首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leaf chlorophyll content is an important variable for agricultural remote sensing because of its close relationship to leaf nitrogen content. The triangular greenness index (TGI) was developed based on the area of a triangle surrounding the spectral features of chlorophyll with points at (670 nm, R670), (550 nm, R550), and (480 nm, R480), where Rλ is the spectral reflectance at wavelengths of 670, 550 and 480, respectively. The equation is TGI = −0.5[(670  480)(R670  R550)  (670  550)(R670  R480)]. In 1999, investigators funded by NASA's Earth Observations Commercialization and Applications Program collaborated on a nitrogen fertilization experiment with irrigated maize in Nebraska. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and Landsat 5 Thematic Mapper (TM) data were acquired along with leaf chlorophyll meter and other data on three dates in July during late vegetative growth and early reproductive growth. TGI was consistently correlated with plot-averaged chlorophyll-meter values at the spectral resolutions of AVIRIS, Landsat TM, and digital cameras. Simulations using the Scattering by Arbitrarily Inclined Leaves (SAIL) canopy model indicate an interaction among TGI, leaf area index (LAI) and soil type at low crop LAI, whereas at high LAI and canopy closure, TGI was only affected by leaf chlorophyll content. Therefore, TGI may be the best spectral index to detect crop nitrogen requirements with low-cost digital cameras mounted on low-altitude airborne platforms.  相似文献   

2.
The Sentinel-2 Multi-Spectral Imager (MSI) has three spectral bands centered at 705, 740, and 783 nm wavelengths that exploit the red-edge information useful for quantifying plant biochemical traits. This sensor configuration is expected to improve the prediction accuracy of vegetation chlorophyll content. In this work, we assessed the performance of several statistical and physical-based methods in retrieving canopy chlorophyll content (CCC) from Sentinel-2 in a heterogeneous mixed mountain forest. Amongst the algorithms presented in the literature, 13 different vegetation indices (VIs), a non-parametric statistical approach, and two radiative transfer models (RTM) were used to assess the CCC prediction accuracy. A field campaign was conducted in July 2017 to collect in situ measurements of CCC in Bavarian forest national park, and the cloud-free Sentinel-2 image was acquired on 13 July 2017. The leave-one-out cross-validation technique was used to compare the VIs and the non-parametric approach. Whereas physical-based methods were calibrated using simulated data and validated using the in situ reference dataset. The statistical-based approaches, such as the modified simple ratio (mSR) vegetation index and the partial least square regression (PLSR) outperformed all other techniques. As such the modified simple ratio (mSR3) (665, 865) gave the lowest cross-validated RMSE of 0.21 g/m2 (R2 = 0.75). The PLSR resulted in the highest R2 of 0.78, and slightly higher RMSE =0.22 g/m2 than mSR3. The physical-based approach-INFORM inversion using look-up table resulted in an RMSE =0.31 g/m2, and R2 = 0.67. Although mapping CCC using these methods revealed similar spatial distribution patterns, over and underestimation of low and high CCC values were observed mainly in the statistical approaches. Further validation using in situ data from different terrestrial ecosystems is imperative for both the statistical and physical-based approaches' effectiveness to quantify CCC before selecting the best operational algorithm to map CCC from Sentinel-2 for long-term terrestrial ecosystems monitoring across the globe.  相似文献   

3.
The results emerged out of the studies on spectral reflectance under normal and nitrogen and phosphorus stress condition in soybean (Glycine max L.) conducted at Marathwada Agricultural University experimental farm, Parbhani duringkharif 2004–05 showed that crop growth and bio-physiological parameters viz., Height, chlorophyll, leaf area index and total biomass influenced by pest and disease and nutrient stress resulted in detectable spectral reflectance variation. Poor crop growth, reduced canopy cover, chlorophyll content and biomass production are the effects observed in nutrient deficient crops. These above changes in soybean crop were related to spectral indices (RVI and NDVI) that are resulted in discrimination of stressed and normal (non-stressed) soybean crop.  相似文献   

4.
Accurate estimation of the ratio of carotenoid (Car) to chlorophyll (Chl) content is crucial to provide valuable insight into diagnoses of plant physiological and phenological status in crop fields. Studies for assessing the ratio of Car to Chl content have been extensively conducted with semi-empirical approaches using spectral indices. However, spectral indices established in previous studies generally relied on site- or species-specific measured data and these indices typically lacked sufficient estimation accuracy for the ratio of Car to Chl content to be used across various species and under different physiological conditions. In this study, we propose a novel combined carotenoid/chlorophyll ratio index (CCRI) in the form of the carotenoid index (CARI) divided by the red-edge chlorophyll index (CIred-edge): The value of the index is illustrated using synthetic data simulated from the leaf radiative transfer model PROSPECT-5 and with extensive measured datasets at both the leaf and canopy level from the ANGERS dataset and winter wheat and maize field experiments. Results show that CCRI was the index with the highest correlation with the ratio of Car to Chl content in PROSPECT-5 simulations (R2 = 0.99, RRMSE = 8.65%) compared to other spectral indices. Calibration and validation results using the ANGERS and winter wheat leaf level data showed that CCRI achieved accurate estimation of the ratio of Car to Chl content (R2 = 0.52, RRMSE = 14.10%). CCRI also showed a good performance (R2 = 0.54, RRMSE = 17.08%) for estimation of the ratio of Car to Chl content in both calibration and validation with the winter wheat and maize canopy spectra measured in field experiments. Further investigation of the effect of the correlation between leaf Chl and Car content on the performance of CCRI indicated that variation of the correlation affected the retrieval accuracy of CCRI, and CCRI might not be very sensitive to changes of the ratio of Car to Chl content with low values (<0.10).  相似文献   

5.
6.
Sentinel-2 is planned for launch in 2014 by the European Space Agency and it is equipped with the Multi Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region, which can be used to derive vegetation indices using red-edge bands in their formulation. These are particularly suitable for estimating canopy chlorophyll and nitrogen (N) content. This band setting is important for vegetation studies and is very similar to the ones of the Ocean and Land Colour Instrument (OLCI) on the planned Sentinel-3 satellite and the Medium Resolution Imaging Spectrometer (MERIS) on Envisat, which operated from 2002 to early 2012. This paper focuses on the potential of Sentinel-2 and Sentinel-3 in estimating total crop and grass chlorophyll and N content by studying in situ crop variables and spectroradiometer measurements obtained for four different test sites. In particular, the red-edge chlorophyll index (CIred-edge), the green chlorophyll index (CIgreen) and the MERIS terrestrial chlorophyll index (MTCI) were found to be accurate and linear estimators of canopy chlorophyll and N content and the Sentinel-2 and -3 bands are well positioned for deriving these indices. Results confirm the importance of the red-edge bands on particularly Sentinel-2 for agricultural applications, because of the combination with its high spatial resolution of 20 m.  相似文献   

7.
This study investigates the applicability of estimating chlorophyll and water content at canopy level through empirical models and band combinations. The main goal is to evaluate and compare the accuracy of these two approaches for estimating and mapping canopy chlorophyll and water content through canopy reflectance and spaceborne HJ1-A HSI data acquired over Yanzhou coal mining area. An experiment was carried out. Canopy spectral measurements were acquired in the field using an ASD spectroradiometer along with simultaneous in situ measurements of leaf chlorophyll content. We tested seven variables derived from canopy reflectance for detecting canopy chlorophyll and water content: (1) R, (2) Log(1/R), (3) Log(1/R)′, (4) FDR, (5) SDR, (6) CRR, (7) BD. Stepwise multiple linear regressions were used to select wavelengths from HJ1-A HSI image bands. Correlation analysis was also done between different band combinations and biochemistry. A statistically significant relationship between Log(1/R) and chlorophyll was found at canopy level (R2 = 0.516). SDR had the highest correlation with canopy water content (R2 = 0.490). In addition, relationship between normalized different band combinations and chlorophyll and water content is also significantly obvious (R2 = 0.577 and R2 = 0.615). Canopy chlorophyll content was estimated with the intermediate accuracy (R2 = 0.4144), while water content was estimated with an acceptable accuracy (R2 = 0.4592). Canopy chlorophyll and water content spatial distribution were mapped. Chlorophyll and water stress levels were quantified by comparing different environmental stressors.  相似文献   

8.
This paper presents a new approach to estimate spatial Sun-Induced Fluorescence (SIF) using the empirical relationship between simulated Canopy Chlorophyll Concentration (CCC) and simulated SIF. PROSAIL model [PROpriétésSPECTrales (PROSPECT) and Scattering by Arbitrarily Inclined Leaves (SAIL) models] was used to simulate CCC. CCC maps were generated through an Automated Radiative Transfer Model Operator (ARTMO) using the PROSAIL model and Sentinel-2 Multi-Spectral Imager (MSI) imagery. The Soil Canopy Observation, Photochemistry, and Energy fluxes (SCOPE) model was used to simulate SIF emitted at 740 nm (SIF740), at 760 nm (SIF760), and top of canopy (SIFTOC) (640-850 nm). The SCOPE model, configured with the specification of the Sentinel-2 sensor, simulates SIF within the spectrum range of 640-850 nm. A non-linear logarithmic relationship (R2>0.9, p < 0.05) was observed between simulated SIF and simulated CCC. Simulated CCC was linearly related to observed CCC with R2 0.88, 0.92 and 0.89 and RMSE = 0.04, 0.17 and 0.09 gm/m2 at p < 0.05 for summer, post-monsoon and early winter respectively. Whereas, the simulated CCC did not capture the full range of CCC variability for the post-monsoon season. Simulated SIF (SIF760) was well correlated with SIF from Orbiting Carbon Observatory-2 (OCO-2) satellite with R2 0.68, 0.73 and 0.73 (RMSE = <1 W/m2/sr/μm, p < 0.05) for the month of summer (April), pre-monsoon (May) and early winter season (November) respectively. Temporal SIFTOC effectively captured the seasonal variability associated with the phenology of deciduous tree species. Among various Sentinel-2 MSI derived VIs, Red Edge NDVI (RENDVI) exhibited maximum sensitivity with SIF (highest monthly average R2> 0.6, p < 0.05). The spatial SIF would serve as an useful link between airborne /satellite derived SIF and in-situ fluorescence measurements to understand multiscale SIF variability of terrestrial vegetation.  相似文献   

9.
Chlorophyll fluorescence is an indicator of plant photosynthetic activity and has been used to monitor the health status of vegetation. Several studies have exploited the application of red/far-red chlorophyll fluorescence ratio in detecting the impact of various types of stresses in plants. Recently, sunlight-induced chlorophyll fluorescence imaging has been used to detect and discriminate different stages of mosaic virus infection in potted cassava plants with a multi-spectral imaging system (MSIS). In this study, the MSIS is used to investigate the impact of drought and herbicide stress in field grown crop plants. Towards this control and treatment groups of colocasia and sweet potato plants were grown in laterite soil beds and the reflectance images of these crop plants were recorded up to 14-days of treatment at the Fraunhofer lines of O2 B at 687 nm and O2 A at 759.5 nm and the off-lines at 684 and 757.5 nm. The recorded images were analyzed using the Fraunhofer Line Discrimination technique to extract the sunlight-induced chlorophyll fluorescence component from the reflectance images of the plant leaves. As compared to the control group, the chlorophyll fluorescence image ratio (F 687/F 760) in the treatment groups of both the plant varieties shows an increasing trend with increase in the extent of stress. Further, the F 687/F 760 ratio was found to correlate with the net photosynthetic rate (Pn) and stomatal conductance (gs) of leaves. The correlation coefficient (R 2) for the relationship of F 687/F 760 ratio with Pn were found to be 0.78, 0.79 and 0.78, respectively for the control, herbicide treated and drought treated colocasia plants, while these were 0.77, 0.86 and 0.88, respectively for sweet potato plants. The results presented show the potential of proximal remote sensing and the application F 687/F 760 fluorescence image ratio for effective monitoring of stress-induced changes in field grown plants.  相似文献   

10.
Optimizing nitrogen (N) fertilization in crop production by in-season measurements of crop N status may improve fertilizer N use efficiency. Hyperspectral measurements may be used to assess crop N status by estimating leaf chlorophyll content. This study evaluated the ability of the PROSAIL canopy-level reflectance model to predict leaf chlorophyll content. Trials were conducted with two potato cultivars under different N fertility rates (0–300 kg N ha−1). Canopy reflectance, leaf area index (LAI) and leaf chlorophyll and N contents were measured. The PROSAIL model was able to predict leaf chlorophyll content with reasonable accuracy later in the growing season. The low estimation accuracy earlier in the growing season could be due to model sensitivity to non-homogenous canopy architecture and soil background interference before full canopy closure. Canopy chlorophyll content (leaf chlorophyll content × LAI) was predicted less accurately than leaf chlrophyll content due to the low estimation accuracy of LAI for values higher than 4.5.  相似文献   

11.
In this paper, we carried out a laboratory experiment to study changes in canopy reflectance of Tamarugo plants under controlled water stress. Tamarugo (Prosopis tamarugo Phil.) is an endemic and endangered tree species adapted to the hyper-arid conditions of the Atacama Desert, Northern Chile. Observed variation in reflectance during the day (due to leaf movements) as well as changes over the experimental period (due to water stress) were successfully modelled by using the Soil-Leaf-Canopy (SLC) radiative transfer model. Empirical canopy reflectance changes were mostly explained by the parameters leaf area index (LAI), leaf inclination distribution function (LIDF) and equivalent water thickness (EWT) as shown by the SLC simulations. Diurnal leaf movements observed in Tamarugo plants (as adaptation to decrease direct solar irradiation at the hottest time of the day) had an important effect on canopy reflectance and were explained by the LIDF parameter. The results suggest that remote sensing based assessment of this desert tree should consider LAI and canopy water content (CWC) as water stress indicators. Consequently, we tested fifteen different vegetation indices and spectral absorption features proposed in literature for detecting changes of LAI and CWC, considering the effect of LIDF variations. A sensitivity analysis was carried out using SLC simulations with a broad range of LAI, LIDF and EWT values. The Water Index was the most sensitive remote sensing feature for estimating CWC for values less than 0.036 g/cm2, while the area under the curve for the spectral range 910–1070 nm was most sensitive for values higher than 0.036 g/cm2. The red-edge chlorophyll index (CIred-edge) performed the best for estimating LAI. Diurnal leaf movements had an effect on all remote sensing features tested, particularly on those for detecting changes in CWC.  相似文献   

12.
A field experiment was conducted on wheat crop during rabi seasons of 1995–96, 1996–97 and 1997–98 to study the spectral response of wheat crop (between 490 to 1080 nm) under water and nutrient stress condition. An indigenously developed ground truth radiometer having narrow band in visible and near infrared region (490 – 1080 nm) was used. Vegetation indices derived using different band combinations and related to crop growth parameters. The near infrared spectral region of 710 – 1025 nm was found most important for monitoring stress condition. Relationship has been developed between crop growth parameters and vegetation indices. Leaf Area Index (LAI) and chlorophyll could be predicted by knowing different reflectance ratios at milking stage of crop with R2 value of 0.78 and 0.89, respectively. Dry biomass (DBM), Plant Water Content (PWC) and grain yield are also significantly related with reflectance ratios at flowering stage of crop with R2 value of 0.90, 0.98 and 0.74, respectively.  相似文献   

13.
Leaf to canopy upscaling approach affects the estimation of canopy traits   总被引:1,自引:0,他引:1  
In remote sensing applications, leaf traits are often upscaled to canopy level using sunlit leaf samples collected from the upper canopy. The implicit assumption is that the top of canopy foliage material dominates canopy reflectance and the variability in leaf traits across the canopy is very small. However, the effect of different approaches of upscaling leaf traits to canopy level on model performance and estimation accuracy remains poorly understood. This is especially important in short or sparse canopies where foliage material from the lower canopy potentially contributes to the canopy reflectance. The principal aim of this study is to examine the effect of different approaches when upscaling leaf traits to canopy level on model performance and estimation accuracy using spectral measurements (in-situ canopy hyperspectral and simulated Sentinel-2 data) in short woody vegetation. To achieve this, we measured foliar nitrogen (N), leaf mass per area (LMA), foliar chlorophyll and carbon together with leaf area index (LAI) at three vertical canopy layers (lower, middle and upper) along the plant stem in a controlled laboratory environment. We then upscaled the leaf traits to canopy level by multiplying leaf traits by LAI based on different combinations of the three canopy layers. Concurrently, in-situ canopy reflectance was measured using an ASD FieldSpec-3 Pro FR spectrometer, and the canopy traits were related to in-situ spectral measurements using partial least square regression (PLSR). The PLSR models were cross-validated based on repeated k-fold, and the normalized root mean square errors (nRMSEcv) obtained from each upscaling approach were compared using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. Results of the study showed that leaf-to-canopy upscaling approaches that consider the contribution of leaf traits from the exposed upper canopy layer together with the shaded middle canopy layer yield significantly (p < 0.05) lower error (nRMSEcv < 0.2 for canopy N, LMA and carbon) as well as high explained variance (R2 > 0.71) for both in-situ hyperspectral and simulated Sentinel-2 data. The widely-used upscaling approach that considers only leaf traits from the upper illuminated canopy layer yielded a relatively high error (nRMSEcv>0.2) and lower explained variance (R2 < 0.71) for canopy N, LMA and carbon. In contrast, canopy chlorophyll upscaled based on leaf samples collected from the upper canopy and total canopy LAI exhibited a more accurate relationship with spectral measurements compared with other upscaling approaches. Results of this study demonstrate that leaf to canopy upscaling approaches have a profound effect on canopy traits estimation for both in-situ hyperspectral measurements and simulated Sentinel-2 data in short woody vegetation. These findings have implications for field sampling protocols of leaf traits measurement as well as upscaling leaf traits to canopy level especially in short and less foliated vegetation where leaves from the lower canopy contribute to the canopy reflectance.  相似文献   

14.
Persian oak (Quercus Brantii Lindl.) which is the most widely distributed tree in the Zagros Mountain forests is affected by western dust storms, mostly originating in Iraq, and harsh water stress as well. The objective of this research is to analyze the spectral behavior of Persian oak under water and dust stress scenarios, aiming to pave the way for modeling the stresses of drought and dust storms on oak trees using remote sensing images. Experiments were carried out on 54 two-year old oak tree seedlings, using a portable wind tunnel in greenhouse conditions. Water stress was induced on seedlings by means of changes in irrigation practices, i.e. well-watered (100 % field capacity), medium water deficit condition (40 % field capacity), and severe water deficit condition (20 % field capacity) treatments. Dust stress is also investigated by using three different dust particle concentrations, i.e. 350, 750 and 1500 (μg/m³). The spectrometry experiments were carried out at leaf and canopy levels in dark room by Fieldspec-3-ASD spectrometer. Spectral analysis was conducted using four procedures: (i) narrow-band spectral indices analysis, (ii) geometric indicators extraction from absorption features, (iii) Partial Least Squares Regression (PLSR), and SVM classifier. Results show that water stress could be modeled much better using PLSR statistic (R2 = 0.87, RMSE = 0.12), narrow-band indices analysis (R2cv = 0.75, RMSEcv = 0.17), and continuum removal (R2 = 0.71, RMSE = 0.20), respectively. For dust stress, PLSR (R2 = 0.83, RMSE = 0.14) and narrow-band indices (R2 cv = 0.7, RMSE cv = 0.30) showed the best results, respectively. SVM could successfully separate stressed and not-stressed samples and also the stress types at both leaf and canopy levels, but it could not distinguish the different levels of stresses.  相似文献   

15.
The research evaluated the information content of spectral reflectance (laboratory and airborne data) for the estimation of needle chlorophyll (CAB) and nitrogen (CN) concentration in Norway spruce (Picea abies L. Karst.) needles. To identify reliable predictive models different types of spectral transformations were systematically compared regarding the accuracy of prediction. The results of the cross-validated analysis showed that CAB can be well estimated from laboratory and canopy reflectance data. The best predictive model to estimate CAB was achieved from laboratory spectra using continuum-removal transformed data (R2cv = 0.83 and a relative RMSEcv of 8.1%, n = 78) and from hyperspectral HyMap data using band-depth normalised spectra (R2cv = 0.90, relative RMSEcv = 2.8%, n = 13). Concerning the nitrogen concentration, we observed somewhat weaker relations, with however still acceptable accuracies (at canopy level: R2cv = 0.57, relative RMSEcv = 4.6%). The wavebands selected in the regression models to estimate CAB were typically located in the red edge region and near the green reflectance peak. For CN, additional wavebands related to a known protein absorption feature at 2350 nm were selected. The portion of selected wavebands attributable to known absorption features strongly depends on the type of spectral transformation applied. A method called “water removal” (WR) produced for canopy spectra the largest percentage of wavebands directly or indirectly related to known absorption features. The derived chlorophyll and nitrogen maps may support the detection and the monitoring of environmental stressors and are also important inputs to many bio-geochemical process models.  相似文献   

16.
Detection of crop water stress is crucial for efficient irrigation water management. Potential of Satellite data to provide spatial and temporal dynamics of crop growth conditions makes it possible to monitor crop water stress at regional level. This study was conducted in parts of western Uttar Pradesh and Haryana. Multi-temporal Landsat data were used for detecting wheat crop water stress using vegetation indices (VIs), viz. vegetation water stress index (VWSI) and land surface wetness index water stress factor (Ws_LSWI). The estimated water stress from satellite data-based VIs was validated by water stress factor (Ws) derived from flux-tower data. The study observed Ws_LSWI to be better index for water stress detection. The results indicated that Ws_LSWI was superior over other index showing RMSE = 0.12, R2 = 0.65, whereas VWSI showed overestimated values with mean RD 4%.  相似文献   

17.
柑橘植株冠层氮素和光合色素含量近地遥感估测   总被引:1,自引:0,他引:1  
柑橘植株营养状况的遥感监测是实现果树轻简高效管理和优质丰产的重要手段,但迄今有关基于低空遥感信息的果树营养诊断研究鲜见报道。本文采用具有490 nm、550 nm、570 nm、671 nm、680 nm、700 nm、720 nm、800 nm、840 nm、900 nm、950 nm等11个波段光谱的八旋翼飞行器(UAV)载多光谱遥感系统,获取距地面100 m高度的哈姆林甜橙植株春季冠层近地遥感信息,对比分析基于多元散射校正(MSC)和标准正态变量(SNV)两种预处理光谱和原始光谱(OS)的偏最小二乘(PLS)、多元线性回归(MLR)、主成分回归(PCR)及最小二乘支持向量机(LS-SVM)等4种模型对冠层叶片氮素、叶绿素a、叶绿素b和类胡萝卜素含量预测精度的影响。结果显示,距地面100 m高度的多光谱信息,通过SNV光谱预处理和MLR建模对冠层叶片氮素、叶绿素a和叶绿素b含量的预测效果均较好,预测集相关系数(Rp)值分别达0.8036、0.8065和0.8107,预测均方根误差(RMSEP)值分别为0.1363、0.0427和0.0243;而在SNV光谱预处理基础上的LS-SVM建模对冠层类胡萝卜素含量预测效果更优,Rp值达到了0.8535,RMSEP值为0.0117。表明利用机载多光谱图像信息可实现对柑橘植株冠层全氮及叶绿素a、叶绿素b和类胡萝卜素含量的较好估算,为大规模柑橘园植株冠层营养状况的精准和高效监测提供了一条新途径。  相似文献   

18.
Leaf and canopy nitrogen (N) status relates strongly to leaf and canopy chlorophyll (Chl) content. Remote sensing is a tool that has the potential to assess N content at leaf, plant, field, regional and global scales. In this study, remote sensing techniques were applied to estimate N and Chl contents of irrigated maize (Zea mays L.) fertilized at five N rates. Leaf N and Chl contents were determined using the red-edge chlorophyll index with R2 of 0.74 and 0.94, respectively. Results showed that at the canopy level, Chl and N contents can be accurately retrieved using green and red-edge Chl indices using near infrared (780–800 nm) and either green (540–560 nm) or red-edge (730–750 nm) spectral bands. Spectral bands that were found optimal for Chl and N estimations coincide well with the red-edge band of the MSI sensor onboard the near future Sentinel-2 satellite. The coefficient of determination for the relationships between the red-edge chlorophyll index, simulated in Sentinel-2 bands, and Chl and N content was 0.90 and 0.87, respectively.  相似文献   

19.
In recent years, special attention has been given to the long-term effects of biochar on the performance of agro-ecosystems owing to its potential for improving soil fertility, harvested crop yields, and aboveground biomass production. The present experiment was set up to identify the effects on soil-plant systems of biochar produced more than 150 years ago in charcoal mound kiln sites in Wallonia (Belgium). Although the impacts of biochar on soil-plant systems are being increasingly discussed, a detailed monitoring of the crop dynamics throughout the growing season has not yet been well addressed. At present there is considerable interest in applying remote sensing for crop growth monitoring in order to improve sustainable agricultural practices. However, studies using high-resolution remote sensing data to focus on century-old biochar effects are not yet available. For the first time, the impacts of century-old biochar on crop growth were investigated at canopy level using high-resolution airborne remote sensing data over a cultivated field. High-resolution RGB, multispectral and thermal sensors mounted on unmanned aerial vehicles (UAVs) were used to generate high frequency remote sensing information on the crop dynamics. UAVs were flown over 11 century-old charcoal-enriched soil patches and the adjacent reference soils of a chicory field. We retrieved crucial crop parameters such as canopy cover, vegetation indices and crop water stress from the UAV imageries. In addition, our study also provides in-situ measurements of soil properties and crop traits. Both UAV-based RGB imagery and in-situ measurements demonstrated that the presence of century-old biochar significantly improved chicory canopy cover, with greater leaf lengths in biochar patches. Weighted difference vegetation index imagery showed a negative influence of biochar presence on plant greenness at the end of the growing season. Chicory crop stress was significantly increased by biochar presence, whereas the harvested crop yield was not affected. The main significant variations observed between reference and century-old biochar patches using in situ measurements of crop traits concerned leaf length. Hence, the output from the present study will be of great interest to help developing climate-smart agriculture practices allowing for adaptation and mitigation to climate.  相似文献   

20.
农作物冠层光谱分析及反演技术综述   总被引:1,自引:0,他引:1  
农作物的冠层光谱反射率与作物的氮含量、叶绿素含量及叶面积指数等参数之间具有很强的相关性,通过对作物冠层光谱进行分析可反演出作物的生物物理参数,并应用在长势分析、产量预测、病虫害预警等领域。本文首先阐述了作物冠层反射率采集方法,对地面、机载及遥感卫星3个采集层面的优缺点进行了对比;其次给出了植被指数构建原理及常用植被指数,分析了物理模型反演法和统计反演法的复杂度和性能;最后提出了农作物冠层光谱分析及反演技术的下一步发展方向及面临的挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号