首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Increased freshwater and nutrient runoff associated with coastal development is implicated in dramatically altering estuarine communities along eastern US shorelines. We examined effects of three categories of shoreline development on high-marsh environments within Murrells Inlet, South Carolina, USA by measuring sediment nutrients, porewater salinity, plant species diversity, and above- and belowground plant biomass. Effects on new plant growth also were examined in plot clearing and transplantation experiments. Greater nutrient availability in sediments along developed shorelines was reflected in greater aboveground biomass and nitrogen storage in Juncus roemerianus plant tissue. Plant species composition was not significantly different among levels of shoreline development. Zinc concentrations were greater in sediments from developed shorelines and may represent an easily measured indicator of shoreline development. Recently accelerating shoreline development in the southeastern USA may alter plant production, nitrogen storage, and sediment metal content in salt marshes.  相似文献   

2.
Freshwater inflow is a driver of the functioning of estuaries, and average salinity is usually measured to identify the effects of inflow in salinity-zone habitats. However, salinity variability could act as a disturbance by producing unstable habitats, leading to the question: is salinity variance an indicator of benthic disturbance, and therefore a driver of community stability? The macrofauna communities of five estuaries that lie in a climatic gradient on the Texas coastline were analyzed using a 26-year data set. Comparisons within and between estuaries with different inflow regimes were used as a natural experiment to simulate press disturbance events (i.e., climatic inflow) and pulse disturbance (i.e., floods) in maintaining community stability. Salinity average and variance was compared with benthic community diversity, evenness, and species richness. Salinity variance was more correlated to benthic diversity for each estuarine system (r?=??0.6610; p?=?0.0015) than average salinity (r?=?0.3818; p?=?0.0967). As salinity variance decreased (i.e., stability increased), diversity levels of benthic communities increased, and areas with mgore freshwater inflow displayed lower levels of benthic diversity. These findings advance a component of the general theory of diversity maintenance that persistent stressors, such as salinity variability, can influence diversity.  相似文献   

3.
Seasonal patterns of aboveground and belowground biomass, leaf chlorophyll (chl) content, and in situ differences in photosynthetic parameters were examined in the shoal grass Halodule wrightii along an estuarine gradient in the western Gulf of Mexico. Continuous measurements of biomass were collected over a 5-yr period (1989–1994) with respect to several abiotic factors in three estuarine systems that were characterized by significant differences in salinity and ambient dissolved inorganic nitrogen (DIN; NO2 ?+NO3 ?) regimes that ranged from 5–25‰ (0–80 μM DIN) in the Guadalupe estuary to 35–55‰ (0–9 μM DIN) in the upper Laguna Madre, Photosynthesis versus irradiance (P vs. I) parameters, measured from December 1989 to April 1991, showed no significant differences among the three sites, and there were no significant differences in leaf chlorophyll content and chl a:b ratios among sites over the entire 5-yr period. Saturation irradiance in Halodule wrightii is estimated at 319 μmoles photons m?2 s?1 based on measurements collected at the three sites over a 2-yr period. No strong seasonal variations were observed in total plant biomass, but root:shoot ratios (RSR) showed a clear pattern of maximum RSR values in winter and minimum values in summer. There were no significant differences in RSR among sites, and no consistent correlations could be established between plant parameters and sediment porewater NH4 +, salinity, or temperature. Sediment porewater NH4 + values generally ranged from 50 μM to 400 μM (average 130–150 μM) but could not be correlated with significant differences in sediment composition between the sites. The high productivity of Halodule wrightii under a variety of light, nutrient, and salinity conditions explains its ubiquitous distribution and opportunistic strategy as a colonizing species. However, the persistence of a dense algal bloom in Laguna Madre coincident with low DIN levels (<5 μM) contradicts previously accepted relationships on nutrient stimulation of algal growth, and provides strong evidence that water quality parameters for estuarine seagrasses are decidedly estuarine-specific. Consequently, a knowledge of the long-term history of estuarine systems is critical to habitat managers, who are required to establish minimum water quality criteria for the protection of submerged aquatic vegetation in estuarine systems. *** DIRECT SUPPORT *** A01BY074 00028  相似文献   

4.
太湖及其主要入湖河流沉积磷形态分布研究   总被引:57,自引:6,他引:57  
选择了我国第三大浅水湖泊--太湖及其主要入湖河流进行沉积磷形态的连续提取研究.太湖湖区沉积磷中不稳态磷(LP)及铝结合态磷(Al-P)含量很低,其余形态磷为铁结合态磷(Fe-P)<钙结合态磷(Ca-P)<有机磷(Org-P).河流沉积物中有机磷的相对含量高于湖泊沉积物,绝对含量平均值约为湖泊沉积物的3.9倍,铁结合态磷的绝对含量约为湖泊沉积物的3/4,湖区沉积物Fe-P含量与水体中PO3-4-、Chla呈显著正相关关系,同时与间隙水的氧化性呈显著负相关关系.太湖各湖区沉积物的磷形态表现为空间差异较大,活性组分的差异性要大于活性较差的组分.总的来说北部湖区沉积物中Fe-P和Org-P含量高于其他湖区,这与太湖北部湖区水体高营养级和藻类爆发关系密切.湖区沉积磷的垂直分布规律较复杂,既有随深度增加的,也有随深度降低的,河流沉积物同样如此.这与太湖及河流生态条件、污染物排放以及沉积动力学条件不同有关.  相似文献   

5.
In nearshore ecosystems, habitats with emergent structure are often assumed to have higher ecosystem functioning than habitats lacking structure. However, such habitat-specific differences may depend on the surrounding environment. In this study, I examine the robustness of habitat-specific differences in ecosystem functioning for seagrass (Zostera marina) and adjacent bare soft sediments across varying environmental conditions on the Atlantic Coast of Nova Scotia, Canada, using secondary production as a metric. I also examine relationships of community secondary production and faunal structure with measured environmental variables (water depth, temperature, exposure, sediment, and plant properties). Benthic secondary production (invertebrates ≥500 μm) was higher in seagrass compared to bare sediments only at exposed sites with sandy sediments low in organic content, deep and cool water, and high belowground plant biomass. A regression relating community secondary production to the environmental variables explained 56% of the variance, while a constrained ordination explained 16% of the community structure. Important environmental determinants of community production were shoot density, temperature, depth, exposure, sediment organic content, and belowground plant biomass. Community structure was influenced by these variables plus sediment sand content and canopy height. This study shows that habitat-specific differences in secondary production may not be consistent across varying environmental conditions. Furthermore, seagrass beds are not always associated with higher ecosystem functioning than adjacent bare sediment. Both the surrounding environmental conditions and the presence of habitat structure should be considered for optimal management of nearshore ecosystems.  相似文献   

6.
The role of labile organic material and macrofaunal activity in benthic respiration and nutrient regeneration have been tested in sublittoral fine sand sediments from the Gulf of Valencia (northwestern Mediterranean Sea). Three experimental setups were made using benthic chambers. One experiment was performed in-situ through the annual cycle in a well-sorted fine sand community. The remaining experiments were carried out with mesocosms under laboratory conditions: one with different concentrations of organic enrichment (mussel meat and concentrated diatoms culture), and the other adding two different densities of the endofaunal bivalve Spisula subtruncata. Biochemical variables in surface sediment and changes in oxygen consumption and nutrient fluxes throughout incubation period were studied in each experiment. In the in situ incubations, dissolved oxygen (DO) fluxes showed a strong correlation with sedimentary biopolymeric fraction of organic carbon. Organic enrichment in the laboratory experiments was responsible for increased benthic respiration. However, sediment response (expressed as DO uptake and dissolved inorganic nitrogen—DIN—release) between oligotrophic and eutrophic conditions was more intense than between eutrophic and hypertrophic conditions. S. subtruncata abundances close to 400 and 850 ind m?2 also intensified benthic metabolism. DO uptake and DIN production in mesocosms with added fauna were between 60 and 75 % and 65–100 % higher than in the control treatment respectively. The results of these three experiments suggest that the macrobenthic community may increase the benthic respiration by roughly a factor of two in these bottoms, where S. subtruncata is one of the dominant species. Both organic enrichment and macrobenthic community in general, and S. subtruncata in particular, did not seem to have a relevant role in P and Si cycles in these sediments.  相似文献   

7.
Al-Arbaeen and Al-Shabab inlets are two Red Sea coastal inlets lying on the mid-coast of Jeddah City, Saudi Arabia. Forty-four surface sediment samples were collected from these inlets and surrounding areas during June 2010. Water depths and the overlying environmental parameters (temperature, salinity, pH and dissolved oxygen) of these samples were measured. Sediment samples were analyzed for variables, such as loss on ignition (LOI, organic matter), CaCO3, heavy metals (Fe, Mn, Cu, Zn, Cd, Ni, Cr and Pb) and benthic foraminifera to assess any changes in the environment of the inlets and surrounding areas. Variables distribution patterns indicated that mud sediments dominated the inlets and enriched by LOI, heavy metals and Ammonia tepidaQuinqueloculina seminula assemblage, whereas coarse (sand–gravel) sediments dominated the substrates of surrounding areas and enriched by CaCO3 and Coscinospira hemprichii–Peneroplis planatusVaridentella neostriatula assemblage with low values of LOI and heavy metals. Highest concentrations of Cu, Zn, Cd, Ni, Cr and Pb were recorded inside the inlets, especially near the discharge points, and they were positively correlated with the LOI and mud fraction indicating their affinity to anthropogenic materials. However, highest concentrations of Fe and Mn were typically recorded in the whole study area. These metals were positively correlated with the LOI values of the surrounding area, but in the inlets they were negatively correlated with the LOI, indicating an existence of reducing conditions caused by limited dissolved oxygen conditions at bottom waters of the inlets. Changing the environment within the inlets, according to higher concentrations of heavy metals and LOI, is probably responsible for the existence of the low density and diversity of benthic foraminifera and the absence of (reefal) symbiont-bearing species.  相似文献   

8.
Benthic microalgal biomass is an important fraction of the primary producer community in shallow water ecosystems, and the factors controlling benthic microalgal biomass are complex. One possible controlling factor is sediment grain-size distribution. Benthic microalgal biomass was sampled in sediments collected from two sets of North Carolina estuaries Massachusetts and Cape Cod bays, and Manukau Harbour in New Zealand. Comparisons of benthic microalgal biomass and sediment grain-size distributions in these coastal and estuarine ecosystems frequently showed a negative relationship between the proportion of fine-grained sediments and benthic microalgal biomass measured as chlorophylla. The highest sedimentary chlorophylla levels generally occurred in sediments with lower percentages of fine particles (diameter <125 mm). A negative relationship between the proportion of fine sediments and benthic microalgal biomass suggests anthropogenic loadings of fine sediment may reduce the biological productivity of shallow-water ecosystems.  相似文献   

9.
Rates of sea level rise associated with climate change are predicted to increase in the future, potentially altering ecosystems at all ecological levels. Sea level rise can increase the extent of brackish water intrusion into freshwater ecosystems, which in turn can affect the structure and function of resident microbial communities. In this study, we performed a year-long mesocosm experiment using intact tidal freshwater marsh sediment cores to examine the effect of a 5-part per thousand (ppt) salinity increase on the diversity and community composition of sulfate-reducing prokaryotes. We used a clone library approach to examine the dsrA gene, which encodes an important catalytic enzyme in sulfate reduction. Our results indicate that tidal freshwater marshes contain extremely diverse communities of sulfate-reducing bacteria. Members of these communities were, on average, only 71 % similar to known cultured sulfate reducers and 81 % similar to previously sequenced environmental clones. Salinity and associated increases in sulfate availability did not significantly affect the diversity or community composition of sulfate-reducing prokaryotes. However, carbon quality and quantity, which correlated with depth, were found to be the strongest drivers of sulfate-reducing community structure. Our study demonstrates that the sulfate-reducing community in tidal freshwater marsh sediments appears resistant to increased salinity in the face of sea level rise. Additionally, the microorganisms that comprise this sulfate-reducing community appear to be unique to tidal freshwater marsh sediments and may represent novel lineages of previously undescribed sulfate reducers.  相似文献   

10.
In this study, bacterial community compositions in seven different estuarine sediments of Poyang Lake were analyzed using 16S rRNA gene-targeted metagenomic approach. Remarkable differences in the bacterial diversity were observed in these different estuarine sediments. Le, Chang and Rao river samples exhibited the higher bacterial diversity; the Fu river sample showed the less diversity. Bacterial richness and diversity were positively regulated by sediment inorganic phosphorus, and nitrite nitrogen, total phosphorus and inorganic phosphorus were found to be important drivers for bacterial community compositions. Proteobacteria, Acidobacteria, Firmicutes, Chloroflexi, Bacteroidetes, Planctomycetes, Gemmatimonadetes, Actinobacteria, Nitrospirae, and Verrucomicrobia were the major components of sediment bacterial communities. Among them, Proteobacteria was the most dominant phylum, followed by Acidobacteria and Firmicutes. Our study gives a comprehensive insight into the structure of bacterial community of the different estuarine sediments of Poyang Lake, indicating that the environmental factors played a key role in influencing the bacterial community composition in the freshwater ecosystem.  相似文献   

11.
对采自雷州半岛8个红树林湿地典型分布区的37个表层沉积物样品进行粒度分析,结果显示:(1)研究区表层沉积物粒度组成粉砂含量最高,占52. 9%;其次为砂,占27. 8%;黏土含量最低,占19. 3%。(2)研究区表层沉积物有砂质粉砂、黏土质粉砂、砂和粉砂质砂4种类型,其中砂质粉砂和黏土质粉砂主要分布在南山、高桥和观海长廊等地,砂和粉砂质砂主要分布在特呈岛、企水等地。(3)研究区沉积物平均粒径为5. 7,沉积物颗粒整体偏细;分选系数平均值为1. 90,分选较差;偏态平均值为-0. 14,为负偏;峰态平均为1. 07,峰态等级为中等。(4)通过系统聚类分析方法将研究区沉积环境分为三种类型,不同沉积环境水动力条件和环境特征差异明显。(5)沉积物砂粒含量与有机质含量、盐度呈极显著的负相关关系,与p H值呈正相关;粉砂含量与有机质含量、盐度呈极显著正相关,与p H值呈负相关;黏土含量与有机质含量、盐度正呈相关,与p H值则呈负相关。  相似文献   

12.
Salt marsh zonation patterns generate different abiotic and biotic conditions that can accentuate species inherent differences in primary production and biomass. In South West Atlantic marshes, there are two Spartina species: Spartina alterniflora in the low intertidal and Spartina densiflora in the high intertidal. These two species are generally found in all marshes but with different dominance: In some marshes, the S. densiflora zone occupies higher extents, and in others, the S. alterniflora zone is the one that prevails. We found through field sampling that, in six studied marshes, there is greater S. densiflora live and total (i.e., dead+live) aboveground biomass (g m?2) in the marshes dominated by S. densiflora than in the ones dominated by S. alterniflora. Spartina alterniflora had similar aboveground biomass in the six marshes, regardless of the dominance of each species. When comparing the two Spartina species within each marsh, S. densiflora had greater live and total biomass in the marshes it dominates. In the marshes dominated by S. alterniflora, both species had similar live and total biomass. In all marshes, there was greater dead S. densiflora biomass. A multivariate analysis using selected abiotic factors (i.e., salinity, latitude, and tidal amplitude) showed that S. alterniflora aboveground biomass patterns are mainly correlated with salinity, while S. densiflora live biomass is mainly correlated with salinity and latitude, dead biomass with salinity and tidal amplitude, and total biomass with salinity alone. We conclude that in S. densiflora dominated marshes, the main processes of that species zone (i.e., nutrient accumulation) will be accentuated because of its higher biomass. We also conclude that climatic conditions, in combination with specific Spartina biotic and ambient abiotic parameters, can affect marsh ecological functions.  相似文献   

13.
在红树林覆盖区域和光滩沉积物中存在着丰富的微生物群落,这些微生物在驱动红树林湿地的生物地球化学过程中起着至关重要的作用.深入了解东寨港红树林湿地沉积物中微生物的多样性分布特征,对探究东寨港红树林湿地中的生物地球化学过程和湿地的生态保护具有重要意义.本研究采用Illumina Miseq高通量测序技术,在东寨港的演丰西河...  相似文献   

14.
Trends in the spatial distribution of chlorophylla (chla) and colloidal and total carbohydrates on the Molenplaat tidal flat in the Westerschelde estuary, Netherlands, reflected spatial differences in physical properties of the sediment. Results from a Spearman Rank Order Correlation indicated that many of the physical and biological measures covaried. Multiple regression analyses describing the relationship between colloidal carbohydrates and sediment properties resulted in several highly significant equations, although in all cases chla was able to predict colloidal carbohydrate content. Relationships between sediment surface chla and colloidal carbohydrate, and sediment erodibility (i.e., critical erosion threshold, Ucrit, and mass of sediment eroded at a velocity of 30 cm s?1) determined in annular flume experiments were examined. Overall sediment erodibility was lowest (i.e., high thresholds, low mass eroded) for the siltiest sediments in June 1996 when chla and colloidal carbohydrates were high (56.9 μg gDW?1 and 320.6 μg gluc.equ. gDW?1, respectively), and greatest (i.e., low thresholds, high mass eroded) at the sandier sediments in September 1996, when chla and colloidal carbohydrates were low (1.0 μg gDW?1 and 5.7 μg gluc.equ. gDW?1, respectively). When sediments were grouped according to relative silt content, the most significant relationships were found in muddy sand with a finegrained fraction (<63 μm) of 25–50%. Thresholds of erosion increased, while mass of sediment eroded decreased, with increasing chla and colloidal carbohydrate. A similar trend was observed for the sand-muddy sand (63 μm 10–25%). In the sand (63 μm 0–10%), there were no relationships for Ucrit, whereas mass eroded appeared to increase with increasing chla and colloidal carbohydrate. The increased carbohydrate may stick sand grains together, altering the nature of erosion from rolling grains to clumps of resuspension.  相似文献   

15.
Construction of two dams in 1958 and 1982 decreased freshwater inflow to the Nueces River and Nueces Delta marsh, which has become a reverse estuary where salinity increases upstream rather than downstream as would occur in a normal estuary. In 1995, an overflow channel was dug to breach the banks of the Nueces River to restore inundation of the marsh via Rincon Bayou, which is the main stem channel of the delta. Previous studies demonstrated a restoration of a normal salinity gradient and positive affects on benthos in the upper reaches of Rincon Bayou. The present study was performed to determine how far downstream the overflow channel had beneficial effects. A transect of eight stations was established and sampled quarterly between October 1998 and October 1999. Benthic characteristics were measured to assess ecological change. There were 12 precipitation and freshwater inflow events between the month preceding and ending sampling. The largest were in fall and restored normal salinity patterns. The macrobenthic community was different in three zones. The upper four stations (<6.4 km from the overflow channel) were highly variable in water inundation and salinity. The broad salinity range caused the lowest diversity and allowed short-lived pioneer speciesStreblospio benedicti, Laeonereis culveri, and Chirominid larvae to dominate. Biomass blooms occurred during fall inflow events in the upper reaches. The central stations (11.4 to 14.3 km from the overflow channel) were brackish, had more narrow salinity ranges, and were more diverse.Mulinia lateralis, Mediomastus ambiseta, Cerapus tubularis, andAmpelisca abdita were dominant species. The third zone, the lower portion of Nueces Bay (27 km from the overflow channel), was distinct from other stations in the transect, because it had the greatest marine influence. It is in a later successional stage, with a more diverse community of larger organisms, e.g.,Polydora caulleryi, Tharyx setigera, andMysella planulata, which were dominant species and contributed to the larger biomass there. Overall, the overflow channel restored normal salinity patterns in the upper reaches (<14 km) of Rincon Bayou and freshwater pulses (>106 m3) in fall increased benthic productivity indicating ecological functions were restored as well. This restoration however, only occurs intermittently for short time periods because the freshwater events are isolated and inflow volumes during the current study were too small to affect the lower Rincon Bayou or Nueces Bay.  相似文献   

16.
This study examined the effects of watershed development on macrobenthic communities in tidal creeks of Charleston Harbor, South Carolina, U.S. Two types of creeks were evaluated: upland creeks which drained watersheds consisting of at least 15% terrestrial land cover, and salt marsh creeks which drained no upland habitat (i.e., only intertidal habitat). Samples of macrobenthic organisms were taken along the longitudinal axis of twenty-three primary (first order) tidal creeks. Water and sediment quality data were also collected including measurements of dissolved oxygen, salinity, temperature, sediment characteristics, and toxic chemicals in the creek sediments. Hypoxic conditions occurred more than 15% of the time in both reference and developed creeks and were a natural attribute of these systems. The most severe and frequent hypoxia occurred in impacted salt marsh creeks. Salinity fluctuations were the greatest in developed upland creeks and salinity range was identified as a potentially reliable indicator of the degree to which watershed development has altered hydrodynamic processes. The creeks draining urban and industrial watersheds were degraded environments characterized by watersheds with high (>50%) levels of impervious surface, broad fluctuations in salinity, severe hypoxia, and potentially toxic levels of chemicals in the sediment. These creeks had low macrobenthic diversity and abundance and were numerically dominated by the oligochaeteMonopylephorus rubroniveus in mud sediments, and the polychaeteLaeoreis culveri in sand sediments. Suburban watersheds had 15–35% impervious surface and creeks draining them were exposed to frequent hypoxia and broad salinity fluctuations. The levels of chemical contaminants in sediments of suburban and impacted salt marsh creeks were generally not different from the levels in reference creeks. Macrobenthic diversity and abundance were higher for suburban and impacted salt marsh creeks than for urban and industrial creeks. However, suburban and salt marsh impacted creeks were numerically dominated by a few pollution indicative species including the oligochaetesM. rubroniveus andTubificoides brownae and the polychaeteL. culveri. These creeks appear to be exhibiting early signs of degradation (e.g., a simplified food web). Two promising community-level macrobenthic metrics for assessing environmental quality were identified: the proportional abundance of pollution indicative taxa, and the proportional abundance of pollution sensitive taxa. These indicators were significantly (p<0.05) correlated with the salinity range, the level of chemical contaminants in sediments, and amount of impervious surface in the watershed.  相似文献   

17.
Dissolved organic carbon (DOC) flux dynamics were examined in the context of other biogeochemical cycles in intertidal sediments inhabited by benthic microalgae. In August 2003, gross oxygenic photosynthetic (GOP) rates, oxygen penetration depths, and benthic flux rates were quantified at seven sites along the Duplin River, GA, USA. Sediments contained abundant benthic microalgal (BMA) biomass with a maximum chlorophyll a concentration of 201 mg chl a m?2. Oxygen microelectrodes were used to determine GOP rates and O2 penetration depth, which were tightly correlated with light intensity. Baseline and 15N-nitrate amended benthic flux core incubations were employed to quantify benthic fluxes and to investigate the impact of BMA on sediment water exchange under nitrogen (N)-limited and N-replete conditions. Unamended sediments exhibited tight coupling between GOP and respiration and served as a sink for water column dissolved inorganic nitrogen (DIN) and a source of silicate and dissolved inorganic carbon (DIC). The BMA response to the N addition indicated sequential nutrient limitation, with N limitation followed by silicate limitation. In diel (light–dark) incubations, biological assimilation accounted for 83% to 150% of the nitrate uptake, while denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) accounted for <7%; in contrast, under dark conditions, DNF and DNRA accounted for >40% of the NO3 ? uptake. The N addition shifted the metabolic status of the sediments from a balance of autotrophy and heterotrophy to net autotrophy under diel conditions, and the sediments served as a sink for water column DIN, silicate, and DIC but became a source of DOC, suggesting that the increased BMA production was decoupled from sediment bacterial consumption of DOC.  相似文献   

18.
Foraminifers, being sensitive to minute changes, either undergo morphological changes or even disappear from the area completely due to pollution or under unfavourable conditions. The characteristics of foraminifers to incorporate the signature of presence of pollutants are considered to be an effective tool for temporal pollution monitoring studies. Totally, 12 offshore samples (both sediment and water) were taken along a normal profile along the coast of Cuddalore for pollution studies. Apart from foraminiferal studies, geochemical studies of the sediments collected are also undertaken to correlate and substantiate the findings. The near-shore area has a higher concentration of trace elements. If these concentrations exceed or go below permissible limits, it is collateral for the marine community and for those who consume these marine resources. The concentration of trace elements like lead, zinc, manganese, copper, chromium and nickel was illustrated to give an idea of the trace element concentration of the study area. The sedimentological studies reveal the organic matter and calcium carbonate content of the samples, and the bottom water measurements reveal the temperature, salinity and dissolved oxygen of sample locations. These are used to determine whether the conditions prevailing could sustain life. The ratio of living to dead species is also determined and correlated with sedimentological and geochemical parameters. Pollution studies have given way to identify morphological abnormalities in the species mainly in Spiroloculina, Quinqueloculina, Elphidium, etc. but we could not find many effects among the faunal assemblages because of the nature of the sediments found in that area.  相似文献   

19.
Aquaculture currently provides half of all fish for human consumption, and this proportion is expected to increase to meet the growing global demand for protein. As aquaculture, including oyster farming, expands, it is increasingly important to understand effects on coastal ecosystems. The broad-scale ecological effects of oyster aquaculture are well documented; however, less is known regarding the influence of oyster aquaculture on sediment bacterial communities. To better understand this relationship, we compared three different oyster farming practices that varied in oyster biomass and proximity of oysters to the sediment. We used high-throughput sequencing and quantitative polymerase chain reaction to examine the effect of oyster farming on sediment bacterial communities. We examined the entire bacterial community and looked specifically at bacteria that support essential estuarine ecosystem services (denitrifiers), as well as bacteria that can be detrimental to human health (members of the Vibrio genus). We found that oyster biomass increased Vibrio richness and sediment carbon content, which influenced bacterial community composition. When compared to reference sites, the overall abundance of bacteria was increased by the bottom planting method, but the associated increases in denitrifiers and Vibrio were not significant. We were unable to detect V. parahaemolyticus, V. vulnificus, or V. cholera, the three most common Vibrio pathogens, in any sample, suggesting that oyster farming did not enhance these potential human pathogens in sediments at the time of sampling. These results highlight how differences in oyster farming practice can affect sediment bacterial communities, and the ecosystem services they provide.  相似文献   

20.
Macrobenthos were sampled at 27 sites on a seasonal basis from October 1981 through November 1982. Cluster analyses and principal components analyses indicated that although spatial and species groupings were weak, an underlying sediment-correlated structure persisted for all seasons. Weak station groupings resulted from great seasonal and local variability in abundance of several dominant taxa. The most widely distributed species varied the least in density over time. Species richness (number of species) and dominance were uncorrelated. Dominance was correlated with sediment organic content [% total organic carbon (TOC)] and % Mud. Species richness increased with increasing % TOC, reaching a maximum in the range 0.7 to 1.0% TOC (primarily sand stations). At higher organic levels (muddy, sand stations), species richness declined. Muddy sand stations were dominated byAmpelisca abdita. In this community, species richness was inversely correlated both with percent TOC and heavy metals concentrations. In both sand and mud communities, species richness was positively correlated with density (mean number individuals of all species per sample).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号