首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
A 3-D layered structure of the Levant and the southeastern Mediterranean lithospheric plates was constructed using interpretations of seismic measurements and borehole data. Structural maps of three principal interfaces, elevation, top basement and the Moho, were constructed for the area studied. This area includes the African, Sinai and Arabian plates, the Herodotus and the Levant marine basins and the Nile sedimentary cone. In addition, an isopach map of the Pliocene sediments, as well as the contemporaneous amount of denuded rock units, was prepared to enable setting up the structural map of the base Pliocene sediment. Variable density distributions are suggested for the sedimentary succession in accord with its composition and compaction. The spatial density distribution in the crystalline crust was calculated by weighting the thicknesses of the lower mafic and the upper felsic crustal layers, with densities of 2.9 g/cm3 and 2.77 g/cm3, respectively. Results of the local (Airy) isostatic modeling with compensation on the Moho interface show significant deviations from the local isostasy and require variable density distribution in the upper mantle. Moving the compensation level to the base of the lithosphere ( 100 km depth) and adopting density variations in the mantle lithosphere yielded isostatic compensation (± 200 m) over most of the area studied. The spatial pattern obtained of a density distribution with a range of ± 0.05 g/cm3 is supported by a regional heat flux. Simulations of the flexure (Vening Meinesz) isostasy related to the Pliocene to Recent sedimentary loading and unloading revealed concentric oscillatory negative and positive anomalies mostly related to the Nile sedimentary cone. Such anomalies may explain the rapid subsidence in the Levant Basin and the arching in central Israel, northern Sinai and Egypt during Pliocene–Recent times. Comparison between the observed (Bouguer) gravity and the calculated gravity for the constructed 3-D lithospheric structure, which has variable density distributions, provided a good match and an independent constraint for the large-scale structure suggested and confirmed an oceanic nature for the Levant Basin lithosphere.  相似文献   

2.
Gravity data have been used to examine the crystalline basement morphology along five geotransects in Somalia defined by the Global Geotransect Project (Monger 1989). The gravity data were digitized from the 1:1 000 000 Gravity Anomaly Map of Somalia produced by the African Gravity Project. After the removal of the non-crustal wavelength anomalies from the observed gravity field, the remaining gravity anomalies were interpreted in terms of 2.5D crustal models. Available geophysical and well data, and other geological information, were used as constraints for the construction of the crustal sections. Mean densities varying from 3.30 to 3.15 g cm−3 were used for dense bodies observed on the lower continental crust of the southern Somali basins. A density of 3.00 g cm−3 was given to the oceanic crust offshore. The density of the crystalline basement and the overlying sediments were, respectively, assumed to be 2.85 g cm−3 and 2.46 g cm−3. Coherent and incoherent marine sediments were given densities varying from 1.70 g cm−3 to 2.30 g cm−3. The results of the 2.5D gravity modelling indicate that the basement beneath the southern Somali basins is partially or totally transformed to denser material and that, just a few hundred kilometres offshore from Somalia, the basement is of an oceanic nature.  相似文献   

3.
The assembly of the crystalline basement of the western Barents Sea is related to the Caledonian orogeny during the Silurian. However, the development southeast of Svalbard is not well understood, as conventional seismic reflection data does not provide reliable mapping below the Permian sequence. A wide-angle seismic survey from 1998, conducted with ocean bottom seismometers in the northwestern Barents Sea, provides data that enables the identification and mapping of the depths to crystalline basement and Moho by ray tracing and inversion. The four profiles modeled show pre-Permian basins and highs with a configuration distinct from later Mesozoic structural elements. Several strong reflections from within the crystalline crust indicate an inhomogeneous basement terrain. Refractions from the top of the basement together with reflections from the Moho constrain the basement velocity to increase from 6.3 km s−1 at the top to 6.6 km s−1 at the base of the crust. On two profiles, the Moho deepens locally into root structures, which are associated with high top mantle velocities of 8.5 km s−1. Combined P- and S-wave data indicate a mixed sand/clay/carbonate lithology for the sedimentary section, and a predominantly felsic to intermediate crystalline crust. In general, the top basement and Moho surfaces exhibit poor correlation with the observed gravity field, and the gravity models required high-density bodies in the basement and upper mantle to account for the positive gravity anomalies in the area. Comparisons with the Ural suture zone suggest that the Barents Sea data may be interpreted in terms of a proto-Caledonian subduction zone dipping to the southeast, with a crustal root representing remnant of the continental collision, and high mantle velocities and densities representing eclogitized oceanic crust. High-density bodies within the crystalline crust may be accreted island arc or oceanic terrain. The mapped trend of the suture resembles a previously published model of the Caledonian orogeny. This model postulates a separate branch extending into central parts of the Barents Sea coupled with the northerly trending Svalbard Caledonides, and a microcontinent consisting of Svalbard and northern parts of the Barents Sea independent of Laurentia and Baltica at the time. Later, compressional faulting within the suture zone apparently formed the Sentralbanken High.  相似文献   

4.
The eastern margin of the Variscan belt in Europe comprises plate boundaries between continental blocks and terranes formed during different tectonic events. The crustal structure of that complicated area was studied using the data of the international refraction experiments CELEBRATION 2000 and ALP 2002. The seismic data were acquired along SW–NE oriented refraction and wide-angle reflection profiles CEL10 and ALP04 starting in the Eastern Alps, passing through the Moravo-Silesian zone of the Bohemian Massif and the Fore-Sudetic Monocline, and terminating in the TESZ in Poland. The data were interpreted by seismic tomographic inversion and by 2-D trial-and-error forward modelling of the P waves. Velocity models determine different types of the crust–mantle transition, reflecting variable crustal thickness and delimiting contacts of tectonic units in depth. In the Alpine area, few km thick LVZ with the Vp of 5.1 km s− 1 dipping to the SW and outcropping at the surface represents the Molasse and Helvetic Flysch sediments overthrust by the Northern Calcareous Alps with higher velocities. In the Bohemian Massif, lower velocities in the range of 5.0–5.6 km s− 1 down to a depth of 5 km might represent the SE termination of the Elbe Fault Zone. The Fore-Sudetic Monocline and the TESZ are covered by sediments with the velocities in the range of 3.6–5.5 km s− 1 to the maximum depth of 15 km beneath the Mid-Polish Trough. The Moho in the Eastern Alps is dipping to the SW reaching the depth of 43–45 km. The lower crust at the eastern margin of the Bohemian Massif is characterized by elevated velocities and high Vp gradient, which seems to be a characteristic feature of the Moravo-Silesian. Slightly different properties in the Moravian and Silesian units might be attributed to varying distances of the profile from the Moldanubian Thrust front as well as a different type of contact of the Brunia with the Moldanubian and its northern root sector. The Moho beneath the Fore-Sudetic Monocline is the most pronounced and is interpreted as the first-order discontinuity at a depth of 30 km.  相似文献   

5.
The present study is an attempt to determine the sedimentary cover, and structural trends in the central part of Sinai Peninsula, Egypt. This study has been implemented by the integration of gravity and magnetic methods. Gravity data has been used for 2D modelling along some profiles perpendicular to the main structural trends of the study area. Magnetic data will be analyzed to determine the depth to the basement surface. The depths obtained from magnetic data will be used as a control points in the gravity modelling in order to minimize the error and facilitate the iteration of the suggested models. The basement relief map from magnetic and gravity output has been produced. This map indicates that, the basement depths, generally, increases from south to north and from east to west direction of the study area. The sedimentary cover is about 1.5-2 km in the southern part and increases to more than 4 km in the northeastern and western parts and changes gradually in the other parts of the study area. Results of structural trend analysis indicate that, the study area is greatly affected by several structural trends; N-S, E-W, NW-SE, and NNE-SSW directions. These trends are associated with the Baltim fault trend, Tethyan trend, Gulf of Suez, and Aqaba trend, respectively.  相似文献   

6.
This paper presents the establishment of an empirical HC model for estimating rock mass hydraulic conductivity of highly disturbed clastic sedimentary rocks in Taiwan using high-resolution borehole acoustic televiewer and double packer hydraulic tests. Four geological parameters including rock quality designation (RQD), depth index (DI), gouge content designation (GCD), and lithology permeability index (LPI) were adopted for establishing the empirical HC model. To verify rationality of the proposed HC model, 22 in-situ hydraulic tests were carried out to measure the hydraulic conductivity of the highly disturbed clastic sedimentary rocks in three boreholes at two different locations in Taiwan. Besides, the model verification using another borehole data with four additional in-situ hydraulic tests from similar clastic sedimentary rocks was also conducted to further verify the feasibility of the proposed empirical HC model. The field results indicated that the rock mass in the study area has a conductivity between the order of 10− 10 m/s and 10− 6 m/s at the depth between 34 m and 275 m below ground surface. Results demonstrate that the empirical HC model may provide a useful tool to predict hydraulic conductivity of the highly disturbed clastic sedimentary rocks in Taiwan based on measured HC-values.  相似文献   

7.
The gravity and magnetic data along three profiles across the northern part of the K-G basin have been collected and the data is interpreted for basement depths. The first profile is taken from Gadarada to Yanam covering a distance of 60 km and the second starts from Zangareddiguddem to Samathkur covering a distance of 110 km and the third is from Kotturu to Biyyapuppa covering a distance of 100 km. The gravity lows and highs have clearly indicated various sub-basins and ridges. The density logs from ONGC, Chennai, show that the density contrast decreases with depth in the sedimentary basin, and hence, the gravity profiles are interpreted using variable density contrast with depth. From the Bouguer gravity anomaly, the residual anomaly is constructed by graphical method correlating with well data, sub-surface geology and seismic information. The residual anomaly profiles are interpreted using polygon model. The maximum depths to the khondalitic basement are obtained as 5.61km, 6.46 km and 7.45 km for the first, second and third profiles respectively. The regional anomaly is interpreted as Moho rise towards coast. The aeromagnetic anomaly profiles are also interpreted for charnockite basement below the khondalitic group of rocks using prismatic models.  相似文献   

8.
Deep-rooted enigmatic piercement structures in sedimentary basins, including ‘mud volcanoes’, ‘shale diapirs’, ‘salt diapirs’, and ‘asphalt volcanoes’, range in size from less than 1 km2, surface area, up to 64 km2, and have often an unknown depth of penetration due to incomplete imaging. We propose that they form a family associated with fluid flow. Our argument is based partly on their inferred location (above deep faults) and on the chemical analysis of emitted products, which includes liquid clays, brines and other substances from salt diapirs, and asphalt and light oils from the asphalt volcanoes. We explain these compositions by chemical alteration caused partly by supercritical water, a phase of water existent at high pressure and temperature, locally and temporarily achieved at depths generally beyond 10 km below surface, i.e., at the sediment–crust boundary. Our hypothesis overcomes some of the problems with interpreting fluid flow products, which are otherwise very difficult to explain. In case this hypothesis can be further verified, the family could perhaps be called ‘hydrothermally associated piercement structures’.  相似文献   

9.
Shallow and deep sources generate a gravity low in the central Iberian Peninsula. Long-wavelength shallow sources are two continental sedimentary basins, the Duero and the Tajo Basins, separated by a narrow mountainous chain called the Spanish Central System. To investigate the crustal density structure, a multitaper spectral analysis of gravity data was applied. To minimise biases due to misleading shallow and deep anomaly sources of similar wavelength, first an estimation of gravity anomaly due to Cenozoic sedimentary infill was made. Power spectral analysis indicates two crustal discontinuities at mean depths of 31.1 ± 3.6 and 11.6 ± 0.2 km, respectively. Comparisons with seismic data reveal that the shallow density discontinuity is related to the upper crust lower limit and the deeper source corresponds to the Moho discontinuity. A 3D-depth model for the Moho was obtained by inverse modelling of regional gravity anomalies in the Fourier domain. The Moho depth varies between a mean depth of 31 km and 34 km. Maximum depth is located in a NW–SE trough. Gravity modelling points to lateral density variations in the upper crust. The Central System structure is described as a crustal block uplifted by NE–SW reverse faults. The formation of the system involves displacement along an intracrustal detachment in the middle crust. This detachment would split into several high-angle reverse faults verging both NW and SE. The direction of transport is northwards, the detachment probably being rooted at the Moho.  相似文献   

10.
A three-dimensional (3D) density model, approximated by two regional layers—the sedimentary cover and the crystalline crust (offshore, a sea-water layer was added), has been constructed in 1° averaging for the whole European continent. The crustal model is based on simplified velocity model represented by structure maps for main seismic horizons—the “seismic” basement and the Moho boundary. Laterally varying average density is assumed inside the model layers. Residual gravity anomalies, obtained by subtraction of the crustal gravity effect from the observed field, characterize the density heterogeneities in the upper mantle. Mantle anomalies are shown to correlate with the upper mantle velocity inhomogeneities revealed from seismic tomography data and geothermal data. Considering the type of mantle anomaly, specific features of the evolution and type of isostatic compensation, the sedimentary basins in Europe may be related into some groups: deep sedimentary basins located in the East European Platform and its northern and eastern margins (Peri-Caspian, Dnieper–Donets, Barents Sea Basins, Fore–Ural Trough) with no significant mantle anomalies; basins located on the activated thin crust of Variscan Western Europe and Mediterranean area with negative mantle anomalies of −150 to −200×10−5 ms−2 amplitude and the basins associated with suture zones at the western and southern margins of the East European Platform (Polish Trough, South Caspian Basin) characterized by positive mantle anomalies of 50–150×10−5 ms−2 magnitude. An analysis of the main features of the lithosphere structure of the basins in Europe and type of the compensation has been carried out.  相似文献   

11.
We analyzed the short period Rayleigh waves from the first crustal-scale seismic refraction experiment in the Korean peninsula, KCRUST2002, to determine the shear wave velocity and attenuation structure of the uppermost 1 km of the crust in different tectonic zones of the Korean peninsula and to examine if this can be related to the surface geology of the study area. The experiment was conducted with two large explosive sources along a 300-km long profile in 2002. The seismic traces, recorded on 170 vertical-component, 2-Hz portable seismometers, show distinct Rayleigh waves in the period range between 0.2 s and 1.2 s, which are easily recognizable up to 30–60 km from the sources. The seismic profiles, which traverse three tectonic regions (Gyeonggi massif, Okcheon fold belt and Yeongnam massif), were divided into five subsections based on tectonic boundaries as well as lithology. Group and phase velocities for the five subsections obtained by a continuous wavelet transform method and a slant stack method, respectively, were inverted for the shear wave models. We obtained shear wave velocity models up to a depth of 1.0 km. Overall, the shear wave velocity of the Okcheon fold belt is lower than that of the Gyeonggi and Yeongnam massifs by  0.4 km/s in the shallowmost 0.2 km and by 0.2 km/s at depths below 0.2 km. Attenuation coefficients, determined from the decay of the fundamental mode Rayleigh waves, were used to obtain the shear wave attenuation structures for three subsections (one for each of the three different tectonic regions). We obtained an average value of Qβ− 1 in the upper 0.5 km for each subsection. Qβ− 1 for the Okcheon fold belt ( 0.026) is approximately three times larger than Qβ− 1 for the massif areas ( 0.008). The low shear wave velocity in the Okcheon fold belt is consistent with the high attenuation in this region.  相似文献   

12.
Spectral analysis of digital data of the Bouguer anomaly map of NW India suggests maximum depth of causative sources as 134 km that represents the regional field and coincides with the upwarped lithosphere — asthenosphere boundary as inferred from seismic tomography. This upwarping of the Indian plate in this section is related to the lithospheric flexure due to its down thrusting along the Himalayan front. The other causative layers are located at depths of 33, 17, and 6 km indicating depth to the sources along the Moho, lower crust and the basement under Ganga foredeep, the former two also appear to be upwarped as crustal bulge with respect to their depths in adjoining sections. The gravity and the geoid anomaly maps of the NW India provide two specific trends, NW-SE and NE-SW oriented highs due to the lithospheric flexure along the NW Himalayan fold belt in the north and the Western fold belt (Kirthar -Sulaiman ranges, Pakistan) and the Aravalli Delhi Fold Belt (ADFB) in the west, respectively. The lithospheric flexures also manifest them self as crustal bulge and shallow basement ridges such as Delhi — Lahore — Sagodha ridge and Jaisalmer — Ganganagar ridge. There are other NE-SW oriented gravity and geoid highs that may be related to thermal events such as plumes that affected this region. The ADFB and its margin faults extend through Ganga basin and intersect the NW Himalayan front in the Nahan salient and the Dehradun reentrant that are more seismogenic. Similarly, the extension of NE-SW oriented gravity highs associated with Jaisalmer — Ganganagar flexure and ridge towards the Himalayan front meets the gravity highs of the Kangra reentrant that is also seismogenic and experienced a 7.8 magnitude earthquake in 1905. Even parts of the lithospheric flexure and related basement ridge of Delhi — Lahore — Sargodha show more seismic activity in its western part and around Delhi as compared to other parts. The geoid highs over the Jaisalmer — Ganganagar ridge passes through Kachchh rift and connects it to plate boundaries towards the SW (Murray ridge) and NW (Kirthar range) that makes the Kachchh as a part of a diffused plate boundary, which, is one of the most seismogenic regions with large scale mafic intrusive that is supported from 3-D seismic tomography. The modeling of regional gravity field along a profile, Ganganagar — Chandigarh extended beyond the Main Central Thrust (MCT) constrained from the various seismic studies across different parts of the Himalaya suggests crustal thickening from 35-36 km under plains up to ~56 km under the MCT for a density of 3.1 g/cm3 and 3.25 g/cm3 of the lower most crust and the upper mantle, respectively. An upwarping of ~3 km in the Moho, crust and basement south of the Himalayan frontal thrusts is noticed due to the lithospheric flexure. High density for the lower most crust indicates partial eclogitization that releases copious fluid that may cause reduction of density in the upper mantle due to sepentinization (3.25 g/cm3). It has also been reported from some other sections of Himalaya. Modeling of the residual gravity and magnetic fields along the same profile suggest gravity highs and lows of NW India to be caused by basement ridges and depressions, respectively. Basement also shows high susceptibility indicating their association with mafic rocks. High density and high magnetization rocks in the basement north of Chandigarh may represent part of the ADFB extending to the Himalayan front primarily in the Nahan salient. The Nahan salient shows a basement uplift of ~ 2 km that appears to have diverted courses of major rivers on either sides of it. The shallow crustal model has also delineated major Himalayan thrusts that merge subsurface into the Main Himalayan Thrust (MHT), which, is a decollment plane.  相似文献   

13.
Ollier  Cochonat  Lénat  & Labazuy 《Sedimentology》1998,45(2):293-330
A volcaniclastic sedimentary fan extending to water depths of 4000 m is characterized using gravity cores, camera surveys, high-resolution sonar images, seismic records and bathymetry from the submarine portion of La Fournaise volcano, Réunion Island, a basaltic shield volcano in the SW Indian Ocean. Three main areas are identified from the study: (1) the proximal fan extending from 500 m water depth down to 2000 m water depth; (2) the outer fan extending from 2000 m water depth down to 3600 m water depth; (3) the basin extending beyond 3600 m water depth. Within these three main areas, seven distinct submarine environments are defined: the proximal fan is characterized by volcanic basement outcrops, sedimentary slides, deep-water deltas, debris-avalanche deposits, and eroded floor in the valley outlets; the outer fan is characterized by a discontinuous fine-grained sedimentary cover overlying coarse-grained turbidites or undifferentiated volcanic basement; the basin is characterized by hemipelagic muds and fine-grained turbidites interbedded with sandy and gravelly turbidite lobes. The evolution of the deep-sea volcaniclastic fan is strongly influenced by sector collapses, such as the one which occurred 0·0042 Ma ago. This collapse produced a minimum of 6 km3 of debris-avalanche deposit in the proximal area. The feeding regime of the deep-sea fan is ‘alluvial dominated’ before the occurrence of any sector collapse and ‘lava-dominated’ after the occurrence of a sector collapse. The main deep-water lava-fed delta is prograding among the blocks of the debris-avalanche deposits as a result of turbidity flows occurring on the delta slope. These turbidity flows are triggered routinely by wave-action, earthquakes and accumulation of new volcanic debris on top of the deltas. Both turbidity currents triggered on the deep-water delta slope, and those triggered by debris avalanche reworked volcaniclastic material as far as 100 km from the shore line.  相似文献   

14.
We have studied seismic surface waves of 255 shallow regional earthquakes recently recorded at GEOFON station ISP (Isparta, Turkey) and have selected these 52 recordings with high signal-to-noise ratio for further analysis. An attempt was made by the simultaneous use of the Rayleigh and Love surface wave data to interpret the planar crust and uppermost mantle velocity structure beneath the Anatolian plate using a differential least-square inversion technique. The shear-wave velocities near the surface show a gradational change from approximately 2.2 to 3.6 km s− 1 in the depth range 0–10 km. The mid-crustal depth range indicating a weakly developed low velocity zone has shear-wave velocities around 3.55 km s− 1. The Moho discontinuity characterizing the crust–mantle velocity transition appears somewhat gradual between the depth range  25–45 km. The surface waves approaching from the northern Anatolia are estimated to travel a crustal thickness of  33 km whilst those from the southwestern Anatolia and part of east Mediterranean Sea indicate a thicker crust at  37 km. The eastern Anatolia events traveled even thicker crust at  41 km. A low sub-Moho velocity is estimated at  4.27 km s− 1, although consistent with other similar studies in the region. The current velocities are considerably slower than indicated by the Preliminary Reference Earth Model (PREM) in almost all depth ranges.  相似文献   

15.
A detailed study of the subsurface thermal regime at the Upper Stillwater dam site, Uinta Mountains, northeast Utah, has been made. Temperature measurements were made in 36 drillholes located within a 1 km2 area and ranging in depth from 20 to 97 m. Holes less than about 40 m deep were used only to obtain information about spatial variations in mean annual surface temperature. Several holes in or near talus slopes at the sides of the canyons have temperature minima approaching 0°C between 10 and 20 m indicating the presence of year-round ice at the base of the talus. Another set of holes show transient thermal effects of surface warming resulting from clearing of a construction site 3.5 years prior to our measurements. Most of the remaining holes show conductive behavior and have gradients ranging from 13° to 17°C km−1. Measurements made on 44 core samples yield a thermal conductivity of 5.6 (std. dev. 0.35) W m−1 K−1 for the Precambrian quartzite present. Surface heat flow estimates for these holes range from 70 to 100 mW m−2. However, the local disturbance of the thermal field by topography and microclimate is considerable. A finite difference method used to model these effects yielded a locally corrected Upper Stillwater heat flow of about 75 mW m−2. A final correction to account for the effects of refraction of heat from the low conductivity sedimentary rocks in the Uinta Basin into the high conductivity quartzite at the dam site, produced a regionally corrected Upper Stillwater heat flow between 60 and 65 mW m−2. This value is consistent with the observed heat flow of 60 mW m−2 in the Green River Basin to the north and the Uinta Basin to the south.  相似文献   

16.
Gravity studies have delineated the largest ultramafic massif in New Zealand, embedded within a buried major SW Pacific crustal suture zone. This suture records terrane collision onto the Gondwana margin during the Mesozoic and separates a forearc terrane from an outboard accretionary prism terrane. It can be traced throughout the length of New Zealand as the Junction Magnetic Anomaly and contains the Permian Dun Mountain Ophiolite Belt, which in the South Island of New Zealand is characterized by a string of isolated ultramafic massifs in a sheared matrix of serpentinite and sediment. Our analysis reveals a steep gravity gradient at the suture boundary which is attributed to a newly recognised density contrast (0.1 Mg m− 3) between terranes of the forearc and the accretionary prism. The massif itself is marked by the occurrence of a strong, elongate residual gravity anomaly (+ 120 g.u.) extending 50 km along the suture and coincident with the Junction Magnetic Anomaly. It is modelled, at its southern end, as a dense, 15 km wide source body, extending to at least 6 km in depth. In conjunction with detailed aeromagnetic data, this modeling indicates the presence of a spindle-shaped ultramafic massif, analogous to, but larger than similar bodies found within the Dun Mountain Ophiolite Belt elsewhere. This fabric of sheared serpentinites enclosing ultramafic massifs therefore extends at least the length of New Zealand and probably beyond. In part it may result from accretion of asperities in the subducting plate, but it is also due to disruption of larger ultramafic bodies during subsequent strike-slip motion, which caused the remarkable linearity of the Dun Mountain Belt. Given the common occurrence of the plate tectonic processes involved, it is likely that such structures can be found in other regions around the world using similar geophysical potential field methods.  相似文献   

17.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

18.
19.
Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a < 2-km-thick interface at the top of the subducting plate. We show that another zone of reflectors exists east of Vancouver Island that is approximately 8 km thick, and identified as the D reflectors. These overlie the E reflectors; together the two zones define the landward part of the duplex. The combined zones reach depths as great as 50 km. The duplex structure extends for more than 120 km perpendicular to the margin, has an along-strike extent of 80 km, and at depths between 30 km and 50 km the duplex structure correlates with a region of anomalously deep seismicity, where velocities are less than 7000 m s− 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.  相似文献   

20.
《International Geology Review》2012,54(12):1129-1144
Groups of grabens in west Anatolia have contrasting E-W and NE-SW orientations and are the subject of debate as to their relative ages and relationships. We investigated the E-W-trending Gediz graben and its neighboring NE-SW-trending Gördes, Demirci, and Selendi grabens, which form an important graben system representative of the region. We studied gravity data from one profile and magnetotelluric (MT) data from two profiles, 73 km and 93 km long. The data supports the hypothesis that the Gediz graben was superimposed onto the (older) NE-SW grabens. 2D gravity and MT modelling revealed an undulating graben floor, varying in depth between 500 and 3000-4000 m (gravity-MT); within the graben two apparent basins 3–4 and 1.5-2.5 km deep (gravity-MT) are separated by a subsurface horst. The residual gravity map appears to indicate the continuation of NE-SW grabens from north of Gediz graben to beyond its southern border.

The MT model revealed three main zones of varying thickness within the crust. The britde upper crust comprises two zones: sedimentary fill (apparent resistivity 15-50 ohm.m) and Menderes massif basement (200 ohm.m). The third zone is highly conductive lower crust (10 ohm.m), identified by our MT modeling at an average depth of 10 km. This conductive layer was considered in conjunction with two other regional features, high heat flow values and shallow earthquake focal depths. A heat flow map shows a very high average value of 108 mWm?2 for west Anatolia and 120-300 mWm?2 for the Gediz graben area specifically, compared with the world average of 80 mWm?2. Seismological records showing shallow earthquake focal depths together with the high conductivity zone were taken to indicate a partially melted, viscoelastic lower crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号