首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
随着地震勘探和开发的不断深入,面向地质目标的精细储层预测技术变得越来越重要.由于透射损失、层间多次波、波模式转换以及随机噪声等的影响,观测地震数据和待反演的地下介质属性之间呈现出很强的非线性.考虑到这些非线性,本文基于积分波动方程开展叠前地震反演,从观测地震数据中恢复出介质属性和整体波场,其中反演参数是波动方程中的压缩系数、剪切柔度和密度的对比度,相比于常规线性AVO反演的波阻抗弹性参数,它们对流体指示有更强的敏感性.在反演过程中,从平滑的低频背景场出发,交替迭代求解数据方程和目标方程.采用乘性正则化方法于共轭梯度框架下求解反演参数,采用优化的散射级数Neumann序列获得整体波场,这种方法不易陷入局部极值,能收敛到正确解.测井资料和典型山前带模型测试表明,利用上述反演方法能获得高分辨率的深度域地下介质属性,可直接进行储层预测和解释.  相似文献   

2.
Acoustic impedance is one of the best attributes for seismic interpretation and reservoir characterisation. We present an approach for estimating acoustic impedance accurately from a band‐limited and noisy seismic data. The approach is composed of two stages: inverting for reflectivity from seismic data and then estimating impedance from the reflectivity inverted in the first stage. For the first stage, we achieve a two‐step spectral inversion that locates the positions of reflection coefficients in the first step and determines the amplitudes of the reflection coefficients in the second step under the constraints of the positions located in the first step. For the second stage, we construct an iterative impedance estimation algorithm based on reflectivity. In each iteration, the iterative impedance estimation algorithm estimates the absolute acoustic impedance based on an initial acoustic impedance model that is given by summing the high‐frequency component of acoustic impedance estimated at the last iteration and a low‐frequency component determined in advance using other data. The known low‐frequency component is used to restrict the acoustic impedance variation tendency in each iteration. Examples using one‐ and two‐dimensional synthetic and field seismic data show that the approach is flexible and superior to the conventional spectral inversion and recursive inversion methods for generating more accurate acoustic impedance models.  相似文献   

3.
Geostatistical seismic inversion methods are routinely used in reservoir characterisation studies because of their potential to infer the spatial distribution of the petro‐elastic properties of interest (e.g., density, elastic, and acoustic impedance) along with the associated spatial uncertainty. Within the geostatistical seismic inversion framework, the retrieved inverse elastic models are conditioned by a global probability distribution function and a global spatial continuity model as estimated from the available well‐log data for the entire inversion grid. However, the spatial distribution of the real subsurface elastic properties is complex, heterogeneous, and, in many cases, non‐stationary since they directly depend on the subsurface geology, i.e., the spatial distribution of the facies of interest. In these complex geological settings, the application of a single distribution function and a spatial continuity model is not enough to properly model the natural variability of the elastic properties of interest. In this study, we propose a three‐dimensional geostatistical inversion technique that is able to incorporate the reservoir's heterogeneities. This method uses a traditional geostatistical seismic inversion conditioned by local multi‐distribution functions and spatial continuity models under non‐stationary conditions. The procedure of the proposed methodology is based on a zonation criterion along the vertical direction of the reservoir grid. Each zone can be defined by conventional seismic interpretation, with the identification of the main seismic units and significant variations of seismic amplitudes. The proposed method was applied to a highly non‐stationary synthetic seismic dataset with different levels of noise. The results of this work clearly show the advantages of the proposed method against conventional geostatistical seismic inversion procedures. It is important to highlight the impact of this technique in terms of higher convergence between real and inverted reflection seismic data and the more realistic approximation towards the real subsurface geology comparing with traditional techniques.  相似文献   

4.
各向异性介质中的弹性阻抗及其反演   总被引:16,自引:12,他引:4       下载免费PDF全文
地震反演已成为油藏描述中的重要组成部分.绝大多数的常规地震反演是叠后地震数据体上进行,很少考虑各向异性存在的情况.随着勘探开发的发展,地震各向异性和叠前地震波阻抗反演引起了人们极大关注.本文在各向同性介质中弹性阻抗研究基础上,推导出了各向异性介质中的弹性阻抗方程,提出了地震各向异性介质中用弹性阻抗进行储层参数描述的技术路线和框架,并对反演过程中存在的问题进行了有益探讨.  相似文献   

5.
Wide-azimuth seismic data can be used to derive anisotropic parameters on the subsurface by observing variation in subsurface seismic response along different azimuths. Layer-based high-resolution estimates of components of the subsurface anisotropic elastic tensor can be reconstructed by using wide-azimuth P-wave data by combining the kinematic information derived from anisotropic velocity analysis with dynamic information obtained from amplitude versus angle and azimuth analysis of wide-azimuth seismic data. Interval P-impedance, S-impedance and anisotropic parameters associated with anisotropic fracture media are being reconstructed using linearized analysis assuming horizontal transverse anisotropy symmetry. In this paper it is shown how additional assumptions, such as the rock model, can be used to reduce the degrees of freedom in the estimation problem and recover all five anisotropic parameters. Because the use of a rock model is needed, the derived elastic parameters are consistent with the rock model and are used to infer fractured rock properties using stochastic rock physics inversion. The inversion is based on stochastic rock physics modelling and maximum a posteriori estimate of both porosity and crack density parameters associated with the observed elastic parameters derived from both velocity and amplitude versus angle and azimuth analysis. While the focus of this study is on the use of P-wave reflection data, we also show how additional information such as shear wave splitting and/or anisotropic well log data can reduce the assumptions needed to derive elastic parameter and rock properties.  相似文献   

6.
基于基追踪弹性阻抗反演的深部储层流体识别方法   总被引:4,自引:2,他引:2       下载免费PDF全文
深部储层地震资料通常照明度低、信噪比低、分辨率不足,尤其是缺乏大角度入射信息,对深部储层流体识别存在较大影响.Gassmann流体项是储层流体识别的重要参数,针对深层地震资料的特点,本文首先在孔隙介质理论的指导下,推导了基于Gassmann流体项与剪切模量的两项AVO近似方程.通过模型分析,验证了该方程在小角度时与精确Zoeppritz方程误差很小,满足小角度入射条件下的近似精度要求.然后借助Connolly推导弹性阻抗的思想,推导了基于Gassmann流体项与剪切模量的两项弹性阻抗方程.针对深部储层地震资料信噪比差的特点,利用奇偶反射系数分解实现了深部储层基追踪弹性阻抗反演方法,最后提出了基于基追踪弹性阻抗反演的Gassmann流体项与剪切模量的求取方法,并将提取的Gassmann流体项应用于深部储层流体识别.模型测试和实际应用表明该方法稳定有效,具有较好的实用性.  相似文献   

7.
基于Fatti近似的弹性阻抗方程及反演   总被引:9,自引:4,他引:5       下载免费PDF全文
用Connolly的弹性阻抗(EI,elastic impedance)公式进行反演只能直接得到纵、横波速度和密度的信息,然后才可间接计算得到纵横波阻抗等其它的参数数据体,这样便增加了一步误差使数据的准确性降低.本文首先针对该方法的这些缺点和不足,提出了以Zoeppritz方程的Fatti近似为基础一种新的弹性阻抗公式,由该公式可得到比用Fatti近似更准确的反射系数,然后对这个公式进行了标准化以实现不同角度的弹性阻抗间量纲的统一,最后用标准化后的公式进行了反演,从反演得到的不同角度的弹性阻抗数据体中可直接提取得到纵横波阻抗数据体.应用实例表明用这种方法提取得到的纵横波阻抗更加稳定、准确,而且能很好地反映储层信息.这种新的方法是对以Connolly公式为基础的传统方法的改进.  相似文献   

8.
This paper presents a comparison between subsurface impedance models derived from different deterministic and geostatistical seismic inversion methodologies applied to a challenging synthetic dataset. Geostatistical seismic inversion methodologies nowadays are common place in both industry and academia, contrasting with traditional deterministic seismic inversion methodologies that are becoming less used as part of the geo‐modelling workflow. While the first set of techniques allows the simultaneous inference of the best‐fit inverse model along with the spatial uncertainty of the subsurface elastic property of interest, the second family of inverse methodology has proven results in correctly predicting the subsurface elastic properties of interest with comparatively less computational cost. We present herein the results of a benchmark study performed over a realistic three‐dimensional non‐stationary synthetic dataset in order to assess the performance and convergence of different deterministic and geostatistical seismic inverse methodologies. We also compare and discuss the impact of the inversion parameterisation over the exploration of the model parameter space. The results show that the chosen seismic inversion methodology should always be dependent on the type and quantity of the available data, both seismic and well‐log, and the complexity of the geological environment versus the assumptions behind each inversion technique. The assessment of the model parameter space shows that the initial guess of traditional deterministic seismic inversion methodologies is of high importance since it will determine the location of the best‐fit inverse solution.  相似文献   

9.
2.5-D modeling and inversion techniques are much closer to reality than the simple and traditional 2-D seismic wave modeling and inversion. The sensitivity kernels required in full waveform seismic tomographic inversion are the Fréchet derivatives of the displacement vector with respect to the independent anisotropic model parameters of the subsurface. They give the sensitivity of the seismograms to changes in the model parameters. This paper applies two methods, called ‘the perturbation method’ and ‘the matrix method’, to derive the sensitivity kernels for 2.5-D seismic waveform inversion. We show that the two methods yield the same explicit expressions for the Fréchet derivatives using a constant-block model parameterization, and are available for both the line-source (2-D) and the point-source (2.5-D) cases. The method involves two Green’s function vectors and their gradients, as well as the derivatives of the elastic modulus tensor with respect to the independent model parameters. The two Green’s function vectors are the responses of the displacement vector to the two directed unit vectors located at the source and geophone positions, respectively; they can be generally obtained by numerical methods. The gradients of the Green’s function vectors may be approximated in the same manner as the differential computations in the forward modeling. The derivatives of the elastic modulus tensor with respect to the independent model parameters can be obtained analytically, dependent on the class of medium anisotropy. Explicit expressions are given for two special cases—isotropic and tilted transversely isotropic (TTI) media. Numerical examples are given for the latter case, which involves five independent elastic moduli (or Thomsen parameters) plus one angle defining the symmetry axis.  相似文献   

10.
在双相介质理论指导下构建的流体因子Gassmann流体项f可以实现对油水层的有效判识。本文基于包含流体因子f的反射系数近似公式推导,得到相应的流体弹性阻抗方程,将流体因子纳入地震反演过程并直接参与目标储层的流体识别,实现了从弹性阻抗数据体中直接反演流体因子f的方法技术流程。流体因子f的直接反演有效减少间接计算所带来的累计误差,提高了地震流体识别的精度。在实际资料应用中,结合研究区地质背景与地球物理特征开展的岩石物理分析表明,Gassmann流体因子f对含油和含水特征有较好的区分作用。反演结果表明,流体因子f能为有效地识别目的层的油水特征,为下一步的钻井开发提供可靠的技术支持。   相似文献   

11.
多尺度快速匹配追踪多域联合地震反演是一种通过地震数据多尺度分解的迭代反演方法.与此同时,在快速匹配追踪算法中引入低频模型约束,有效提高了收敛精度,使反演结果具有丰富的高低频信息.首先通过对大尺度地震资料进行反演得到低频背景.在此基础上,采用中尺度与小尺度地震数据进行逐级迭代用以获得高频数据,因而有效缓解了常规反演方法对于初始模型精度的依赖.最后利用理论模型与实际地震数据进行测试,通过与常规时间域反演方法的反演结果进行对比可以看出,本文方法在地层连续变化处依然可以对变化地层进行精确刻画,且在纵向分辨率提升的同时保持了较好的横向连续性.  相似文献   

12.
本文介绍了α稳定分布的统计特征,并对比分析了实际地震信号与α稳定分布的动态样本方差特征,提出地震信号服从非高斯α稳定分布的假设.在此基础上,利用地震记录估计误差的p阶统计量作为代价函数,提出了基于非高斯α稳定分布的最小p范数地震反演方法.将该方法应用到单道反射系数理论模型及实际叠前弹性阻抗反演实例中,均取得了良好的反演效果.实际反演结果验证了本文提出的地震信号服从非高斯α稳定分布假设的合理性,以及最小p范数地震反演方法的可行性和有效性.  相似文献   

13.
The aim of seismic inversion methods is to obtain quantitative information on the subsurface properties from seismic measurements. However, the potential accuracy of such methods depends strongly on the physical correctness of the mathematical equations used to model the propagation of the seismic waves. In general, the most accurate models involve the full non-linear acoustic or elastic wave equations. Inversion algorithms based on these equations are very CPU intensive. The application of such an algorithm on a real marine CMP gather is demonstrated. The earth model is assumed to be laterally invariant and only acoustic wave phenomena are modelled. A complete acoustic earth model (P-wave velocity and reflectivity as functions of vertical traveltime) is estimated. The inversion algorithm assumes that the seismic waves propagate in 2D. Therefore, an exact method for transforming the real data from 3D to 2D is derived and applied to the data. The time function of the source is estimated from a vertical far-field signature and its applicability is demonstrated by comparing synthetic and real water-bottom reflections. The source scaling factor is chosen such that the false reflection coefficient due to the first water-bottom multiple disappears from the inversion result. In order to speed up the convergence of the algorithm, the following inversion strategy is adopted: an initial smooth velocity model (macromodel) is obtained by applying Dix's equation to the result of a classical velocity analysis, followed by a smoothing operation. The initial reflectivity model is then computed using Gardner's empirical relationship between densities and velocities. In a first inversion step, reflectivity is estimated from small-offset data, keeping the velocity model fixed. In a second step, the initial smooth velocity model, and possibly the reflectivity model, is refined by using larger-offset data. This strategy is very efficient. In the first step, only ten iterations with a quasi-Newton algorithm are necessary in order to obtain an excellent convergence. The data window was 0–2.8 s, the maximum offset was 250 m, and the residual energy after the first inversion step was only 5% of the energy of the observed data. When the earth model estimated in the first inversion step is used to model data at moderate offsets (900 m, time window 0.0–1.1 s), the data fit is very good. In the second step, only a small improvement in the data fit could be obtained, and the convergence was slow. This is probably due to the strong non-linearity of the inversion problem with respect to the velocity model. Nevertheless, the final residual energy for the moderate offsets was only 11%. The estimated model was compared to sonic and density logs obtained from a nearby well. The comparison indicated that the present algorithm can be used to estimate normal incidence reflectivity from real data with good accuracy, provided that absorption phenomena play a minor role in the depth interval considered. If details in the velocity model are required, large offsets and an elastic inversion algorithm should be used.  相似文献   

14.
在地震勘探中,描述复杂介质的正演和反演问题通常包含许多反映介质不同特性的参数.同时获得这些参数对进行更准确的岩性描述和油藏预测具有重要的理论和现实意义.为了提高频率域黏弹性波动方程的零偏VSP多参数反演的精度,本文对多参数反演的可行性进行分析,明确了目标函数的敏感程度及参数之间的耦合情况,提出了一种基于走时约束的分频分步多参数反演策略.首先利用零偏VSP资料构建先验信息,然后分别利用高、低频数据进行两步反演,也就是"三个参数反演+五个参数反演"的过程,以提高反演的稳健性和精度.利用此方法可同时得到零偏VSP数据可靠的弹性波速度、密度和品质因子,为精确的时-深关系及含油气的解释和预测奠定基础,同时也可以为地面地震叠前反演提供可靠有效的约束,增强地面地震反演精度.  相似文献   

15.
地震数据的反射波动方程最小二乘偏移   总被引:1,自引:0,他引:1       下载免费PDF全文
基于反射波动方程,本文提出了一种估计地下反射率分布的地震数据最小二乘偏移方法.高频近似下,非齐次的一次反射波动方程的源项是由反射率与入射波场的时间一阶导数相互作用产生的.根据反射波动方程,利用线性最小二乘反演方法由地震反射数据重建出地下产生反射波的反射源,再结合波场正演计算出的地下入射波场,得到地下反射率分布的估计.在地下反射源的线性最小二乘反演重建中,我们采用迭代求解方法,并以地震波的检波器单向地下照明强度作为最小二乘优化问题中Hessian矩阵的近似.  相似文献   

16.
Full‐waveform inversion is re‐emerging as a powerful data‐fitting procedure for quantitative seismic imaging of the subsurface from wide‐azimuth seismic data. This method is suitable to build high‐resolution velocity models provided that the targeted area is sampled by both diving waves and reflected waves. However, the conventional formulation of full‐waveform inversion prevents the reconstruction of the small wavenumber components of the velocity model when the subsurface is sampled by reflected waves only. This typically occurs as the depth becomes significant with respect to the length of the receiver array. This study first aims to highlight the limits of the conventional form of full‐waveform inversion when applied to seismic reflection data, through a simple canonical example of seismic imaging and to propose a new inversion workflow that overcomes these limitations. The governing idea is to decompose the subsurface model as a background part, which we seek to update and a singular part that corresponds to some prior knowledge of the reflectivity. Forcing this scale uncoupling in the full‐waveform inversion formalism brings out the transmitted wavepaths that connect the sources and receivers to the reflectors in the sensitivity kernel of the full‐waveform inversion, which is otherwise dominated by the migration impulse responses formed by the correlation of the downgoing direct wavefields coming from the shot and receiver positions. This transmission regime makes full‐waveform inversion amenable to the update of the long‐to‐intermediate wavelengths of the background model from the wide scattering‐angle information. However, we show that this prior knowledge of the reflectivity does not prevent the use of a suitable misfit measurement based on cross‐correlation, to avoid cycle‐skipping issues as well as a suitable inversion domain as the pseudo‐depth domain that allows us to preserve the invariant property of the zero‐offset time. This latter feature is useful to avoid updating the reflectivity information at each non‐linear iteration of the full‐waveform inversion, hence considerably reducing the computational cost of the entire workflow. Prior information of the reflectivity in the full‐waveform inversion formalism, a robust misfit function that prevents cycle‐skipping issues and a suitable inversion domain that preserves the seismic invariant are the three key ingredients that should ensure well‐posedness and computational efficiency of full‐waveform inversion algorithms for seismic reflection data.  相似文献   

17.
纵横波弹性阻抗联立反演在GD地区的应用   总被引:2,自引:0,他引:2  
在GD油田复杂油藏描述中应用叠前纵横波弹性阻抗反演,精确地进行了油藏岩性的划分。利用三个或三个以上部分叠加数据,进行纵横波弹性阻抗联立反演,既克服了因叠后地震反演结果单一而不能满足复杂储层描述的需求,又避免了由于叠前道集信噪比低造成反演结果不稳定的缺陷。本文论述了叠前弹性波阻抗反演的基本原理,结合GD地区实际资料,对反演过程中涉及的角道集子波提取、层位标定、横波速度预测、弹性参数提取与解释等关键步骤进行了详细研究,指出基于测井资料分析的多种弹性参数综合解释是提高叠前地震反演应用效果的关键。  相似文献   

18.
19.
利用偏移进行视反射率估计的初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
视反射率估计是地震数据处理解释中的一项重要内容,通常采用反演的方法得到.本文以地震偏移和地震线性反演理论相结合为基础,并利用保幅单程波传播算子和保幅波动方程叠前偏移算法以及成像空间中的角度域波动方程偏移成像和照明补偿等方法技术,提出了一种利用单程波波动方程偏移进行地下反射面视反射率估计方法,并进行了理论模型的数值试验.这种估计方法得到的视反射率估计是一种近法向入射的小角度反射率.  相似文献   

20.
基于入射角的两项流体阻抗反演方法   总被引:1,自引:1,他引:0       下载免费PDF全文
本文在孔隙弹性介质理论的指导下,基于入射角AVO近似方程推导了包含Russell流体项的两项AVO近似方程和相应的弹性阻抗方程,通过分析可知其精度符合反演要求.在贝叶斯理论框架下,建立了包含正则化约束的弹性阻抗反演方法,在此基础上直接提取Russell流体项.该方法可在缺少大角度叠前地震资料的情况下进行叠前直接反演得到流体因子,减少传统方法带来的累积误差.模型试算表明,该方法具有较好的准确度和稳定性.实际工区应用取得了良好的效果,表明该方法有实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号