首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper addresses temporal variability in bottom hypoxia in broad shallow areas of Mobile Bay, Alabama. Time-series data collected in the summer of 2004 from one station (mean depth of 4 m) exhibit bottom dissolved oxygen (DO) variations associated with various time scales of hours to days. Despite a large velocity shear, stratification was strong enough to suppress vertical mixing most of the time. Bottom DO was closely related to the vertical salinity gradient (ΔS). Hypoxia seldom occurred when ΔS (over 2.5 m) was <2 psu and occurred almost all the time when ΔS was >8 psu in the absence of extreme events like hurricanes. Oxygen balance between vertical mixing and total oxygen demand was considered for bottom water from which oxygen demand and diffusive oxygen flux were estimated. The estimated decay rates at 20°C ranging between 0.175–0.322 d−1 and the corresponding oxygen consumption as large as 7.4 g O2 m−2 d−1 fall at the upper limit of previously reported ranges. The diffusive oxygen flux and the corresponding vertical diffusivity estimated for well mixed conditions range between 8.6–9.5 g O2 m−2 d−1 and 2.6–2.9 m2 d−1, respectively. Mobile Bay hypoxia is likely to be associated with a large oxygen demand, supported by both water column and sediment oxygen demands, so that oxygen supply from surface water during destratification events would be quickly exhausted to return to hypoxic conditions within a few hours to days after destratification events are terminated.  相似文献   

2.
The northern Gulf of Mexico (NGOMEX) was surveyed to examine the broad-scale spatial patterns and inter-relationships between hypoxia (<2?mg?L?1 dissolved oxygen) and zooplankton biovolume. We used an undulating towed body equipped with sensors for conductivity, temperature, depth, oxygen, fluorescence, and an optical plankton counter to sample water column structure, oxygen, and zooplankton at high spatial resolution (1?m??vertical; 0.25?C1?km??horizontal). We contrast the distribution of zooplankton during summer surveys with different freshwater input, stratification, and horizontal and vertical extent of bottom-water hypoxia. Bottom-water hypoxia did not appear to influence the total amount of zooplankton biomass present in the water column or the areal integration of zooplankton standing stock in the NGOMEX region surveyed. However, where there were hypoxic bottom waters, zooplankton shifted their vertical distribution to the upper water column during the day where they normally would reside in deeper and darker waters. When bottom waters were normoxic (>2?mg?L?1 dissolved oxygen), the daytime median depth of the water column zooplankton was on average 7?m deeper than the median depth of zooplankton in water columns with hypoxic bottom waters. A reduction in larger zooplankton when there were hypoxic bottom waters suggests that if zooplankton cannot migrate to deeper, darker water under hypoxic conditions, they may be more susceptible to size-selective predation by visual predators. Thus, habitat compression in the northern Gulf of Mexico due to hypoxic bottom water may have implications for trophic transfer by increasing the contact between predators and prey.  相似文献   

3.
Controls governing the production of 4He and 222Rn in the solid phase as well as parameters and processes contributing to their transport into the pore fluid are discussed. 222Rn activity is used to quantify the uranium sources for 4He and the result is a simplified pore-fluid age equation which is virtually independent of the porosity, the water/rock ratio, the rock density and the uranium concentration, but does require a Th/U estimate. The crucial parameter is the ratio of the release factors for the two species, /GLRn//GLHe, which is discussed in terms of three possible release mechanisms: (1) recoil; (2) recoil followed by diffusion; and (3) weathering release of accumulated 4He. It was found that /GLRn//GLHe can vary over several orders of magnitude, but can be expressed in terms of the effective grain size r, and the diffusive half-length for 222Rn decay, re.4He measurements are used to “date” gases from known gas fields and the agreement with the assumed source-rock age is good. Application of 4He/ 222Rn measurements to continental freshwater springs indicates that the weathering release of accumulated 4He dominates the input and results in a large overestimate of groundwater age. Measurement in the Lardarello geothermal field indicates that the 4He/222Rn method can indicate relative transport direction. Other possible applications in various geochemical fields are suggested.  相似文献   

4.
Flushing of dense water from cavities of the upper reaches of the Swan River estuary in Western Australia was investigated using measured salinity and dissolved oxygen profiles and a two-dimensional, laterally averaged hydrodynamic model (TISAT). Seasonal flushing of dense, hypoxic bottom waters from a relatively deep site took place over ∼3 days at the onset of winter in 1994. Model simulations of the purging of this dense water did not correspond closely with changes in the densimetric Froude number. Purging, expressed as depth of the halocline as a fraction of the total cavity depth, occurred when the simulated mean horizontal velocity at 2 m depth (top of cavity) changed from negative to strongly positive, indicating arrest of upstream flow and continuous downstream flow. This corresponded to freshwater discharge of about 50 m3 s−1. Oxygen depletion of bottom waters was closely related to stratification. Oxygen dynamics at the onset of winter river flow was analysed using an exponential decay model, assuning that there was no net inflow or outflow across the halocline and thus no vertical transport of oxygen during a period of strong stratification. The rate constant for oxygen decay at Ron Courtney Island (RCI) was estimated to be 0.232 d−1 for this period. Bottom waters at RCI declined to less than 1 mg 1−1 prior to complete flushing through increased river flows. This study provided in sights to how freshwater flows may be allocated to maintain suitable oxygen levels in the bottom waters of estuarine cavities.  相似文献   

5.
Controls governing the production of 4He and 222Rn in the solid phase as well as parameters and processes contributing to their transport into the pore fluid are discussed. 222Rn activity is used to quantify the uranium sources for 4He and the result is a simplified pore-fluid age equation which is virtually independent of the porosity, the water/rock ratio, the rock density and the uranium concentration, but does require a Th/U estimate. The crucial parameter is the ratio of the release factors for the two species, /GLRn//GLHe, which is discussed in terms of three possible release mechanisms: (1) recoil; (2) recoil followed by diffusion; and (3) weathering release of accumulated 4He. It was found that /GLRn//GLHe can vary over several orders of magnitude, but can be expressed in terms of the effective grain size r, and the diffusive half-length for 222Rn decay, re.4He measurements are used to “date” gases from known gas fields and the agreement with the assumed source-rock age is good. Application of 4He/ 222Rn measurements to continental freshwater springs indicates that the weathering release of accumulated 4He dominates the input and results in a large overestimate of groundwater age. Measurement in the Lardarello geothermal field indicates that the 4He/222Rn method can indicate relative transport direction. Other possible applications in various geochemical fields are suggested.  相似文献   

6.
The transport of dissolved gases in the anoxic sediments of Cape Lookout Bight, North Carolina, is controlled by diffusion and bubble ebullition and exhibits a distinct seasonal cycle. Detailed seasonal profiles of CH4, N2 and 222Rn and direct gas flux measurements indicate that ebullition dominates the flux of all dissolved gases across the sediment-water interface during summer months, and is of major importance on an annual basis. Transport within the upper 6–8 cm of sediment appears to be controlled by molecular diffusion of gases. Transport at greater depths is controlled by diffusion in winter and ebullition in summer. Rn-222 profiles were used to estimate the rate of stripping of dissolved gases within the CH4 production zone (10–30 cm); rates averaged 3–5 percent per day and agreed with estimates derived from N2 profiles. As a result of summer ebullition, the sediments of the bight are never at saturation with respect to the major gases present in seawater. Evidence from other sites suggests that ebullition may be an important transport process in many coastal sediments, and may provide mechanism for the transport of volatile reduced compounds between anoxic sediments and the atmosphere. 222Rn is a useful tracer for quantifying this transport.  相似文献   

7.
Although seasonal hypoxia is a well-studied phenomenon in many coastal systems, most previous studies have only focused on variability and controls on low-oxygen water masses during warm months when hypoxia is most extensive. Surprisingly, little attention has been given to investigations of what controls the development of hypoxic water in the months leading up to seasonal oxygen minima in temperate ecosystems. Thus, we investigated aspects of winter–spring oxygen depletion using a 25-year time series (1985–2009) by computing rates of water column O2 depletion and the timing of hypoxia onset for bottom waters of Chesapeake Bay. On average, hypoxia (O2 <62.5 μM) initiated in the northernmost region of the deep, central channel in early May and extended southward over ensuing months; however, the range of hypoxia onset dates spanned >50 days (April 6 to May 31 in the upper Bay). O2 depletion rates were consistently highest in the upper Bay, and elevated Susquehanna River flow resulted in more rapid O2 depletion and earlier hypoxia onset. Winter–spring chlorophyll a concentration in the bottom water was highly correlated with interannual variability in hypoxia onset dates and water column O2 depletion rates in the upper and middle Bay, while stratification strength was a more significant driver in the timing of lower Bay hypoxia onset. Hypoxia started earlier in 2012 (April 6) than previously recorded, which may be related to unique climatic and biological conditions in the winter–spring of 2012, including the potential carryover of organic matter delivered to the system during a tropical storm in September 2011. In general, mid-to-late summer hypoxic volumes were not correlated to winter–spring O2 depletion rates and onset, suggesting that the maintenance of summer hypoxia is controlled more by summer algal production and physical forcing than winter-spring processes. This study provides a novel synthesis of O2 depletion rates and hypoxia onset dates for Chesapeake Bay, revealing controls on the phenology of hypoxia development in this estuary.  相似文献   

8.
Stratification and bottom-water hypoxia in the Pamlico River estuary   总被引:1,自引:0,他引:1  
Relationships among bottom-water dissolved oxygen (DO), vertical stratification, and the factors responsible for stratification-destratification in this shallow, low tidal-energy estuary were studied using a 15-yr set of biweekly measurements, along with some recent continuous-monitoring data. Hypoxia develops only when there is both vertical water-column stratification and warm water temperature (>15°C). In July, 75% of the DO readings were <5 mg 1?1, and one-third were <1 mg 1?1. Severe hypoxia occurs more frequently in the upper half of the estuary than near the mouth. Both the time series data and correlation analysis results indicate that stratification events and DO levels are tightly coupled with variations in freshwater discharge and wind stress. Stratification can form or disappear in a matter of hours, and episodes lasting from one to several days seem to be common. Estimated summertime respiration rates in the water and sediments are sufficient to produce hypoxia if the water is mixed only every 6–12 d. There has been no trend toward lower bottom water DO in the Pamlico River Estuary over the past 15 yr. *** DIRECT SUPPORT *** A01BY059 00002  相似文献   

9.
In arid regions of western China, water resources come from mountain watersheds and disappear in the desert plain. The exchange of surface water and groundwater takes place two or three times in a basin. It is essential to analyze the interaction of groundwater with surface water to use water resources effectively and predict the change in the water environment. The conventional method of analysis, however, measures only the flow of a stream and cannot determine groundwater seepage accurately. As the concentration of Radon-222 (222Rn) in groundwater is much higher than in surface water, the use of 222Rn was examined as an indicator for the analysis of the interaction between surface water and groundwater. Measurement of the 222Rn concentration in surface water was conducted to detect groundwater seepage into a stream in the middle Heihe Basin of northwestern China. Furthermore, the simultaneous groundwater flow into and out of a stream from the aquifers was quantified by solving the 222Rn mass balance equation, in which the losses of gas exchange and radioactive decay of 222Rn are considered. Meanwhile, river runoff was gauged to determine the exchange rates between surface water and groundwater. The result shows that 222Rn isotope can be used as a good environmental tracer with high sensitivity for the interaction between surface water and groundwater, especially in the fractured aquifer system, karst aquifer system and discharge basins.  相似文献   

10.
Many water-supply systems in South America utilize the waters of the Guarani aquifer at least as part of their networks. However, there is little present knowledge in Brazil of the factors affecting Rn presence in the water supplied for end-users, despite the economic importance of Guarani aquifer. 222Rn analyzes of 162 water samples were performed at 8 municipalities in São Paulo State, Brazil, with the aim of investigating the major factors affecting its presence in solution. The 222Rn activity concentration ranged from 0.04 up to 204.9 Bq/L, with three samples exceeding the World Health Organization maximum limit of 100 Bq/L. Aeration was confirmed as the most important factor for Rn release, as expected due to its gaseous nature. Accumulation in pipes and stratification in the water column were other significant factors explaining the data obtained in some circumstances. The Rn daughters 214Pb and 214Bi were also determined in a set of selected samples and their presence was directly related to the occurrence of Rn dissolved in water.  相似文献   

11.
We investigated the dissolved oxygen metabolism of the Curonian Lagoon (Baltic Sea) to assess the relative contributions of pelagic and benthic processes to the development of transient hypoxic conditions in shallow water habitats. Metabolism measurements along with the remote sensing-derived estimates of spatial variability in chlorophyll a were used to evaluate the risk of hypoxia at the whole lagoon level. Our data demonstrate that cyanobacterial blooms strongly inhibit light penetration, resulting in net heterotrophic conditions in which pelagic oxygen demand exceeds benthic oxygen demand by an order of magnitude. The combination of bloom conditions and reduced vertical mixing during calm periods resulted in oxygen depletion of bottom waters and greater sediment nutrient release. The peak of reactive P regeneration (nearly 30 μmol m?2 h?1) coincided with oxygen depletion in the water column, and resulted in a marked drop of the inorganic N:P ratio (from >40 to <5, as molar). Our results suggest a strong link between cyanobacterial blooms, pelagic respiration, hypoxia, and P regeneration, which acts as a feedback in sustaining algal blooms through internal nutrient cycling. Meteorological data and satellite-derived maps of chlorophyll a were used to show that nearly 70 % of the lagoon surface (approximately 1,000 km2) is prone to transient hypoxia development when blooms coincide with low wind speed conditions.  相似文献   

12.
Statistical analysis of the radon-222 potential of rocks in Virginia,U.S.A.   总被引:1,自引:0,他引:1  
More than 3,200 indoor radon-222 (222Rn) measurements were made seasonally in an area of about 1,000 square kilometers of the Coastal Plain and Piedmont physiographic provinces in Virginia, U.S.A. Results of these measurements indicate that some geological units are associated, on the average, with twice as much indoor222Rn as other geological units, and that indoor222Rn varies seasonally. The Kruskal-Wallis test was used to test whether indoor222Rn concentrations for data gathered over the winter and summer seasons differ significantly by rock unit. The tests concluded that indoor222Rn concentrations for different rock units were not equal at the 5-percent significance level. The rocks associated with the highest median indoor222Rn concentration are specific rocks in the Mesozoic Culpeper basin, including shale and siltstone units with Jurassic diabase intrusives, and mica schists in the Piedmont physiographic province. The pre-Triassic Peters Creek Schist has the highest ranking in terms of indoor222Rn concentration. The rocks associated with the lowest indoor222Rn concentrations include coastal plain sediments, the Occoquan Granite, Falls Church Tonalite, Piney Branch Mafic and Ultramafic complex, and unnamed mafic and ultramafic inclusions, respectively. The rocks have been ranked according to observed222Rn concentration by transforming the average rank of indoor222Rn concentrations to z scores.  相似文献   

13.
Net fluxes of respiratory metabolites (O2, dissolved inorganic carbon (DIC), NH4 +, NO3 ?, and NO2 ?) across the sediment-water interface were measured using in-situ benthic incubation chambers in the area of intermittent seasonal hypoxia associated with the Mississippi River plume. Sulfate reduction was measured in sediments incubated with trace levels of35S-labeled sulfate. Heterotrophic remineralization, measured as nutrient regeneration, sediment community oxygen consumption (SOC), sulfate reduction, or DIC production, varied positively as a function of temperature. SOC was inversely related to oxygen concentration of the bottom water. The DIC fluxes were more than 2 times higher than SOC alone, under hypoxic conditions, suggesting that oxygen uptake alone cannot be used to estimate total community remineralization under conditions of low oxygen concentration in the water column. A carbon budget is constructed that compares sources, stocks, transformations, and sinks of carbon in the top meter of sediment. A comparison of remineralization processes within the sediments implicates sulfate reduction as most important, followed by aerobic respiration and denitrification. Bacteria accounted for more than 90% of the total community biomass, compared to the metazoan invertebrates, due presumably to hypoxic stress.  相似文献   

14.
A calculation method for determining the amount of Rn isotopes and daughter products at the start of measurement (CRAS) is proposed as a more accurate means of estimating the initial Rn concentration in soil gas. The CRAS utilizes the decay law between 222Rn and 220Rn isotopes and the daughter products 218Po and 216Po, and is applicable to α-scintillation counter measurements. As Rn is both inert and chemically stable, it is useful for fault investigation based on the soil gas geochemistry. However, the total number of α particles emitted by the decay of Rn has generally been considered to be proportional to the initial Rn concentration, without considering the gas condition with respect to radioactive equilibrium. The CRAS method is shown to be effective to derive Rn concentration for soil gases under both nonequilibrium conditions, in which the total number of decays increases with time, and equilibrium conditions, which are typical of normal soil under low gas flux. The CRAS method in conjunction with finite difference method simulation is applied to the analysis of two active fault areas in Japan, and it is demonstrated that this combination could detect the sharp rises in 222Rn concentrations associated with faults. The method also allows the determination of fault geometry near the surface based on the asymmetry variation of the Rn concentration distribution when coupled with a numerical simulation of 222Rn transport. The results for the new method as applied to the two case studies are consistent with the data collected from the geological survey. It implies that the CRAS method is suitable for investigating the fault system and interstitial gas mobility through fractures. The present analyses have also demonstrated that high Rn concentrations require the recent and repeated accumulation of 222Rn parents (230Th and 226Ra) in fault gouges through deep gas release during fault movement.  相似文献   

15.
Several recent studies have suggested that submarine groundwater discharge (SGD) occurs in the Venice lagoon with discharge rates on the same order or larger than the surface runoff, as demonstrated previously in several other coastal zones around the world. Here, the first set of 222Rn data, along with new 226Ra data are reported, in order to investigate the occurrence and magnitude of SGD specifically in the southern basin of the lagoon. The independent connection with the Adriatic Sea (at the Chioggia inlet), in addition to the relative isolation of the water body from the main lagoon, make this area an interesting case study. There is probably only minimal fresh groundwater flux to the lagoon because the surrounding aquifer is subsiding and mainly has a lower hydraulic head than seawater.The data show that the Ra and Rn activities are in slight excess in the lagoon compared to the open sea, with values on the same order as those observed in the northern and central basins. Taking into account the water exchange rate between the lagoon and adjacent seawater provided by previous hydrodynamic numerical modelling, it is shown that this excess cannot be supported at steady state by only riverine input and by diffusive release from the sediment interstitial water. High activities observed in groundwater samples collected from 16 piezometers tapping into the shallow aquifer over the coastal lowland substantiate that the excess radioactivity in the lagoon may indeed be due to the advection of groundwater directly into the lagoon bottom water through the sediment interface. However, the data show that the groundwater composition is extremely heterogeneous, with high Ra activities concentrated within a narrow coastal strip where the contact between fresh and saline water takes place, while Rn strongly decreases when approaching the lagoon shore across the 20 km coastal plain. Assuming that the average groundwater activities measured in the coastal strip are representative of the SGD composition, a SGD flux of 7.7 ± 3.5 × 105 and 2.5 ± 2 × 106 m3/d is calculated using a 226Ra and 222Rn budget, respectively, (i.e. about 1-3 times the surface runoff), substantially lower than in previous studies. The influence of all assumptions on SGD estimates (groundwater heterogeneity, diffusive sediment flux, one-box versus multi-boxes model calculations) is discussed, and a sensitivity analysis of the influence of imperfect exchange and mixing at the lagoon outlets that affects the lagoon composition is provided. Finally, the results confirm that the SGD flux, calculated with these assumptions, is largely (∼80%) composed of saline lagoon water circulating through the sediment under the lagoon margin, and that the fresh water discharge associated with SGD is at most a minor term in the lagoon hydrologic balance.  相似文献   

16.
The mechanism of222Rn release into fracture fluids by direct alpha-recoil, lattice and grain boundary/micro-crack diffusion is discussed. Experimental measurements of222Rn release into surrounding air and water phases have been made for crystalline rock specimens with well defined surface areas. The222Rn flux from an infinite plane surface and hence the effective diffusion length of222Rn in the rock matrix has been estimated.The222Rn flux from plane crystalline rock surfaces has been used in conjunction with a simple hydrological model of the reservoir to calculate the222Rn content of the return fluids of a geothermal doublet circulation system. For given production rate and piezometric difference between the injection and production wells, the222Rn content of the return fluid is dependent upon the distribution of flow path lengths and fracture apertures in the reservoir. Matching of the calculated and experimental222Rn contents of the return fluids has been used to select appropriate parameters for the reservoir model and hence to estimate the extent of the heat-transfer surface. The model estimates the fracture width of the flow paths, total swept surface area and fracture volume within the reservoir.  相似文献   

17.
Decay-series isotopes were measured on manganese nodules from three sedimentary environments, characterized by substrates of red clay (R), siliceous ooze (S) and hemipelagic clay (H). Growth rates of nodules are shown to be site dependent: 1–2 mm/Myr at site R, 3–8 mm/Myr at sites S, and 20–50 mm/ Myr at site H. Correlation between growth rate and the parameter Mn/Fe2 suggests that regional diagenetic variations control the compositions and growth rates of the nodules. The frequency of nodule turnover and the period of their growth are assessed from the “top” vs. “bottom” distributions of several nuclides. Based on the 230Th, 231Pa and 226Ra data, turnover times of 103 to 105 years are estimated and they vary with relative size and shape of the specimens at a given site. The presence of unsupported 210Pb and 228Th in the top surfaces but not in the bottom surfaces of the surface nodules suggests active growth during the last decades or years, despite their old ages. The data also indicate that turnover rates are not more frequent than once every several years or decades.The 230Th-226Ra, 226Ra-210Pb and 232Th-228Th disequilibrium relationships in the nodules allow the migratory behavior of 226Ra, 222Rn and 228Ra and their fluxes to be deduced: thus radium leaves the top sides but enters the bottom sides of the surface nodules at sites R and S. At site R there is a net loss of radium to the sea; the opposite is true at site S. Surface nodules at site H trap radium from both sides, probably due to more intense diagenetic input of radium from sediment pore water. The effective diffusivities of 226Ra in nodules vary from 3 × 10?12 to 8 × 10?14 cm2/s, dependent on the textural variation of the nodule material, which crudely reflects the growth rate and hence sedimentary environment. 222Rn diffuses out of nodules from all sides, with an effective diffusivity of ca. (2–6) × 10?8 cm2/s. At all sites nodules serve as a more effective source of 222Rn to sea water than their adjacent sediments. The outward flux of 222Rn from nodules relative to that from adjacent sediments tends to be higher in more reduced environments, an effect caused by the fact that Mn-rich nodules from more reduced environment act as a more efficient trap for 226Ra.  相似文献   

18.
Factors controlling the groundwater transport of U, Th, Ra, and Rn   总被引:1,自引:0,他引:1  
A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the238U and232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the238U and232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance ϰi, characteristic of each nuclide. Where ϰi is much longer than the aquifer length, (for238U,234U, and232Th), the activities grow linearly with distance. Where gKi is short compared to the aquifer length, (for234Th,230Th,228Th,228Ra, and224Ra), the activities rapidly reach a constant or quasi-constant activity value. For226Ra and222Rn, the limiting activity is reached after 1 km. High δ234U values (proportional to the ratioɛ234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios230Th/232Th,228Ra/226Ra and224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for228Ra/226Ra and224Ra/226Ra activity ratios less than unity. From the model, the highest222Rn emanation equals 2ɛ. This is in agreement with the hypothesis that222Rn activity can be used as a first approximation for input by recoil (Krishnaswamiet al 1982). However, high222Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state.  相似文献   

19.
Physical profile data (salinity, temperature, oxygen, and downwelling irradiance) and in situ incubations of light and dark bottles were used to characterize vertical structure and elucidate mechanisms controlling summertime hypoxia in western Long Island Sound. The period of oxygen depletion corresponded with the period of thermally-controlled stratification. Bulk density differences between surface and bottom waters were only 1.2 to 2.7 sigma-t units; but they were apparently sufficient to resist destratification by winds and tides. Thus oxygen depletion was a cumulative process through the summer. During the stratification period, net oxygen production (measured using light BOD bottles) was confined to a narrow surface zone of 1.8–4.5 m. Below this zone was an intermediate zone of high net oxygen uptake, beneath which was a subpycnoclinic zone where oxygen uptake was very low. Rates of total oxygen uptake (dark bottles) were greatest in the surface layer and diminished with depth. There was close coupling between physical conditions and metabolic structure. Vertical patterns of oxygen production and removal were strongest in calm weather. The location of the intermediate zone corresponded with that of the oxycline. The thickness of the zone and the steepness of the oxycline were determined by the depth and intensity of both physical stratification and biological production and respiration. The biological structure was weakened by physical mixing in the upper water column, and the intermediate zone disappeared with fall destratification. We hypothesize that biological uptake within the water column influences oxygen depletion through two mechanisms. (1) In bottom waters, uptake rates per unit volume are low, but bulk uptake is a significant factor in oxygen depletion because of the large volume of water involved. (2) The intermediate zone, where respiratory uptake is also significant, is strategically located between the surface zone of oxygen renewal and the bottom zone of depletion, where it constitutes an active filter which reinforces the pycnocline as a barrier to vertical oxygen dispersion. The magnitude of direct oxygen removal in the water column relative to removal by sediment oxygen demand and the potential effects of this biological filtering mechanism are important considerations for understanding eutrophication dynamics and managing Long Island Sound. Dynamic models which (1) underestimate the role of water column uptake and (2) incorporate only the two-zone characteristics of physical stratification will tend to (a) overestimate the contribution of sediments to summertime oxygen deficits and (b) overestimate rates of vertical dispersion and reventilation of bottom waters.  相似文献   

20.
222Rn was used to assess river–groundwater interactions within Castel di Sangro alluvial aquifer (Italy). The effectiveness of results obtained through this indicator was verified by also analyzing δ18O, major ions and temperature in both surface and groundwater, and carrying out piezometric head monitoring and discharge measurements. Hydrogeological investigations suggested that the river infiltrates into the aquifer in the south-eastern aquifer portion, while groundwater discharges into the river in the north-eastern portion. The latter phenomenon is supported by 222Rn data. Nevertheless, flow-through conditions cause the modelled discharge along this river reach, estimated by 222Rn data in a degassing-corrected two-component mixing model, to be greater than the measured discharge. Concerning river infiltration into the aquifer, δ18O, major ions and temperature data show that the river contribution is negligible in terms of aquifer recharge. Thus, the observed increase in 222Rn concentration in that portion of the aquifer is due to the enrichment process caused by infiltration of rainwater (222Rn free) which flows from the local divide area. Hence, in the study site, the use of only 222Rn to predict river–groundwater interactions causes some estimation inaccuracies and it must be coupled with other hydrochemical and hydrogeological parameters to gain a thorough understanding of such interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号