,对高能带电粒子通量在亚暴、磁暴和太阳爆发等扰动影响下细节变化过程和特征作出了较为详细的分析描述,展现了FY2G卫星高能带电粒子探测器对轨道空间粒子环境动态变化的准确响应能力,表明观测数据可开展更加精细的轨道粒子环境评估.针对FY2G高能带电粒子探测结果进一步开展了与GOES系列卫星同期观测的比对分析,结果反映出在较小的扰动条件下多星观测到的带电粒子响应和通量变化可基本趋于一致或保持相对稳定的偏差,而扰动条件的显著变化会加大多星观测带电粒子响应和通量变化的差异,这些结果可为今后开展多星数据同化应用提供参考,也为发展磁层对扰动响应的更加复杂的图像提供了新的可能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号