首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
俯冲大陆岩石圈重熔:大别-苏鲁造山带中生代岩浆岩成因   总被引:10,自引:0,他引:10  
大别-苏鲁造山带是华南-华北陆块在三叠纪经过大陆碰撞形成的,其中含有大量中生代岩浆岩,形成时代上主要属于晚三叠世、晚侏罗世和早白垩世.晚三叠世碱性岩和晚侏罗世花岗岩仅出露在苏鲁造山带东部,而早白垩世岩浆岩则遍布整个大别-苏鲁造山带(包括大面积的花岗岩、零星的中基性侵入岩和火山岩).虽然时代不同,但是它们均富集轻稀土元素和大离子亲石元素,亏损高场强元素,具有高的初始Sr同位素比值、低的εNd(t)值和低的放射成因Pb同位素组成.晚侏罗世和早白垩世花岗岩锆石中含有新元古代和三叠纪U-Pb年龄的继承核,大多数早白垩世基性岩中锆石具有比正常地幔锆石低的氧同位素比值,全岩具有比正常地幔低的碳同位素比值.系统的元素和同位素对比研究发现,大别-苏鲁造山带中生代花岗岩和基性岩分别与经过超高压变质的花岗片麻岩和榴辉岩具有相似性.尤其是若干鉴定性特征的地球化学指标证明,它们都是华南岩石圈北缘的组成部分.由于中生代大陆深俯冲,这些具有类似地球化学性质的岩石分别在不同时间和层位发生超高压变质和碰撞后深熔作用.因此,这些中生代岩浆岩的形成与华南陆块俯冲/折返之后的碰撞后造山带构造跨塌有关,是俯冲大陆岩石圈在碰撞造山带加厚背景下部分熔融的产物.  相似文献   

2.
三维板块几何形态对大陆深俯冲动力学的制约   总被引:1,自引:1,他引:0       下载免费PDF全文
大陆深俯冲及超高压变质作用是大陆动力学的重要研究内容,前人进行了系统的地质、地球物理观测以及数值模拟研究.然而,自然界中大陆板块的俯冲、碰撞及造山过程大部分具有明显的沿走向的差异性,这种典型的三维特征可能很大程度上依赖于会聚大陆板块的初始几何学和运动学特征.本文采用三维高分辨率的动力学数值模拟方法,建立了方形大陆板块和楔形大陆板块两种不同的俯冲-碰撞模型,并且俯冲大陆板块侧面与大洋俯冲带相邻.数值模拟结果揭示大洋板块可以持续地俯冲到地幔之中,而大陆板块俯冲到一定深度处,其前端的俯冲板块将发生断离,并进而造成残余的大陆板块俯冲角度的减小.方形大陆俯冲板块的断离深度约为150km,而楔形大陆俯冲板块的断离深度较大,约250~300km,这很大程度上取决于俯冲带中大洋板块的牵引力和大陆板块的负浮力之间的竞争关系.同时,无论方形还是楔形大陆板块俯冲模型中,板块断离后,侧向的大洋俯冲板块仍可以拖曳约60~70km宽的大陆边缘岩石圈持续向下俯冲,揭示了新西兰东部的洋-陆空间转换俯冲带的动力学机制.并且,数值模型与喜马拉雅造山带和秦岭—大别—苏鲁造山带进行了对比,进而对其高压-超高压岩石空间展布沿走向的差异性特征和机制提供了一定的启示.  相似文献   

3.
地壳俯冲和大陆碰撞是板块构造理论的核心,而认识大陆碰撞造山带的形成和演化,是发展板块构造理论的关键.根据俯冲地壳的性质,业已认识到不同类型的板块俯冲带.根据碰撞块体的性质及其衍生岩石的成分,已经认识到大陆碰撞形成了两种类型的造山带.弧陆碰撞造山带既含有古老地壳物质,也含有新生地壳物质,它们在碰撞后阶段的再造就能够产生不同地球化学成分的岩浆岩.而对于两个相对古老大陆之间的碰撞所形成的造山带来说,碰撞后岩浆作用只是俯冲带古老地壳的再造.碰撞造山带在岩石圈拉张作用下发生活化再造,不仅再造作用在构造体制上具有继承性,而且再造产物岩浆岩在地球化学成分上也具有继承性.因此,研究碰撞后体制下的造山带再造,认识大陆碰撞造山带深部物理化学差异、俯冲地壳性质与碰撞后岩浆岩之间的成因联系,建立碰撞后阶段大陆构造演化的基本规律,是构建大陆动力学体系、发展板块构造理论的关键.  相似文献   

4.
桐柏-红安造山带位于秦岭与大别-苏鲁造山带之间,因其完好地保存了古生代增生造山体系和古生代末-中生代碰撞造山体系而成为了解华北-华南陆块之间构造演化的关键地区.近20年来的可利用研究资料表明,桐柏-红安造山带显生宙的总体构造演化框架包括以下4个主要阶段:(1)早古生代(490~420 Ma)大洋俯冲、岛弧增生与弧陆碰撞,从而于早古生代末在华北陆块南缘形成一个新的安第斯型大陆边缘;(2)晚古生代(340~310 Ma)大洋俯冲与增生,进而在商丹-松扒断裂南侧形成变质时代相同,但变质作用类型不同的"双变质带",即被分割的武关-龟山中级变质杂岩带和熊店高压榴辉岩带;(3)晚古生代末-早中生代(255~200 Ma)大陆俯冲与陆陆碰撞,通过华南大陆岩板东深西浅的俯冲和多层次拆离/折返形成桐柏高压变质地体和红安高压/超高压变质地体;(4)晚中生代(140~120 Ma)伸展、大规模岩浆侵位与构造挤出,造成桐柏-红安-大别高压/超高压变质地体最终出露地表及东宽西窄的构造格局.然而,对每一构造演化阶段的具体细节以及早期地质历史的认识方面还存在着诸多争议和(或)难以解释的问题.未来的研究除在桐柏-红安造山带继续开展深入细致的工作外,还需与西部"软碰撞"的秦岭造山带和东部"硬碰撞"的大别-苏鲁造山带的研究紧密结合,以期建立适合于整个秦岭-桐柏-红安-大别-苏鲁造山带从古生代到中生代的经典构造演化模型.  相似文献   

5.
大陆碰撞造山带根部岩石经受高温(850℃)变质作用,特别是俯冲带超高压变质岩受到高温叠加变质,对超高压岩片折返期间的元素和同位素行为、部分熔融作用及其地球动力学效应等具有重要意义.本文简要介绍了世界上5个典型的发育高温超高压变质岩的大陆碰撞带,包括中国大别山、哈萨克斯坦Kokchetav地块、格陵兰东加里东造山带、希腊罗多彼山以及德国厄尔士山,分析了它们的高温超高压变质作用及演化特点,讨论了高温超高压岩石的变质P-T-t轨迹和多阶段折返过程以及折返期间的部分熔融作用、超高压指示性矿物的保存和退变质作用等及其可能的机制.在此基础之上,提出了大陆俯冲隧道内高温超高压变质岩的未来研究方向和重点.  相似文献   

6.
大别造山带是全球最大的碰撞造山带之一,三叠纪时期,扬子板块深俯冲至地幔的200km处,经历了超高压变质作用。白垩纪早期,该造山带发生了强烈的伸展和垮塌,以及大规模的后造山地幔源岩浆侵入和火山活动。本研究收集了大别造山带及其邻区(29°~34°N、114°~119°E)的震相资料,采用双差层析成像技术,对大别造山带地壳结构进行反演,研究地壳结构与后造山地幔源岩浆侵入和火山活动之间的关系。结果显示,大别造山带中上地壳存在低速结构,该低速结构可能是熔融的幔源侵入物质,由于俯冲板片断裂,或下地壳/岩石圈发生拆沉,导致软流圈物质上涌至地壳底部、侵入地壳中,形成大别造山带地壳中的低速结构;同时,合肥盆地显示为低速区,可能是受浅部沉积层影响。研究中横切大别山的4条剖面显示,该地区下方存在北向倾斜高速结构,该高速结构可能是襄樊-广济断层,或者是扬子板块向华北板块下方俯冲的遗迹。  相似文献   

7.
基于板块运动的主要驱动力(俯冲带大洋板片下沉引起的板片拖拉力)和岩浆产生的三种主要机制(加流体、升温和减压),将陆-陆碰撞过程定义为初始碰撞、正在进行的碰撞和构造转换三个阶段,分别以正常钙碱性安山质岩浆(洋壳脱水释放流体)、向海沟方向迁移的钙碱性岩浆(洋壳脱水释放流体或升温)或小规模壳源过铝质岩浆(壳内剪切热)、板片断离诱导的大规模成分多样性岩浆作用(升温和减压)为特征.在准确限定板片断离时间的基础上,结合汇聚速率、板片断离深度和俯冲角度,就可以反推陆-陆初始碰撞的时间.拉萨地体南部冈底斯岩基岩浆活动的时空迁移规律,及其与林子宗帕那组火山岩记录到的52~51Ma岩浆大爆发和岩浆温度增高的现象,很可能是雅鲁藏布新特提斯大洋板片在约53Ma开始断离的结果,由此限定的印度-亚洲初始碰撞时间为约55~54Ma,接近于各种地质现象限定的印度-亚洲初始碰撞时间(60~55Ma).将这一方法应用于阿拉伯-欧亚大陆碰撞带的土耳其南部Bitlis造山带,获得的阿拉伯-欧洲大陆初始碰撞时间为约29~22Ma,与最近根据磷灰石裂变径迹年龄(约20Ma)和区域构造缩短量(约27Ma)提出的初始碰撞时间接近.南部拉萨地体上白垩统强烈褶皱及其与上覆林子宗火山岩之间的角度不整合事件(90~69Ma),可能是新特提斯扩张脊南侧热且年轻的俯冲洋壳与上覆岩石圈强烈耦合或新特提斯洋底高原或海山俯冲作用的结果,与印度-亚洲大陆的初始碰撞无关.林子宗典中组和年波组之间的角度不整合事件持续了约3Ma,很可能标志了印度-亚洲大陆的初始碰撞.雅鲁藏布新特提斯大洋板片断离引起的俯冲带拖拉力消失可能是导致印度大陆在约51Ma明显减速的主要原因,现今的印度大陆北向漂移的驱动力主要来自榴辉岩化印度大陆下地壳的下沉.印度-亚洲大陆初始碰撞后与雅鲁藏布新特提斯大洋岩石圈回转有关的高角度俯冲、拉萨地体南缘大的地壳厚度和高的海拔以及印度大陆中上地壳与下地壳、下地壳与岩石圈地幔的解耦,可能是造成印度-亚洲碰撞带上盘岩石圈板块在60~40Ma期间发生弱变形的主要原因.  相似文献   

8.
大陆俯冲-碰撞-折返的动力学数值模拟研究综述   总被引:2,自引:0,他引:2  
大陆板块通常紧接着大洋俯冲的完结而开始俯冲和碰撞,并可能伴随着高压-超高压变质岩石的形成和折返.基于对前人动力学数值模型的总结,大陆板块的稳定会聚过程可以大致分为6种模式:纯剪切增厚、挤压褶皱、单向高角度俯冲、单向低角度俯冲、双向俯冲以及俯冲板块的断离.同时,俯冲隧道中高压-超高压岩石的折返机制主要包含8种模式:逆冲断裂折返、褶皱挠曲折返、物质回旋折返、构造增压折返、俯冲板块"中上地壳"的整体拆离和折返、不同深度处物质周期性的韧性挤出、俯冲板块断离引发的板块后撤折返以及俯冲隧道中地壳物质穿过"破碎的"上覆岩石圈的折返.在大陆俯冲隧道中,中上地壳的弱化和拆离是物质从俯冲到折返转换的先决条件.但是物质弱化的主导机制及其在大陆俯冲隧道中的控制作用尚没有得到很好的解决.近似而言,大陆俯冲和折返的动力学机制可以等效为流体动力学中的"倾斜隧道流模式".该模式中,物质的俯冲抑或折返取决于俯冲隧道中"向下的Couette流"和"向上的Poiseuille流"这两种流动机制的竞争结果.另外,壳-幔岩石中的水对于俯冲隧道和上覆岩石圈的变形和破坏具有非常重要的作用,从而如果在模型中增加脱水和水化作用的数值算法,那么模拟的结果将可能大大区别于简单的"倾斜隧道流模式".数值模拟的另一个重要问题就是三维模型的应用,这对于研究造山带沿走向的差异性俯冲碰撞模式具有重要意义,也是该领域未来的发展方向之一.  相似文献   

9.
新特提斯俯冲带之上的年轻碰撞造山带是进行大陆碰撞成矿研究的天然实验室和理想对象.本文以比利牛斯、阿尔卑斯、扎格罗斯、喜马拉雅四个地球上最年轻的大陆碰撞造山带为例,通过对这些造山带结构组成、演化过程和成矿系统等方面的概述,划分碰撞造山带类型,探讨不同类型碰撞带成矿同异性及缘由.对比研究表明,四个碰撞造山带可划分成简单碰撞和复合碰撞两种类型.前者以比利牛斯和阿尔卑斯为代表,表现为狭窄线状造山带和对称式造山带结构,缺乏弧岩浆活动,发育以中上地壳物质活动为主的成矿系统(密西西比河谷型铅锌矿床和造山型金矿床).后者以扎格罗斯-伊朗高原和喜马拉雅-青藏高原为代表,在欧亚大陆南缘表现为宽阔的造山高原和不对称式造山带结构,大陆边缘弧岩浆活动显著,产有大规模成矿系统(岩浆碳酸岩型稀土矿床、碰撞型斑岩铜矿床、造山型金矿床、密西西比河谷型铅锌矿床和伸展构造有关的锑金多金属矿床).尽管在简单碰撞带形成之前也有新特提斯洋壳的俯冲,但是没有形成大陆弧.而复合碰撞带在大陆俯冲之前有大陆边缘弧的形成,大陆碰撞引起增生造山带再活化,其中新特提斯洋壳俯冲作用为随后大陆碰撞带成矿提供了金属预富集.  相似文献   

10.
论秦岭造山带及其立交桥式构造的流变学与动力学   总被引:4,自引:0,他引:4       下载免费PDF全文
当前受国内外地学界广泛关注的秦岭印支造山带,其前身是地球自转速度缓慢变化过程中派生的纬向剪切力和重力共同作用下,于惯性力最大的上地壳所产生的受东西向走滑正断层控制的盆\|山系,而不是洋壳俯冲形成的沟\|弧\|盆系;其造山机制是南秦岭断陷盆地上地壳底部刚硬的结晶基底,对北秦岭断隆山软弱的中地壳塑性层俯冲所造成的壳内冲叠造山带,而不是整个岩石圈对软流层俯冲导生的板块碰撞造山带;其动力是212 Ma前发生于加拿大安大略省直径100 km撞击坑的陨击事件,促使地球自转速度急剧变慢所派生的由南向北的强烈挤压作用,而不是地幔对流带动板块漂移碰撞;其超高压变质带是壳内俯冲动力作用所致,而不是陆壳俯冲到100 km以深温压环境的产物;其立交桥式构造,是异常地幔响应了地壳上部新产生的不同方向的中\|新生代断陷盆地引起的重力失衡作用的结果,而不是地幔柱主动隆升造成与原来东西向造山带的非耦合关系.  相似文献   

11.
桐柏造山带几何学、运动学和演化   总被引:6,自引:0,他引:6  
桐柏造山带由6个次级构造单元组成, 由南到北依次为桐柏片麻岩隆起带(TGR)、鸿仪河-罗庄榴辉岩带(HLE)、毛坡-胡家寨火山岩单元(MHI)、周家湾复理石单元(ZFB)、杨庄绿片岩单元(YGB)和董家庄大理岩单元(DMB). 桐柏造山带的几何学和运动学图像包括: 由后期隆升过程形成的穹隆构造、超高压岩石折返形成的顶部向北(top-to-north)的韧性剪切构造、与南北向挤压有关的顶部向南(top-to-south)的韧性剪切构造、左行平移剪切构造以及地壳较浅层次的东西向褶皱构造等几部分. 根据桐柏-大别地区已有的和本次获得的构造年代学数据, 可将研究区变形构造划归4个变形阶段. 从多期俯冲-碰撞造山带的观点出发, 根据各构造单元的岩石学特征及其展布, 结合几何学、运动学和构造年代学特征, 桐柏造山带构造演化可分为4个阶段即: 约400~300 Ma的洋壳俯冲阶段、 270~250 Ma的大陆碰撞阶段、250~205 Ma的大陆深俯冲和折返阶段以及200~185 Ma的隆升阶段.  相似文献   

12.
在安徽大别山(东大别)进行的深地震宽角反射/折射探测获得6条二维地壳速度结构剖面. 结果显示,东大别造山带地壳为一高速穹隆构造,在其核部中、下地壳变质岩出露于地表,波速高达5.0km/s;在其翼部,上、中地壳发育速度约6.1km/s的壳内低速层(体). 莫霍面的起伏变化较大,中心部位深达41km左右,周边地区则抬升到32~34km. 在晓天—磨子潭断裂一线下方莫霍面垂向错断,断距约4km. 东大别造山带具有大陆深俯冲-碰撞造山带地壳结构的典型式样. 莫霍面错断与扬子陆块深俯冲有关,错断处表征扬子与华北陆块碰撞缝合的深部位置. 高速穹隆构造可能是两陆块碰撞挤压的产物,穹隆翼部上、中地壳发育的低速滑脱带(面)可能在碰撞期之后的地壳伸展、超高压变质岩从中地壳抬升出露于地表过程中起到重要作用.  相似文献   

13.
俯冲过程是板块构造运动的核心过程,而地幔楔作为俯冲系统中连接俯冲盘和仰冲盘的关键构造单元,在地球层圈之间物质循环和能量交换等方面发挥了重要作用.本研究汇总了全球代表性俯冲带橄榄岩(包括俯冲带型蛇绿岩和地幔楔型造山带橄榄岩)的研究现状,并展望未来需要解决的关键科学问题.俯冲带型蛇绿岩地幔单元和地幔楔型造山带橄榄岩分别代表着大洋和大陆俯冲带侵位的地幔岩石,是研究俯冲带壳幔相互作用的关键对象.该相互作用的本质是俯冲板片和地幔楔之间在物理过程主控下发生复杂的化学交换作用.俯冲带型蛇绿岩能够记录从大洋岩石圈产生到俯冲启动直至成熟到消亡等不同阶段复杂的熔-岩和水-岩相互作用、变形变质过程、金属成矿元素富集以及壳幔物质交换等.地幔楔型造山带橄榄岩则反映洋-陆和陆-陆俯冲/碰撞、折返等阶段强烈的变形变质历史,多种性质的熔/流体交代作用(硅酸盐熔体、碳酸盐熔体、含硅酸盐组分的C-H-O流体/超临界流体),以及复杂的壳幔物质循环过程等.利用俯冲带橄榄岩进一步探索壳幔相互作用,需要采用高空间分辨率、高精度的测试方法从微观尺度上约束复杂的化学交代过程和变质变形历史,并与宏观构造的时、空演化相联系.  相似文献   

14.
中国中央造山带东部的大别-苏鲁是全球最大的超高压变质带,本文基于地球物理资料的分析和综合研究,进一步指出这一超高压变质带演化的复杂性.在扬子与中朝克拉通碰撞后大别-苏鲁地体的俯冲产生超高压变质作用.之后由于两个克拉通之间的倾斜碰撞,产生旋转与局部的拉张为岩石折返造成了良好条件.扬子的旋转也形成一对剪切力使俯冲海洋岩石圈断开和陆块反弹.然而由于南北压挤力的继续作用与大别-苏鲁地体的折返,扬子克拉通继续向大别苏鲁地体下方俯冲.这种陆-陆俯冲携带了大量大陆物质进入上地幔,诱发部分熔融和后期的地幔上隆.本文给出了大别-苏鲁演化动力学的修正模型.  相似文献   

15.
秦岭造山带在晚三叠世经历了强烈的碰撞造山作用,伴随岩浆底侵和构造变形,造山带可能发生了显著的地壳增厚和隆升,但对缺少同时期岩浆岩记录的造山带东段,其造山过程的地壳厚度变化还未有明确约束.在东秦岭造山带的南麓发育一系列的早中生代前陆盆地,保存有大量源自造山带隆升剥蚀的碎屑沉积记录,是重建造山带演化的重要信息载体.为进一步厘定秦岭造山带的碰撞造山过程,本文对秭归盆地下侏罗统桐竹园组的砂岩开展了火山岩岩屑地球化学、碎屑锆石U-Pb年代学和微量元素组成分析.结果显示,含有大量火山岩岩屑的砂岩具有250~200Ma的特征性碎屑锆石年龄组成,指示了其主要物源为三叠纪的火山岩.下侏罗统碎屑锆石U-Pb年龄谱的区域对比和古水流分析表明,该火山岩物源区应位于盆地北部的秦岭造山带,可与造山带西部出露的三叠纪花岗质岩体进行对比,同属于秦岭三叠纪碰撞造山的岩浆作用.依据花岗质岩和锆石化学组成与地壳厚度的相关关系,桐竹园组的火山岩岩屑La/Yb比值和三叠纪年龄碎屑锆石Eu/Eu*比值指示,秦岭造山带在晚三叠世发生了显著的地壳增厚,最大厚度可达60~70km,与秦岭造山带三叠纪花岗质岩石记录...  相似文献   

16.
南阿尔金俯冲碰撞杂岩带早古生代存在517,501~496,462~451和426~385 Ma四个期次的花岗质岩浆岩.第一期岩浆岩侵位于区内蛇绿岩型镁铁质岩石之中,后三期分别对应于该构造带高压-超高压岩石~500 Ma的峰期变质及其~450和~420 Ma的两期退变质时间.结合区域地质背景、镁铁-超镁铁质岩和高压-超高压变质作用研究成果综合分析,这四期岩浆岩分别是南阿尔金早古生代板块俯冲碰撞过程中,先期俯冲洋壳,之后陆壳深俯冲导致地壳加厚引发下地壳以及深俯冲板片断离导致中上地壳和造山后伸展减薄阶段部分熔融作用的产物.其中,洋壳型埃达克岩的形成时代(517 Ma)为南阿尔金洋壳俯冲作用时限提供了直接约束,陆壳深俯冲引发的高压-超高压峰期变质时代(~500 Ma)作用滞后这一事件约10 Myr,表明南阿尔金早古生代时期由洋壳俯冲转换为陆壳俯冲可能是一个连续的构造演化过程.这四期花岗质岩石与区内蛇绿岩型镁铁-超镁铁质岩石以及高压-超高压变质岩石的形成,共同记录了南阿尔金早古生代时期从大洋俯冲、之后的大陆深俯冲碰撞再到后来深俯冲陆壳折返抬升的完整构造演化过程.  相似文献   

17.
地球自5亿年以来,大量陆块从南方的冈瓦纳大陆不断裂解,相继形成原、古、新特提斯大洋.这些陆块随后陆续漂向北方的劳亚大陆,并与之发生碰撞拼合,形成全球最显著的大陆碰撞造山带,又称特提斯构造域.对源自冈瓦纳陆块的漂移历史,目前已建立了较为清晰的框架性认识,但上述大陆单向裂解-聚合的驱动机制却是特提斯研究中极具争议的问题.通过重新审视特提斯构造域内陆块裂解-拼合历史、大洋俯冲起始的地质记录和全球大尺度深部地球物理特征发现,特提斯洋的大洋板片向欧亚大陆的俯冲是这些陆块运动的"引擎".大洋向欧亚大陆的持续俯冲作用,使得处于大洋另一侧的冈瓦纳大陆被动陆缘发生裂解,进而形成新的大洋.由于持续的俯冲作用,老的大洋不断消减并最终导致裂解的陆块与欧亚大陆碰撞,同时裂解的陆块和冈瓦纳大陆之间新的大洋不断扩张.碰撞以后,俯冲作用能够从碰撞带跃迁至大洋内部产生新的俯冲带,从而使得俯冲"引擎"得以持续运转.多期次的碰撞-俯冲-裂解的转换,使大陆块体周期性地从冈瓦纳裂解并陆续的向欧亚大陆汇聚拼合.俯冲向欧亚大陆之下的大洋板片如同一列单程列车,不断地把陆块从冈瓦纳运向欧亚大陆,使得冈瓦纳不断减小,欧亚大陆持续增大.由于这些大洋板块均属特提斯构造域,我们因此将其称之为"特提斯号"单程列车,而驱动列车单向运行的机制是俯冲板块的重力作用.  相似文献   

18.
针对印度与欧亚大陆的碰撞方式与时限存在争议的现状,为探讨学术界关于喜马拉雅造山作用观点分歧的原因,本文首先综述了汇聚带结构-属性解剖方法论与基本原则,指出大陆碰撞造山带实际上包括了多种类型,但常见的大陆碰撞造山带往往包括了被动大陆边缘和活动大陆边缘的诸多块体拼贴的格局,其最终的碰撞格局及缝合带产出位置由增生楔底部界面控制,可能在拼贴后呈起伏状或者Z字形等复杂产状.厘定最终碰撞缝合带的可行思路,就是解剖活动大陆边缘结构,确定其作为俯冲上盘的岩石类型属性,特别是增生楔、高压-超高压和巴洛(Barrovian)变质带以及上叠弧前盆地.同时,找寻被动大陆边缘与活动大陆边缘接触的最外、最远边界及其趋近界面,就能厘定缝合面在地表的出露线.根据地球物理资料和高压变质岩等产出位置,限定其深部的产出状态,就可以限定缝合带的产出状态.结合汇聚带结构-属性解剖方法论与基本原则讨论,本文指出喜马拉雅南部汇聚带成分、结构复杂,急需重新开展结构-属性解剖.在综合前人研究资料的基础上,结合我们自己的最新研究结果,进一步总结探讨喜马拉雅造山带结构-属性的新认识,其中雅江蛇绿岩带包含多种构造组分,并非代表单一缝合带,可能是位于弧前后盾(backstop)的多地质单元组合.特提斯喜马拉雅(THS)包含混杂岩结构组成,具有"基质+块体"的结构特征;统一的南向古水流物源、单一的欧亚大陆特征碎屑锆石年龄谱,均表明特提斯喜马拉雅(THS)应该是冈底斯弧前体系,在最终碰撞前具有欧亚大陆属性.高喜马拉雅(GHS)和低喜马拉雅(LHS)组成复杂,由俯冲碰撞作用产生的榴辉岩等高压变质岩就位于高喜马拉雅(GHS)和低喜马拉雅(LHS)的顶部.根据造山带内的高压变质岩石折返都就位于俯冲上盘的产出特征,高喜马拉雅(GHS)和低喜马拉雅(LHS)的顶部含高压变质岩部分应属于俯冲上盘单元,俯冲带必须位于其下(南)部.因此,印度大陆最主要也是最终的俯冲作用是沿该俯冲带结构面发生.低喜马拉雅(LHS)和锡瓦里克的岩石组合表明其主体不发育混杂带,很可能属于印度的前陆体系.通过对喜马拉雅造山带内不同单元的结构-属性解剖,结合俯冲拼贴相关的构造变形年龄,本文认为印度与欧亚大陆最终的碰撞拼贴发生在14Ma之后.青藏地区南北向裂谷的发育、藏东地区哀牢山等剪切带左行-右行的转换等构造事件的发生,均可以协调地反映在俯冲带的影响范围和动力学控制之中.通过对喜马拉雅造山带的研究,提出喜马拉雅造山带最终碰撞拼贴新模式,表明造山带的结构-属性解剖是正确认识造山带的关键,其分析方法可以应用到全球造山带的研究.同时,本文也提出一些关于喜马拉雅造山带结构-属性研究未来需要关注的重要科学问题.  相似文献   

19.
超高压变质研究涉及的一个基本力学问题是为什么低密度的大陆地壳岩石能克服浮力俯冲到高密度地幔100多公里的深度.本文的三维有限单元法计算表明:俯冲海洋板块可以拖曳侧面相邻宽度不超过150km的一窄条大陆板块,俯冲到超高压变质深度,形成少见的大规模超高压变质带.十几公里乃至几十公里尺度的陆壳块体,可能被俯冲地幔裹挟至超高压变质深度,在造山带内形成零星出露的超高压变质岩.成熟的陆-陆碰撞带则不可能使陆壳俯冲到超高压变质深度.  相似文献   

20.
华北东部三叠纪岩浆作用与克拉通破坏   总被引:7,自引:0,他引:7  
华北岩石圈减薄和克拉通破坏是近年来国内外研究的热门课题,虽然已基本确定克拉通破坏发生的峰期为晚中生代,但发生的起始时间以及早中生代大陆深俯冲作用是否对克拉通造成一定的破坏等问题却研究甚少.通过总结华北东部三叠纪侵入岩的时空分布规律和地球化学特征,探讨它们的岩浆源区及成岩过程,反演它们形成的深部地球动力学机制,从而提出华北克拉通破坏的起始时间可能为晚三叠世,与大陆深俯冲及陆陆碰撞造山作用所引起的地壳加厚、拆沉作用有关,这一作用也可能是晚中生代克拉通破坏的诱因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号