首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
黄河下游漫滩高含沙洪水河床调整剧烈,多数断面洪水后形成"相对窄深河槽",洪水前后河槽宽度发生明显变化。分别以观测断面洪水前后的河槽宽度为基准,计算漫滩高含沙洪水期泥沙时空沉积分布,结果表明,漫滩高含沙洪水与非漫滩高含沙洪水相比,能将主河槽内淤积泥沙量的59.3%搬运至嫩滩或滩地,减缓主河槽淤积。在分析研究基础上,建立了洪水后漫滩河段河槽相对缩窄率与洪水前期河槽宽度的量化关系,洪水后主槽宽度缩窄率为15.5%~44.0%;分析遴选了漫滩高含沙洪水滩地淤积量与主要水力因子间关联度及物理含义,给出了漫滩高含沙洪水滩地淤积量与相应水力因子间的响应函数;初步提出漫滩洪水河道塑槽淤滩的临界水沙配置指标,临界水沙系数取值为0.025~0.040。成果对高含沙洪水调控具有一定的指导意义。  相似文献   

2.
滩地的淤积层分布记录着以往漫滩洪水的特征,即反映漫滩洪水的量级、频率和持续时间等,同时河漫滩也是预估河流泥沙、洪水灾害防治和湿地生态系统保护等的重要组成部分。根据黄河下游水文年鉴资料,分析滩地的淤积与漫滩洪水的定量关系,为未来河流泥沙预估提供依据。经分析得到大漫滩洪水在来沙系数S/Q<0.030 kg·s/m6时,主槽冲刷而滩地淤积,反之则滩槽同淤。当S/Q<0.030 kg·s/m6时,大漫滩洪水滩地的淤积量主要与漫滩系数Qmax/Qp、上滩水量W0和含沙量S有关;大漫滩洪水的主槽冲刷量则除了与洪水期水量W和沙量Ws有关外,还与滩地的淤积量有关。一般漫滩洪水,当来沙系数S/Q<0.023 kg·s/m6时,主槽冲刷而滩地淤积,反之则滩槽同淤。一般漫滩洪水主槽冲刷量与来沙系数S/Q和洪水期水量W有关,而滩地淤积量仅与含沙量S有关。黄河下游漫滩洪水滩地的淤积和主槽的冲刷主要发生在孙口以上河段,而孙口以下河段主槽冲刷和滩地淤积量均较少。  相似文献   

3.
黄河下游主槽两侧修建的生产堤通常仅能抵御中小洪水,用于保护滩区农田与村庄安全;当遭遇大洪水引发生产堤溃决时,漫滩洪水会严重威胁滩区群众的生命财产安全。当前研究溃堤洪水的传播过程与演进机理多采用数值模拟,而原型观测及模型试验成果十分有限。通过溃堤漫滩洪水的概化模型试验,模拟了生产堤溃决后主槽内的水位变化及不同程度漫滩洪水的传播过程。试验结果表明:(1)溃堤后漫滩水流以涨水波的形式向滩区迅速传播,主槽内水位具有先降低,然后维持稳定,再升高,最后趋于稳定的变化过程,且溃口上、下游水位变化速率不同;滩区水位总体表现为持续升高,最后趋于稳定的趋势。(2)漫滩洪水波的波前到达时间主要与滩区地形及距溃口的距离有关,波前首先以溃口为中心呈近似对称式椭圆形分布,而后转变为非对称分布;溃堤水流在滩区传播过程中伴有水跃发生,水跃发生的位置由距溃口较远处逐渐趋向溃口位置。(3)溃口流量与溃口内外水位差直接相关,呈先减小、然后维持稳定、再减小最后为0的变化特性。研究成果不仅可以提升对溃堤洪水在滩区演进规律的认识,丰富溃堤洪水动力学理论,还可为数学模型验证提供实测资料。  相似文献   

4.
A miniature, 9 m-wide floodplain, developed along a gravel-washing effluent stream, shows features such as levées, crevasse splays and floodbasins which compare with their larger-scale counterparts. For sediments deposited overbank, median size decreases exponentially with distance from the channel whilst sorting increases, with coarser sediment on the outside of a meander bend. Overbank flows are only a few grain diameters in depth near the channel. This study shows potentially useful systematic relationships in floodplain sediment textures, but it involves only one of a possible variety of floodplain types dominated by overbank sedimentation. This suggests that further exploration of overbank depositional processes is desirable as an aid to field interpretation.  相似文献   

5.
深水沉积层序特点及构成要素   总被引:6,自引:0,他引:6  
蒋恕  王华  Paul  Weimer 《地球科学》2008,33(6):825-833
本文在回顾当前国际上深水沉积研究热点的基础上,结合在墨西哥湾深水研究的成果系统描述了深水沉积的定义、形成机理、深水沉积层序及深水沉积构成要素的特点.深水沉积主要是在重力流作用下深水环境的沉积,主要形成于相对水平面下降和早期上升的时期,主要分布在低位体系域中.深水层序以凝缩段为边界,块状搬运沉积最早形成并直接位于层序界面上,其上被河道-天然堤沉积所覆盖.典型深水沉积的要素主要由河道、天然堤及越岸沉积、板状砂、块状搬运沉积等构成,这些沉积要素时空上有序地分布.深水河道是物源的主要通道和沉积的重要场所,从上游至下游河道弯曲度增加,能量逐渐减弱.侧向迁移明显,垂向上由富砂的顺直河道演化为相对富泥的弯曲河道.天然堤及越岸沉积以泥质为主,天然堤沿河道呈楔状分布,其近端砂岩含量高,地层厚且倾角较陡;远端砂岩含量低,地层薄且平缓,侧向连续性好但垂向连续性差.板状砂主要为深水扇前缘非限制性沉积,可分为块型和层型.块型侧向连续性好,同时垂向连通性高.层型侧向连续性好,垂向连通性差.块状搬运沉积主要是低水位期坡上沉积物失稳形成的各类滑塌体及碎屑流,其对下伏地层侵蚀明显,分布广泛,变形构造常见,可作为油气良好的封盖层.  相似文献   

6.
In Scandinavia, most fluvial erosion takes place in the Quaternary glacial overburden at a restricted number of small source areas along individual drainage channels. As a consequence, a sample of active stream sediment is representative of only a very limited portion of the drainage area. This restriction makes stream sediment less reliable for regional exploration than generally expected. Overbank (levee or river-plain) sediment produced during large floods is an alternate more representative sampling medium. The sediment suspended during a flood has a much more widespread origin, and when the load is deposited upon the flood plain, nearly horizontal strata are formed and preserved at levels above the ordinary stream channel. A composite sample through a vertical section of such strata represents a great number of sediment sources that have been active at different times and forms an integrated sample of the entire catchment area. Because young sediments overlay older, the uppermost layers will be contaminated by pollutants in industrialized regions, but those at depth may remain pristine and will to a greater extent reflect the natural pre-industrial environment. In regional geochemical mapping, overbank sediment can be sampled at widely spaced sites, keeping costs per unit area low. Examples from Norway (1 sample station per 500 km2) show that overbank sediment produces broad geochemical patterns with high contrasts reflecting the bedrock geochemistry. Some patterns agree with known geological units and metallogenic provinces, but hitherto unknown major structures have also been indicated. A large Mo-deposit missed by a traditional stream survey is readily detected in the overbank sediment. It is concluded that overbank sediment is a promising alternate sample medium that should be tested in other physiographic regions.  相似文献   

7.
The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (μg g?1): As 3,000 to <200, Cd 30 to <0.1, Cu 1,500 to 10, Pb 2,000 to <10, Sb 3000 to <150, and Zn 3,000 to <200. Organic-rich (1.3–2.6% total organic carbon, TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21–0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate.  相似文献   

8.
Between 1966 and 1976, the Susquehanna River at Conowingo, Maryland, discharged approximately 50 million metric tons of suspended sediment to Northern Chesapeake Bay. About 40 million metric tons were discharged in two floods associated with hurricanes: Agnes (24–30 June 1972) and Eloise (26–30 September 1975). In the six years with complete records and no major floods, the Susquehanna River discharged 0.9±0.3 million metric tons of suspended sediment per year at Conowingo Dam. Aout 50 to 60 percent of the annual sediment discharge is usually floods, suspended sediment transport at Harrisburg, Pennsylvania, exceeds sediment discharge at Conowingo, Maryland, probably due to sediment deposition in the lower river and behind three hydroelectric dams.  相似文献   

9.
为研究冲积性河流造床机理,基于能量耗散原理分析河床调整与水沙过程(变异特性)间的关系十分必要。以黄河游荡型河段为例,利用实测资料分析和平面二维水沙数值模拟方法,进行了各种洪水泥沙条件下河流冲淤规律的探讨。研究发现平滩面积、河相系数与径流泥沙特征值间存在的关联性映射出冲积性河流能量关系中的制约机制;不同洪水泥沙过程的河床冲刷强度变化具有阶段性,主槽累积刷槽效应与洪水泥沙过程有密切响应关系;高效输沙的洪水过程通过塑造最适宜的河床断面形态,能实现最佳输沙效率与主槽的最大冲刷。在不同漫滩洪水条件中,综合系数Φ最大时的洪水过程具有最大累积刷槽效应,因此对应流量可作为黄河下游漫滩洪水的调控指标。  相似文献   

10.
《Applied Geochemistry》2003,18(2):195-220
Samples of fine-grained channel bed sediment and overbank floodplain deposits were collected along the main channels of the Rivers Aire (and its main tributary, the River Calder) and Swale, in Yorkshire, UK, in order to investigate downstream changes in the storage and deposition of heavy metals (Cr, Cu, Pb, Zn), total P and the sum of selected PCB congeners, and to estimate the total storage of these contaminants within the main channels and floodplains of these river systems. Downstream trends in the contaminant content of the <63 μm fraction of channel bed and floodplain sediment in the study rivers are controlled mainly by the location of the main sources of the contaminants, which varies between rivers. In the Rivers Aire and Calder, the contaminant content of the <63 μm fraction of channel bed and floodplain sediment generally increases in a downstream direction, reflecting the location of the main urban and industrialized areas in the middle and lower parts of the basin. In the River Swale, the concentrations of most of the contaminants examined are approximately constant along the length of the river, due to the relatively unpolluted nature of this river. However, the Pb and Zn content of fine channel bed sediment decreases downstream, due to the location of historic metal mines in the headwaters of this river, and the effect of downstream dilution with uncontaminated sediment. The magnitude and spatial variation of contaminant storage and deposition on channel beds and floodplains are also controlled by the amount of <63 μm sediment stored on the channel bed and deposited on the floodplain during overbank events. Consequently, contaminant deposition and storage are strongly influenced by the surface area of the floodplain and channel bed. Contaminant storage on the channel beds of the study rivers is, therefore, generally greatest in the middle and lower reaches of the rivers, since channel width increases downstream. Comparisons of the estimates of total storage of specific contaminants on the channel beds of the main channel systems of the study rivers with the annual contaminant flux at the catchment outlets indicate that channel storage represents <3% of the outlet flux and is, therefore, of limited importance in regulating that flux. Similar comparisons between the annual deposition flux of specific contaminants to the floodplains of the study rivers and the annual contaminant flux at the catchment outlet, emphasise the potential importance of floodplain deposition as a conveyance loss. In the case of the River Aire the floodplain deposition flux is equivalent to between ca. 2% (PCBs) and 36% (Pb) of the outlet flux. With the exception of PCBs, for which the value is ≌0, the equivalent values for the River Swale range between 18% (P) and 95% (Pb). The study emphasises that knowledge of the fine-grained sediment delivery system operating in a river basin is an essential prerequisite for understanding the transport and storage of sediment-associated contaminants in river systems and that conveyance losses associated with floodplain deposition exert an important control on downstream contaminant fluxes and the fate of such contaminants.  相似文献   

11.
The partitioning of the total sediment load of a river into suspended load and bedload is an important problem in fluvial geomorphology, sedimentation engineering and sedimentology. Bedload transport rates are notoriously hard to measure and, at many sites, only suspended load data are available. Often the bedload fraction is estimated with ‘rule of thumb’ methods such as Maddock’s Table, which are inadequately field‐tested. Here, the partitioning of sediment load for the Pitzbach is discussed, an Austrian mountain stream for which high temporal resolution data on both bedload and suspended load are available. The available data show large scatter on all scales. The fraction of the total load transported in suspension may vary between zero and one at the Pitzbach, while its average decreases with rising discharge (i.e. bedload transport is more important during floods). Existing data on short‐term and long‐term partitioning is reviewed and an empirical equation to estimate bedload transport rates from measured suspended load transport rates is suggested. The partitioning averaged over a flood can vary strongly from event to event. Similar variations may occur in the year‐to‐year averages. Using published simultaneous short‐term field measurements of bedload and suspended load transport rates, Maddock’s Table is reviewed and updated. Long‐term average partitioning could be a function of the catchment geology, the fraction of the catchment covered by glaciers and the extent of forest, but the available data are insufficient to draw final conclusions. At a given drainage area, scatter is large, but the data show a minimal fraction of sediment transported in suspended load, which increases with increasing drainage area and with decreasing rock strength for gravel‐bed rivers, whereby in large catchments the bedload fraction is insignificant at ca 1%. For sand‐bed rivers, the bedload fraction may be substantial (30% to 50%) even for large catchments. However, available data are scarce and of varying quality. Long‐term partitioning varies widely among catchments and the available data are currently not sufficient to discriminate control parameters effectively.  相似文献   

12.
The distribution and concentration of metals and metalloids in the floodplain of the Clark Fork River of western Montana, USA, are mainly controlled by post-depositional diagenetic mechanisms of metal fractionation. Due to the influx of wastes into the river's headwaters from mining processes around the turn of the century, extensive amounts of contaminated material were deposited onto the floodplain. Tailings were deposited as widespread overbank deposits and point bars adjacent to abandoned channels, and are characterized by orange and gray mottled sediment, which is devoid of vegetation and covered by a blue metal sulfate precipitate during dry periods. Examination of stratigraphic profiles of floodplain sediment indicates three periods of deposition: 1) pre-mining, represented by coarse sand and organic overbank deposits under reducing conditions; 2) syn-mining, characterized by transition sediments and tailings deposits under oxidizing conditions; and, 3) post-mining, distinguished by grass-bound topsoil.Sites were established where sediments and water throughout the stratigraphic section were collected and analyzed. Chemical analyses indicate enriched concentrations of cadmium, copper, manganese, and zinc in sediments and porewater, and arsenic in groundwater, in areas contaminated by tailings deposits. Vertical trends in concentrations of metals show that they are distributed based on apportionment of metal phases between reducing-oxidizing environments and pH fluctuations.  相似文献   

13.
The Kings Creek catchment, southeastern Queensland, contains a variety of Pleistocene – Holocene depositional settings. Fluvial depositional accumulation processes in the catchment reflect both high-energy channel and low-energy episodic overbank deposition. The lithofacies and depositional environments of locality QML796 were examined in detail to aid interpretation of taphonomic accumulation patterns of large and small taxa in the deposit. The basal fossiliferous unit was deposited in a meandering channel and passes upward into overbank deposits that include ephemeral interfluve channels and splays. The most striking taphonomic observations on vertebrates at the locality include: (i) low representation of post-cranial elements; (ii) high degree of bone breakage; (iii) variable abrasion with most identifiable bone elements having a low to moderate degree of abrasion; (iv) low rates of bone weathering; (v) a low degree of carnivore bone modification; and (vi) a low degree of articulated or associated specimens. Collectively, these data suggest that the material was transported into the deposit from the surrounding proximal floodplain and that the assemblages reflect substantial hydraulic sorting. However, despite that, sequential faunal horizons show a stepwise decrease in taxonomic diversity that cannot be explained by sampling or taphonomic bias. The decreasing diversity includes loss of some, but not all, megafauna and is consistent with a progressive local loss of megafauna in the catchment over an extended interval of time. Data are consistent with a climate change model for megafauna extinction but not with nearly simultaneous extinction of megafauna as required by the human-induced blitzkrieg extinction hypothesis.  相似文献   

14.
冲积河流泥沙输移幂律函数关系与不平衡输沙理论是对河道不平衡输沙同一物理现象的不同描述,两者既有区别也有联系。比较研究发现:对于恒定均匀流不平衡输沙过程,当输沙位于近平衡态时两者含沙量导函数表达式具有一阶近似等价性,当输沙远离平衡态时前者含沙量导函数中隐含考虑有泥沙恢复饱和系数的变化。基于两者等价性,推导建立了幂律函数指数计算表达式,表明指数随泥沙沉速、单宽流量和沿程距离而变化,且随着输移距离的增大呈指数衰减。基于前者含沙量导函数表达式结构特点,分析建立了相应泥沙恢复饱和系数变化的计算表达式。综合以上成果,改进提出了一种变幂指数的泥沙输移幂律函数计算模型。对库里·阿雷克沉沙池沿程断面输沙指数及含沙量计算结果表明,不同距离过水断面输沙指数的变化规律是合理的,含沙量计算值与实测值变化趋势基本符合。  相似文献   

15.
This study examines the morphology, sedimentology and genesis of the point bars and floodplain of the Beatton River. The formation of point bars occurs in distinct stages. An initial point bar platform composed mainly of coarse sediment is formed adjacent to the convex bank of a migrating meander bend, and is the base on which develops a single scroll bar of fine traction and suspended load. With continued sedimentation, the scroll bar grows, eventually supporting vegetation and becoming a floodplain ridge. Scroll bars form with greatest size and frequency in rapidly migrating bends, and the shape of the meander bend appears to determine both the location of the initial bar deposit, and its direction of growth up or downstream. Approximately one-half of the floodplain sediment is derived from suspended load, and the initiation of a scroll bar appears to be due to excessive deposition of suspended load in a zone of flow separation over a point bar platform. The critical flow condition for the initiation of a scroll bar does not occur with the same recurrence interval on different shaped meander bends, however, the average recurrence interval within the study reach is approximately every 30 years. Sedimentation rates on point bars and on the floodplain indicate two relatively distinct stages of floodplain alluviation. The most rapid is for surfaces less than 50 years old, although sediment accumulation still persists on surfaces up to 250 years in age. Although frequently flooded, surfaces older than this accumulate very little sediment. Despite 2–3 m of overbank deposition, the amplitude of floodplain ridges is maintained by secondary currents which sweep sediment from the swales towards the ridge crests.  相似文献   

16.
Interactions between catchment variables and sediment transport processes in rivers are complex, and sediment transport behaviour during high‐flow events is not well documented. This paper presents an investigation into sediment transport processes in a short‐duration, high‐discharge event in the Burdekin River, a large sand‐ and gravel‐bed river in the monsoon‐ and cyclone‐influenced, semi‐arid tropics of north Queensland. The Burdekin's discharge is highly variable and strongly seasonal, with a recorded maximum of 40 400 m3 s?1. Sediment was sampled systematically across an 800 m wide, 12 m deep and straight reach using Helley‐Smith bedload and US P‐61 suspended sediment samplers over 16 days of a 29‐day discharge event in February and March 2000 (peak 11 155 m3 s?1). About 3·7 × 106 tonnes of suspended sediment and 3 × 105 tonnes of bedload are estimated to have been transported past the sample site during the flow event. The sediment load was predominantly supply limited. Wash load included clay, silt and very fine sand. The concentration of suspended bed material (including very coarse sand) varied with bedload transport rate, discharge and height above the bed. Bedload transport rate and changes in channel shape were greatest several days after peak discharge. Comparison between these data and sparse published data from other events on this river shows that the control on sediment load varies between supply limited and hydraulically limited transport, and that antecedent weather is an important control on suspended sediment concentration. Neither the empirical relationships widely used to estimate suspended sediment concentrations and bedload (e.g. Ackers & White, 1973) nor observations of sediment transport characteristics in ephemeral streams (e.g. Reid & Frostick, 1987) are directly applicable to this river.  相似文献   

17.
A simulation model of alluvial stratigraphy   总被引:8,自引:0,他引:8  
The quantitative model presented simulates the development of a two-dimensional alluvial sedimentary succession beneath a floodplain traversed by a single major river. Several inter-related effects which influence the distribution of channel-belt sand and gravel bodies within overbank fines are accounted for. These are (a) laterally variable aggradation, (b) compaction of fine sediment, (c) tectonic movement at floodplain margins, and (d) channel avulsion. Selected experiments with the model show how the interconnectedness and areal density of channel-belt deposits decrease with increasing floodplain width/channel-belt size, mean avulsion period, and channel-belt aggradation rate. Separation of stream patterns based on interconnectedness and channel deposit density is difficult. Tectonic movements do not have a significant influence upon the successions unless a preferred direction of tilting is maintained (half-graben). Then channel-belt deposits showing offlap tendencies tend to cluster adjacent to the active floodplain margin, leaving dominantly fine-grained alluvium to accumulate on the inactive side. Individual channel-belt deposits thicken during aggradation, although a self-regulating limit to such thickening is likely to operate. ‘Multistorey’features resulting from aggradation may be difficult to tell apart from those arising through superposition of distinct channel-belt deposits of avulsive origin.  相似文献   

18.
Potshards discovered during excavation of bridge pilasters for a major expressway over the Rio Indio floodplain, a stream incised within the karsts of north‐central Puerto Rico, required large‐scale archaeological excavation. Five‐meter‐deep bridge pilaster excavations in the alluvial valley provide a 4500‐year history of deposition. Stratigraphic analysis of the exposed pilaster walls in combination with textural and organic carbon analyses of sediment cores obtained over a much broader area suggest a fluvial system dominated by overbank deposition. Six sequences of alternating light and dark layers of sediment were identified. The darker layers are largely composed of silts and clays, whereas the lighter layers are rich in sand‐sized sediment. Archaeological evidence indicates the organic‐rich dark layers, believed to be buried A horizons, coincide with pre‐historic occupation by Cedrosan Saladoid, Elenan Ostionoid, and Chican Ostionoid, extending from A.D. 450 to A.D. 1500. Lighter layers below the dark soil horizons are interpreted as overbank deposits from large magnitude flood events. The floodplain aggraded discontinuously with rapid deposition of sand followed by gradual accumulation of silt, clay, and organic material. An approximately 1‐m‐thick layer of coarse sand and gravel halfway up the stratigraphic column represents an episode of more frequent and severe floods. Based on radiocarbon ages, this layer aggraded between A.D. 1000 and A.D. 1100, which is well within the Elenan Ostionoid era (A.D. 900–1200). Rates of sedimentation during this period were approximately 8 mm per year, ten times greater than the estimates of sedimentation rates before and after this flood sequence. The cause for the change in deposition is unknown. Nonetheless the Elenan Ostionoid would have had to endure frequent loss of habitation structures and crops during these events. © 2003 Wiley Periodicals, Inc.  相似文献   

19.
Three unstable ephemeral-stream channels (arroyos), which drain source areas that have high sediment yields ranging from predominantly sand (Arroyo Calabasas) to a mixture of sand, silt, and clay (Sand Creek) to largely silt and clay (Sage Creek), were resurveyed to provide data on the rates and mechanics of erosion and sedimentation processes during periods ranging from 14 to 22 yr. Channel morphology changed significantly. Erosion occurred through nickpoint recession and bank collapse, but erosional reaches are separated by aggrading or stable-channel reaches. In general, sediment that is eroded, as the nickpoint recedes upstream, is trapped in the widened channel downstream. In this manner sediment is transported episodically out of these basins during a series of cut-and-fill cycles. The manner by which the channels aggrade and the morphology of the aggraded stable channels are controlled by the sediment type. The wide and shallow channel of Arroyo Calabasas is filled by vertical accretion of sand-size sediment. The narrow and deep channels of Sage Creek and Sand Creek are created by the lateral accretion of cohesive fine-grained sediment. The channel modification and the cut-and-fill episodes are dependent on high sediment yields, and therefore they are independent of subtle climatic shifts. Cut-and-fill deposits that have been created in this manner should not be equivalent in age from basin to basin, and therefore channel trenching and filling in the semiarid western United States during the Holocene need not be synchronous.  相似文献   

20.
Abstract River avulsions are commonly considered to be driven by the aggradation and growth of alluvial ridges, and the associated increase in cross‐valley slope relative to either the down‐channel slope or the down‐valley slope (the latter is termed the slope ratio in the present paper). Therefore, spatial patterns of overbank aggradation rate over stratigraphically relevant time scales are critical in avulsion‐dominated models of alluvial architecture. Detailed evidence on centennial‐ to millennial‐scale floodplain deposition has, to date, been largely unavailable. New data on such long‐term overbank aggradation rates from the Rhine–Meuse and Mississippi deltas demonstrate that the rate of decrease of overbank deposition away from the channel belt is much larger than has been supposed hitherto, and can be similar to observations for single overbank floods. This leads to more rapid growth of alluvial ridges and more rapid increase in slope ratios, potentially resulting in increased avulsion frequencies. A revised input parameter for overbank aggradation rate was used in a three‐dimensional model of alluvial architecture to study its effect on avulsion frequency. Realistic patterns of avulsion and interavulsion periods (≈1000 years) were simulated with input data from the Holocene Rhine River, with avulsions occurring when the slope ratio is in the range 3–5. However, caution should be practised with respect to uncritical use of these numbers in different settings. Evidence from the two study areas suggests that the avulsion threshold cannot be represented by one single value, irrespective of whether critical slope ratios are used, as in the present study, or superelevation as has been proposed by other investigators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号