首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Mixed layer depth (MLD) variability in the Eastern Equatorial Indian Ocean (EEIO) from a hindcast run of an Ocean General Circulation Model (OGCM) forced by daily winds and radiative fluxes from NCEP-NCAR reanalysis from 2004 to 2006 is investigated. Model MLD compares well with the ~20,000 observations from Argo floats and a TRITON buoy (1.5°S and 90°E) in the Indian Ocean. Tests with a one-dimensional upper ocean model were conducted to assess the impact on the MLD simulations that would result from the lack of the diurnal cycle in the forcing applied to the OGCM. The error was of the order of ~12 m. MLD at the TRITON buoy location shows a bimodal pattern with deep MLD during May–June and December–January. MLD pattern during fall 2006 was significantly different from the climatology and was rather shallow during December–January both in the model and observation. An examination of mixed layer heat and salt budget suggested salinity freshening caused by the advective and vertical diffusive mixing to be the cause of shallow MLD.  相似文献   

2.
The seasonal variation of mixing layer depth(MLD) in the ocean is determined by a wind stress and a buoyance flux.A South China Sea(SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD.It is found that the variability of MLD in the SCS is shallow in summer and deep in winter,as is the case in general.Owing to local atmosphere forcing and ocean dynamics,the seasonal variability shows a regional characteristic in the SCS.In the northern SCS,the MLD is shallow in summer and deep in winter,affected coherently by the wind stress and the buoyance flux.The variation of MLD in the west is close to that in the central SCS,influenced by the advection of strong western boundary currents.The eastern SCS presents an annual cycle,which is deep in summer and shallow in winter,primarily impacted by a heat flux on the air-sea interface.So regional characteristic needs to be cared in the analysis about the MLD of SCS.  相似文献   

3.
The unbalanced submesoscale motions and their seasonality in the northern Bay of Bengal(BoB) are investigated using outputs of the high resolution regional oceanic modeling system. Submesoscale motions in the forms of filaments and eddies are present in the upper mixed layer during the whole annual cycle. Submesoscale motions show an obvious seasonality, in which they are active during the winter and spring but weak during the summer and fall. Their seasonality is associated with the mixed layer...  相似文献   

4.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   

5.
The seasonal variability of sonic layer depth (SLD) in the central Arabian Sea (CAS) (0 to 25°N and 62-66°E) was studied using the temperature and salinity (T/S) profiles from Argo floats for the years 2002–2006. The atmospheric forcing responsible for the observed changes was explored using the meteorological data from NCEP/NCAR and Quickscat winds. SLD was obtained from sound velocity profiles computed from T/S data. Net heat flux and wind forcing regulated SLD in the CAS. Up-welling and down-welling (Ekman dynamics) associated with the Findlater Jet controlled SLD during the summer monsoon. While in winter monsoon, cooling and convective mixing regulated SLD in the study region. Weak winds, high insolation and positive net heat flux lead to the formation of thin, warm and stratified sonic layer during pre and post summer monsoon periods, respectively.  相似文献   

6.
Temperature and salinity data from 2001 through 2005 from Argo profiling floats have been analyzed to examine the time evolution of the mixed layer depth (MLD) and density in the late fall to early spring in mid to high latitudes of the North Pacific. To examine MLD variations on various time scales from several days to seasonal, relatively small criteria (0.03 kg m−3 in density and 0.2°C in temperature) are used to determine MLD. Our analysis emphasizes that maximum MLD in some regions occurs much earlier than expected. We also observe systematic differences in timing between maximum mixed layer depth and density. Specifically, in the formation regions of the Subtropical and Central Mode Waters and in the Bering Sea, where the winter mixed layer is deep, MLD reaches its maximum in late winter (February and March), as expected. In the eastern subarctic North Pacific, however, the shallow, strong, permanent halocline prevents the mixed layer from deepening after early January, resulting in a range of timings of maximum MLD between January and April. In the southern subtropics from 20° to 30°N, where the winter mixed layer is relatively shallow, MLD reaches a maximum even earlier in December–January. In each region, MLD fluctuates on short time scales as it increases from late fall through early winter. Corresponding to this short-term variation, maximum MLD almost always occurs 0 to 100 days earlier than maximum mixed layer density in all regions.  相似文献   

7.
To explore the causes of the winter shallow mixed layer and high sea surface temperature (SST) along the strong Kuroshio jet from the East China Sea to the upstream Kuroshio extension (25.5°N–150°E) during 1988–1994 when the Japanese sardine stocks collapsed, high-resolution ocean general circulation model (OGCM) hindcast data are analyzed with a bulk mixed layer model which traces particles at the mixed layer base. The shallow mixed layer and high SST along the Kuroshio jet are mainly caused by the acceleration of the Kuroshio current velocity and the reduction of the surface cooling. Because the acceleration reduces the time during which the mixed layer is exposed to wintertime cooling, deepening and cooling of the winter mixed layer are restricted. The weaker surface cooling due to less severe meteorological forcing also causes the shallow mixed layer and the high SST. The impact of the strong heat transport along the Kuroshio extends to the southern recirculation gyre of the Kuroshio/Kuroshio extension regions; previous indications that the Japanese sardine recruitment is correlated with the winter SST and the mixed layer depth (MLD) in the Kuroshio extension recirculation region could be related to the velocity, SST, and MLD near the Kuroshio axis which also could affect the variability of North Pacific subtropical water.  相似文献   

8.
过去对南大洋的研究受限于长期观测的缺乏,而现在地转海洋学实时观测阵(Arrayfor Real-timeGeostrophicOceanography,Argo)项目自开始以来持续提供了高质量的温度盐度观测,使系统地研究南大洋海洋上层结构成为可能。本研究使用2000—2018年的Argo浮标观测数据,分析了南大洋混合层深度(Mixed Layer Depth, MLD)的时空分布特征。结果表明:南大洋混合层存在明显的季节变化,冬春两季MLD在副南极锋面北侧达到最高值并呈带状分布,夏秋两季由于海表加热导致混合层变浅,季节变化幅度达到400m以上;在年际尺度上,MLD受南半球环状模(Southern HemisphereAnnularMode,SAM)调制,呈现纬向不对称空间分布特征,这与前人结果一致;本文指出在所研究时段,南大洋混合层在90°E以东,180°以西有加深趋势,而在60°W以西,180°以东有变浅趋势,显示出偶极子分布特征,并且这种趋势特征主要是风场的作用。  相似文献   

9.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   

10.
Seasonal changes in the distribution of submesoscale (SM) flow features were examined using a fine-resolution numerical simulation. The SM flows are expected to be strong where mesoscale (MS) eddies actively develop and also when the mixed layer depth (MLD) is deep due to enhanced baroclinic instability. In the East Sea (ES), MS eddies more actively develop in summer while the MLD is deeper in winter, which provided the motivation to conduct this study to test the effects of MLD and MS eddies on the SM activity in this region. Finite-scale Liapunov exponents and the vertical velocity components were employed to analyze the SM activities. It was found that the SM intensity was marked by seasonality: it is stronger in winter when the mixed layer is deep but weaker in summer - despite the greater eddy kinetic energy. This is because in summer the mixed layer is so thin that there is not enough available potential energy. When the SM activity was quantified based on parameterization, (MLD × density gradient), it was determined that the seasonal variation of MLD plays a more important role than the lateral density gradient variation on SM flow motion in the ES.  相似文献   

11.
Seasonal coastal upwelling was analyzed along the NW African coastline (11–35°N) from 1981 to 2012. Upwelling magnitudes are calculated by wind speed indices, sea-surface temperature indices and inferred from meteorological station, sea-surface height and vertical water column transport data. A permanent annual upwelling regime is documented across 21–35°N and a seasonal regime across 12–19°N, in accordance with the climatology of previous studies. Upwelling regions were split into three zones: (1) the Mauritania–Senegalese upwelling zone (12–19°N), (2) the strong permanent annual upwelling zone (21–26°N) and (3) the weak permanent upwelling zone (26–35°N). We find compelling evidence in our various indices for the Bakun upwelling intensification hypothesis due to a significant coastal summer wind speed increase, resulting in an increase in upwelling-favorable wind speeds north of 20°N and an increase in downwelling-favorable winds south of 20°N. The North Atlantic Oscillation plays a leading role in modifying interannual variability during the other seasons (autumn–spring), with its influence dominating in winter. The East Atlantic pattern shows a strong correlation with upwelling during spring, while El Niño Southern Oscillation and Atlantic Multi-decadal Oscillation teleconnections were not found. A disagreement between observationally-based wind speed products and reanalysis-derived data is explored. A modification to the Bakun upwelling intensification hypothesis for NW Africa is presented, which accounts for the latitudinal divide in summer wind regimes.  相似文献   

12.
The stratification in the Northern Gulf of Eilat/Aqaba follows a well-known annual cycle of well-mixed conditions in winter, surface warming in spring and summer, maximum vertical temperature gradient in late summer, and erosion of stratification in fall. The strength and structure of the stratification influences the diverse coral reef ecosystem and also affects the strength of the semi-diurnal tidal currents. Long-term (13 months) moored thermistor data, combined with high temporal and vertical resolution density profiles in deep water, show that transitions from summer to fall and winter to spring/summer occur in unpredictable, pulses and are not slow and gradual, as previously deduced from monthly hydrographic measurements and numerical simulations forced by monthly climatologies. The cooling and deepening of the surface layer in fall is marked by a transition to large amplitude, semi-diurnal isotherm displacements in the stratified intermediate layer. Stratification is rebuilt in spring and summer by intermittent pulses of warm, buoyant water that can increase the upper 100–150 m by 2 °C that force surface waters down 100–150 m over a matter of days. The stratification also varies in response to short-lived eddies and diurnal motions during winter. Thus, the variability in the stratification exhibits strong depth and seasonal dependence and occurs over range of timescales: from tidal to seasonal. We show that monthly or weekly single-cast hydrographic data under-samples the variability of the stratification in the Gulf and we estimate the error associated with single-cast assessments of the stratification.  相似文献   

13.
The seasonal variability of surface chlorophyll in the northern Humboldt Current System is studied using satellite data, in situ observations and model simulations. The data show that surface chlorophyll concentration is highest in austral summer and decreases during austral winter, in phase opposition with coastal upwelling intensity. A regional model coupling ocean dynamics and biogeochemical cycles is used to investigate the processes which control this apparently paradoxical seasonal cycle. Model results suggest that the seasonal variability of the mixed layer depth is the main controlling factor of the seasonality. In winter, the mixed layer deepening reduces the surface chlorophyll accumulation because of a dilution effect and light limitation. In summer, biomass concentrates near the surface in the shallow mixed layer and nitrate limitation occurs, resulting in a biomass decrease in the middle of summer. Intense blooms occur during the spring restratification period, when winter light limitation relaxes, and during the fall destratification period, when the surface layer is supplied with new nutrients. Model sensitivity experiments show that the seasonal variations in insolation and surface temperature have little impact on the surface chlorophyll variability.  相似文献   

14.
Some seasonal water temperature patterns in the Hauraki gulf,New Zealand   总被引:1,自引:1,他引:0  
The changing pattern of water temperature in the Hauraki Gulf at approximately two‐monthly intervals during one and one‐half seasonal cycles in 1965–66 was determined from sea surface temperatures and bathythermograph profiles.

Surface and bottom temperatures ranged from 22.0°c and 20.5°c respectively in March to 12.5°c and 13.0°c in July‐September. Seasonal temperature ranges and short‐term variations were greatest in the shallow south‐west Gulf.

In winter the Gulf water was coolest close to shore. It was typically isothermal in depth but a temperature inversion of approximately l°c frequently formed, probably because of the combination of strong winds and an increased outflow of cool, low salinity water from harbours and bays. A similar inversion in Colville Channel may have been caused by more complex tidal and/or ocean current conditions.

In spring and summer the Gulf became thermally stratified, with warmest temperatures in the shallow areas. Thermoclines were generally irregular in position and size, and probably represented solar heating and minor current boundaries rather than a distinct separation of major water masses. In late summer and autumn bottom temperatures increased and almost equalled the maximum surface temperature.

During autumn surface water temperatures close to land decreased rapidly to return the Gulf to its winter isothermal condition.

Local factors (wind, rainfall, tides, depth of water, and proximity to land) probably influence sea temperatures in the Gulf. Seawards of a line from Cape Rodney to Cape Colville oceanic conditions prevail; water temperatures are more constant and increase to seaward in both winter and summer.

Oceanic and Gulf waters meet and mix in the Rodney‐Colville area, and Gulf water is transported east through Colville Channel. The extent of oceanic water penetration into the Gulf at depth is unknown.  相似文献   

15.
Observations during a spring phytoplankton bloom in the northeast Atlantic between March and May 1992 in the Biotrans region at 47°N, 20°W, are presented. During most of the observation period there was a positive heat flux into the ocean, winds were weak, and the mixed layer depth was shallow (<40 m). Phytoplankton growth conditions were favourable during this time. Phytoplankton biomass roughly doubled within the euphotic zone over the course of about 7 days during mid-April, and rapidly increased towards the end of the study until silicate was depleted. However, the stratification of the water column was transient, and the spring bloom development was repeatedly interrupted by gales. During two storms, in late March and late April, the mixed-layer depth increased to 250 and 175 m, respectively. After the storm events significant amounts of chlorophyll-a, particulate organic carbon and biogenic silica were found well below the euphotic zone. It is estimated that between 56% and 65% of the seasonal new production between winter and early May was exported from the euphotic zone by convective mixing, in particular, during the two storm events. Data from the NABE 47°N study during spring 1989 are re-evaluated. It is found that convective particle export was of importance during the early part of that bloom too, but negligible during the height of the bloom in May 1989. The overall impact of convective particle export during spring 1989 was equivalent to about 36% of new production. In view of these and previously published findings it is concluded that convective transport during spring is a significant process for the export of particulate matter from the euphotic zone in the temperate North Atlantic.  相似文献   

16.
During the 1993–1995 period of minimal deep convection in the Greenland Sea, the dissolved inorganic carbon concentration within the surface waters varied dramatically on the seasonal time scale, with average summer and winter values of 2064 (±10) and 2150 (±5) μmol kg−1, respectively, indicative of a vigorous annual carbon cycle. In contrast, there was very little interannual variability throughout these three years. While primary production largely depleted the surface nutrient supplies in spring and summer, generating a strong seasonal CO2 drawdown, a combination of relatively shallow remineralization and mixed-layer deepening brought essentially all of the carbon consumed by photosynthesis back into contact with the atmosphere before winter. This re-release of the inorganic carbon that had been consumed by phytoplankton earlier in the year was more than sufficient to counteract the cooling-induced increase in the carbon carrying capacity of the water during fall and winter, reducing the potential for atmospheric carbon dioxide absorption by the Greenland Sea over the same period.  相似文献   

17.
《Journal of Sea Research》2010,63(4):238-249
From July 2001 to May 2005, at a fixed station located in Lisbon Bay (Cascais: 38° 41′ N, 09° 24′ W), surface seawater samples were collected on a weekly basis. We aimed to describe at different temporal scales, short-term to interannual, the phytoplankton community in relation to hydrographic conditions.Maxima of the main phytoplankton groups varied according to the seasonality of upwelling/downwelling cycles and nutrient availability and were associated with particular hydrological mesoscale structures highlighted by satellite images. Short succession cycles were identified dependent on coastal upwelling events. Intermittent and weak pulses allowed the coexistence of species from different succession stages and groups, although having consecutive maxima. The interannual differences observed in the phytoplankton community, in Lisbon Bay, varied according to both the duration and strength of the upwelling events and to precipitation and Tagus river flow regimes.Diatoms developed and were dominant, during spring–summer under prevailing upwelling conditions and silicon availability. Short upwelling pulses appeared to be unfavourable for diatoms maintenance. When upwelling weakened and SST increased due to onshore advection of warmer waters, coccolithophores dominated. This assemblage was the second most abundant during the study, in particular during the short transition period from upwelling (summer) to downwelling seasons (autumn) distributing in the largest range of hydrographical conditions between diatoms (maximum turbulence) during early spring and dinoflagellates (maximum stratification) during summer to further dominate during autumn and winter. Nitrites and nitrates seemed to favour greater developments of this group. Dinoflagellates peaked mainly during summer and were the less abundant through the four years due to the decrease of lasting convergence periods. Like coccolithophores, a preference for warmer waters emerged but this group seemed to have a narrow tolerance to turbulence and temperature changes.  相似文献   

18.
应用NCEP/NCAR SST资料和SODA海温资料,分析研究了热带太平洋海温场的变化特征,讨论了气候突变前后热带西太平洋暖池(以下简称WPWP)形态的显著变化及其差异,由此重新界定了WPWP的范围,并进一步分析了WPWP的时空变化特征。结果表明,新界定的WPWP气候平均场与前人定义的气候平均场分布特征基本相同,但也存在一定的差异。新界定的WPWP的优点在于它不仅能够客观反映出气候(海洋)突变前后西太平洋暖池的时空变化特征,而且重要的是可以避免由前人定义的WPWP与东太平洋暖池合为一体的现象发生,从而避免人为地计算WPWP面积变化带来的结果差异。新界定的WPWP平均深度可达130 m左右,呈现出西浅东深的"耳状"分布特征,在冬春季节,南北(经向)窄东西(纬向)宽,呈纬向带状分布;在夏秋季节,WP-WP明显向北扩展。平均深度最大中心位于(5°S,180°)附近。由WPWP区域不同深度的异常海温变化与Niño3指数的相关分析可知,WPWP次表层异常海温变化与Niño3指数呈显著的负相关关系,而与表层的异常海温的关系并不密切,这一结果进一步证明了西太平洋暖池对ENSO的贡献是来自次表层异常海温的东传。  相似文献   

19.
This paper describes the water circulation in the Kuril Basin and its role in the formation and seasonal variation in intensity of the large anticyclonic eddies which occur in the basin. Oceanographic data for the period June 1977 through June 1979 suggest that these eddies develop in summer and decay in winter. In summer, the eddy development is associated with a deepening of the isopycnals caused by the surface flow of the Soya Warm Current over the basin, and the deep advection of cold, less saline, oxygen-rich water from Terpenia Bay and the eastern continental shelf of Sakhalin Island. In winter, the eddy decay is caused by surface cooling and convective mixing downward of the warm, saline surface water, which causes the isopycnals to rise and leads to an attenuation of the eddies. This combination of the summer influx of water into the region, and the fall and winter cooling of the eddies leads to the annual variation in eddy intensity.  相似文献   

20.
Numerical Study of the Upper-Layer Circulation in the South China Sea   总被引:7,自引:0,他引:7  
Upper-layer circulation in the South China Sea has been investigated using a three-dimensional primitive equation eddy-resolving model. The model domain covers the region from 99° to 122°E and from 3° to 23°N. The model is forced by the monthly averaged European Centre for Medium-Range Weather Forecasts (ECMWF) model winds and the climatological monthly sea surface temperature data from National Oceanographic Data Center (NODC). Inflow and outflow through the Taiwan Strait and the Sunda shelf are prescribed monthly from the Wyrtki estimates. Inflow of the Kuroshio branch current in the Luzon Strait is assumed to have a constant volume transport of 12 Sv (1 Sv = 106 m3/s), and the outflow from the open boundary to the east of Taiwan is adjusted to ensure the net volume transport through all open boundaries is zero at any instant. The model reveals that a cyclonic circulation exists all year round in the northern South China Sea. During the winter time this cyclonic eddy is located off the northwest of Luzon, coinciding with the region of positive wind stress curl in this season. This cyclonic eddy moves northward in spring due to the weakening of the northeast winds. The cyclonic circulation becomes weak and stays in the continental slope region in the northern South China Sea in the summer period. The southwest wind can raise the water level along the west coast of Luzon, but there is no anticyclonic circulation in the northern South China Sea. After the onset of the northeast monsoon winds in fall, the cyclonic eddy moves back to the region off the west coast of Luzon. In the southern South China Sea and off the Vietnam coast, the model predicts a similar flow structure as in the previous related studies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号